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3. Termin: Game Playing
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Outline

‣ What are games?

‣ Optimal decisions in games
- Which strategy leads to success?

‣ !-" pruning and various improvements

‣ Games & uncertainty
- games of imperfect information
- games that include an element of chance
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Games = Search ?

Search – no adversary (opponent)
‣ solution is (heuristic) method for finding goal
‣ heuristics and CSP techniques can find optimal solution

‣ evaluation function: estimate of cost from start to goal through given node

‣ examples: path planning, scheduling

Games – adversary
‣ solution is strategy = specifies move for every possible opponent reply

‣ time limits force an approximate solution

‣ evaluation function: evaluate “goodness” of 
game position

‣ examples: chess, checkers, Othello, backgammon 
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Types of Games
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Game setup

Two players: MAX and MIN
‣ MAX moves first and they take turns until the game is over
‣ winner gets award, looser gets penalty

Game as search:
‣ Initial state: board configuration of chess
‣ Successor function: list of (move,state) pairs specifying legal moves
‣ Goal test: is the game finished?
‣ Utility function: gives numerical value of terminal states. e.g. win (+1), 

loose (-1) and draw (0) in tic-tac-toe

MAX uses search tree to determine next move
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Partial Game Tree for Tic-Tac-Toe
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Optimal strategies

Find the contingent strategy for MAX assuming 
‣ infallible MIN opponent
‣ both players play optimally

Given a game tree, the optimal strategy can be determined using the 
minimax value of each node:

! MINIMAX-VALUE(n)=
! ! UTILITY(n)! ! ! If n is a terminal
! ! maxs # successors(n) MINIMAX-VALUE(s) ! If n is a MAX node

! ! mins # successors(n) MINIMAX-VALUE(s) ! If n is a MIN node
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Two-Player Game Tree
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Two-Ply Game Tree
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Two-Ply Game Tree
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Two-Ply Game Tree

The minimax decision

Minimax maximizes the worst-case outcome for max
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function MINIMAX-DECISION(state) returns an action
   inputs: state, current state in game
   v$MAX-VALUE(state)
   return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v $ -!
   for a,s in SUCCESSORS(state) do
      v $ MAX(v,MIN-VALUE(s))
   return v
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Minimax Algorithm

function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v $ !
   for a,s in SUCCESSORS(state) do
      v $ MIN(v,MAX-VALUE(s))
   return v

Minimax 
~backward
induction

Max- and 
Min-Value 
are dual-
recursive
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Properties of Minimax

Criterion Minimax

Complete? Yes

Time O(bm)

Space O(bm)

Optimal? Yes

!

"

m: max. depth
b: #legal moves

"

"

Explores the 
entire tree...

...in a depth-
first manner
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What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN plays optimally
‣ maximizes worst-case outcome for MAX

But if MIN does not play optimally, MAX will do even better 
[can be proved]

Minimax is the optimal strategy against optimal opponents, and still a 
very good one for suboptimal opponents
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Multiplayer games

Games allow more than two players
‣ minimax values become vectors
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Problem of Minimax search: complexity

Number of game states is exponential to the number of moves
‣ chess: average branching factor is~35 (=number of moves possible 

at a given), 355~50.000.000
‣ Minimax could look ahead only 5 moves (~novice level)

Solution: Do not examine every node!
‣ „Alpha-beta pruning“

- Alpha = best score that can be forced for MAX, anything worse 
can be ignored because MAX can and will avoid it

- Beta = worst-case scenario for MIN to endure, anything better 
can be ignored because MIN can and will avoid it
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General alpha-beta pruning

Consider node n in the tree:

If player has a better choice at
‣ parent node of n

‣ or any choice point further up

then n will never be reached in 
actual play and its child nodes 
simply don‘t matter

Hence when enough is known 
about n, it can be pruned
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Alpha-Beta Example

[-!, +!]

[-!,+!]

Range of possible [alpha,beta] values

Do DF-search until first leaf
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Alpha-Beta Example (continued)

[-!,3]

[-!,+!]
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Alpha-Beta Example (continued)

[-!,3]

[-!,+!]



gentsSociable21

Alpha-Beta Example (continued)

[3,+!]

[3,3]
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Alpha-Beta Example (continued)

[-!,2]

[3,+!]

[3,3]
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Alpha-Beta Example (continued)

[-!,2]

[3,+!]

