

Minimax A	lgorithm
	function MINIMAX-DECISION(<i>state</i>) returns an action inputs: <i>state</i> , current state in game v←MAX-VALUE(state) return the action in SUCCESSORS(state) with value v
	function MAX-VALUE(<i>state</i>) returns <i>a utility value</i>
Minimax ~backward induction	if TERMINAL-TEST(<i>state</i>) then return UTILITY(<i>state</i>) $v \leftarrow -\infty$ for a,s in SUCCESSORS(state) do $v \leftarrow MAX(v,MIN-VALUE(s))$ return v
Max- and Min-Value are dual- recursive	function MIN-VALUE(state)returns a utility valueif TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow \infty$ for a,s in SUCCESSORS(state) do $v \leftarrow MIN(v,MAX-VALUE(s))$ return v
сітёс	Sociable Agents

Cut-off & heuristic difficulties

Horizon effect: moves that cause damage, but may eventually be unavoidable

- may be forestalled by own moves
- when pushed over the search horizon (depth limit), search doesn't see it anymore, thinks they have been avoided
- singular extension: search only moves that outperform all other; get deeper with branching factor I

Quiescent search

Non-quiescent states can be expanded until quiescent states are reached, usually testing moves like captures

When alpha-beta runs out of depth, a quiescent search function evaluates the position

being careful to avoid overlooking obvious tactical conditions

int **Quiesc**(state, α , β)

- Calls EVAL for state
- If score is $>\beta$, a cutoff is immediately made (return β)
- If score isn't good enough to cause a cutoff, but is > $\!\!\alpha,\alpha$ is updated
- "Good captures" *s* are tried and tested with recursive call $v=-Quiesc(s, -\alpha, -\beta)$
- When it comes back, check as above for $\beta\mbox{-cutoff}$

Can get deep if liberal definition of "good" capture is applied

СІТЕС

ıts

Sociable Agents

Aspiration search

Speed up by small search (alpha-beta) windows!

Assumption: The value in the next iteration (depth+1) is not too much different from the value in the current iteration

Idea: Call alpha-beta with an artificially narrow aspiration window, centered around the previous search value. If the result is within that window, you've saved time

- alpha = previous valWINDOW;
- beta = previous + valWINDOW;

If search fails, window must be widened again and search started again

Recent trends: Memory-enhanced test algorithms

Make use of efficient memory (transposition tables!) and efficiency of runs with zero window size

Idea:Alpha-beta with zero-size window [gamma,gamma+1] will fail either high or low; this gives an upper or lower bound on minimax value

- > run multiple times to converge on the real value
- need good first guess, often used with iterative deepening, reusing previous value as next first guess

PVS/NegaScout algorithm

Searches first node with wide window, gives value v

- assuming that it is best, checks remaining nodes with null window [v,v+1] (,,scout test")
- if proof fails, 1st node was not best, repeat search with fullwidth window (like normal alpha-beta)

function NegaScout(node, depth, α , β) if node is terminal node or depth = 0 return the heuristic value of node (* cut-off *) b := β foreach child of node v := -NegaScout (child, depth-1, -b, - α) if $\alpha < v < \beta$ and not the first child (* re-search *) v := -NegaScout(child, depth-1, - β , -v) α := max(α , v) if $\alpha \ge \beta$ return α (* prune; cut-off *) b := $\alpha + 1$ (* set new null window *) return α	Aspiration NegaScout is at the heart of much of the best game-playing AI software around!
CITEC 42	Sociable Agents

The state of the art for some games

Chess:

- I997: IBM Deep Blue defeats Kasparov
- ... there is still debate about whether computers are really better

Checkers:

- Computer world champion since 1994
- ... there was still debate about whether computers are really better...
- until 2007: checkers solved optimally by computer

Go:

- Computers still not very good, branching factor really high
- Some recent progress with heuristic probabilistic methods
 - e.g.: http://senseis.xmp.net/?UCT

Poker:

•

- Competitive with top humans in some 2-player games
- > 3+ player case much less well-understood

Sociable Agents

43

Sociable **f**igents

Games that include chance

EXPECTIMINIMAX takes $O(b^m n^m),$ where n is number of distinct dice rolls

 unealistic to look far ahead, e.g. Backgammon: sometimes not more than 3 plies

Problem:

CITEC

- alpha-beta ignores suboptimal developments, concentrating on likely plays
- BUT with chance, there are no likely sequences of moves and possibilities are multiplied enormously

One can prune chance nodes:

- with bounds on utility function, one can have bounds on average
- Example: all utilities are +3...-3 -> can place upper bound on value of chance node without looking at its children

Sociable Agents

Summary	МАХ	A		
There is more than just ta the standard approach to t	king :he max			
 Minimax does not care about approximative nature of evaluations Better: evaluation gives probability distribution over possible values, may get expensive 				
 Alpha-Beta pruning does much irrelevant calculations, e.g. computing bounds in a "clear favorite" situation Better: consider utility of node expansion by some sort of metareasoning in decision making 				
 Search algorithms construct all possible sequences Better: generate plausible plans for certain goals, based on experience 				
гЕс	49	Sociable fi gents		