[3,3]

This node is worse 
for MAX -> prune
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Alpha-Beta Example (continued)

[-!,2]

[3,14]

[3,3] [-!,14]

,
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Alpha-Beta Example (continued)

["!,2]

[3,5]

[3,3] [-!,5]

,
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Alpha-Beta Example (continued)

[2,2]["!,2]

[3,3]

[3,3]
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Alpha-Beta Example (continued)

[2,2]

[3,3]

[3,3] ["!,2]
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Alpha-Beta 
Algorithm

function ALPHA-BETA-SEARCH(state) returns action
   inputs: state, current state in game
   v$MAX-VALUE(state, -!, +!)
   return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state,! , ") returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v $ -!
   for a,s in SUCCESSORS(state) do
      v $ MAX(v,MIN-VALUE(s, ! , "))
     if v ≥ " then return v
     ! $ MAX(! ,v)
   return v
function MIN-VALUE(state, ! , ") returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v $ +!
   for a,s in SUCCESSORS(state) do
      v $ MIN(v,MAX-VALUE(s, ! , "))
     if v ≤ ! then return v
      " $ MIN(" ,v)
   return v
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Comments an alpha-beta

‣ Entire subtrees can be pruned, but pruning must not affect the final 
results

‣ [alpha,beta] is called search window; only moves with scores in 
this window are considered, all others are pruned

int AlphaBeta(int depth, int alpha, int beta)
{
    if (depth == 0)  return Evaluate();
    GenerateLegalMoves();
    while (MovesLeft()) {
        MakeNextMove();
        val = -AlphaBeta(depth-1, -beta, -alpha);
        UnmakeMove();
        if (val >= beta)  return beta;
        if (val > alpha)
            alpha = val;
    }
    return alpha;
}

‣ Usually used in alpha-
beta negamax variant
- no need for different 

MAX-VALUES, MIN-
VALUES functions

- swaps and inverts alpha-
beta between levels
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Move order affects the effectiveness of pruning
‣ with worst ordering, it equates Minimax (no pruning effectively)
‣ with perfect ordering, complexity is O(bm/2)

- Branching factor of sqrt(b), e.g. chess: 6 instead of ~35
- Alpha-beta pruning can look twice as far as minimax in the same 

amount of time

Repeated states are still possible
‣ store evaluations in memory = transposition table
‣ can have dramatic effects, e.g. double search depth

30

Comments an alpha-beta
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Imperfect, real-time decisions

Minimax and alpha-beta pruning require too much leaf-node evaluations
‣ often impractical within a reasonable amount of time

Classical idea (Shannon 1950; for chess): Depth-limited game search

‣ Fixed-depth limit so that the amount of time will not exceed what 
the rules of the game allow
 

‣ Cut off search and use evaluation heuristic 
- replace 

if TERMINAL-TEST(state) then return UTILITY(state)     
- by

if CUTOFF-TEST(state, depth) then return EVAL(state)
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Using a heuristic EVAL function

EVAL function crucial, e.g., for pruning
‣ performance depends on quality of EVAL

Idea: produce an estimate of the expected utility of the game 
from a given position

Requirements:
‣ EVAL should order terminal-nodes in the same way as UTILITY
‣ computation must not take too long
‣ for non-terminal states, EVAL should be strongly correlated with the 

actual chance of winning
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Calculate features of the state, which would lead to wins/
draws/losses
‣ e.g. #pawns, #bishops, good pawn stucture, etc.
‣ weighted linear function of the features

Addition presumes feature independence
‣ better often use non-linear combinations

Features & weights encode game experience, not rules
‣ could be estimated by machine learning 
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Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)
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Cut-off & heuristic difficulties

Horizon effect: moves that cause damage, but may eventually be 
unavoidable
‣ may be forestalled by own moves
‣ when pushed over the search horizon (depth limit), search 

doesn‘t see it anymore, thinks they have been avoided
‣ singular extension: search only moves that outperform all other; 

get deeper with branching factor 1 
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Fixed depth search 
for Black thinks it 
can avoid the 
queening move by
checking white king
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Cut-off & heuristic difficulties

EVAL only useful for quiescent states = no wild swings in value in 
near future
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Heuristic counts pieces won: (left) black ahead by one knight and two 
pawns and black will win, (right) white‘s next move will capture the black 
queen and black will loose
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Quiescent search
Non-quiescent states can be expanded until quiescent states are reached, 
usually testing moves like captures

When alpha-beta runs out of depth, a quiescent search function evaluates 
the position
‣ being careful to avoid overlooking obvious tactical conditions

int Quiesc(state, ! , ")
- Calls EVAL for state
- If score is >", a cutoff is immediately made (return ")
- If score isn't good enough to cause a cutoff, but is >!, ! is updated 
- „Good captures“ s are tried and tested with recursive call

v=-Quiesc(s, -! , -")
- When it comes back, check as above for "-cutoff

Can get deep if liberal definition of "good" capture is applied

36
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Iterative Deepening

Useful as a framework:
‣ alpha-beta is extremely sensitive to move ordering
‣ let alpha-beta return the move sequence predicted to be best 

for both sides: principal variation 
‣ search it first in next iteration, because it tends to be very good
‣ can result in big improvements overall
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for (depth=1;; depth++) {
    val = AlphaBeta(depth, -!, +!);
    if (TimedOut())
        break;
}
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Deep Blue (IBM, 1997)

generated 30 billion positions per move, reaching depth 14 routinely
iterative deepening alpa-beta search with transposition table, PLUS
‣ extensions beyond depth limit for interesting lines of moves (up 

to depth 40)
‣ heuristic evaluation function out of 8.000 features
‣ database of solved endgames (5-6 pieces)

38
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Aspiration search

Speed up by small search (alpha-beta) windows!

Assumption: The value in the next iteration (depth+1) is not too much 
different from the value in the current iteration

Idea: Call alpha-beta with an artificially narrow aspiration window, centered 
around the previous search value. If the result is within that window, you've 
saved time 

- alpha = previous - valWINDOW;
- beta = previous + valWINDOW;

If search fails, window must be widened again and search started again

40
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Principal variation search (PVS)/NegaScout

Best variant of alpha-beta around, used in all good chess, checkers, 
etc. programs

Uses zero-width window if possible

Idea: If moves are in good order, all you need to do is to prove that 
first node is better than remaining nodes
‣ zero window size ~ test if actual score is equal to the guess

Also depends on node ordering !!
‣ techniques such as sorting the move list or storing best move in a hash 

table need to be employed
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PVS/NegaScout algorithm

Searches first node with wide window, gives value v
‣ assuming that it is best, checks remaining nodes with null 

window [v,v+1]  („scout test“)
‣ if proof fails, 1st node was not best, repeat search with full-

width window (like normal alpha-beta)
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function NegaScout(node, depth, #, $)
    if node is terminal node or depth = 0
        return the heuristic value of node  (* cut-off *)
    b := $
    foreach child of node
        v := -NegaScout (child, depth-1, -b, -#)
        if #<v<$ and not the first child   (* re-search *)
           v := -NegaScout(child, depth-1, -$, -v)  
        # := max(#, v)
        if #%$  return #   (* prune; cut-off *)
        b := #+1               (* set new null window *)
    return #

Aspiration 
NegaScout is at the 
heart of much of the 
best game-playing 
AI software around!
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Recent trends: Memory-enhanced test algorithms

Make use of efficient memory (transposition tables!) and efficiency of 
runs with zero window size   

Idea: Alpha-beta with zero-size window [gamma,gamma+1] will fail 
either high or low; this gives an upper or lower bound on minimax 
value
‣ run multiple times to converge on the real value
‣ need good first guess, often used with iterative deepening, re-

using previous value as next first guess
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The state of the art for some games

Chess:
‣ 1997: IBM Deep Blue defeats Kasparov

‣ … there is still debate about whether computers are really better

Checkers:
‣ Computer world champion since 1994

‣ … there was still debate about whether computers are really better…

‣ until 2007: checkers solved optimally by computer

Go:
‣ Computers still not very good, branching factor really high

‣ Some recent progress with heuristic probabilistic methods 
- e.g.: http://senseis.xmp.net/?UCT

Poker:
‣ Competitive with top humans in some 2-player games

‣ 3+ player case much less well-understood
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Games that include chance

Many games combine luck and skill, e.g. Backgammon
‣ impossible to construct standard game-tree, because opponent‘s 

legal moves are not clear

Build game tree with additional chance nodes
‣ branches denote possible dice rolls, labelled with chances they 

occur
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Example: Backgammon

Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)
[1,1], [6,6] chance 1/36, all other chance 1/18 

chance nodes
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Games that include chance

Can not calculate definite minimax value, only the expected value taken 
over all possible dice rolls

Generalize to:  EXPECTIMINIMAX(n)=
! ! UTILITY(n)! ! ! !     If n is a terminal

! ! maxs # successors(n) EXPECTIMINIMAX(s) !     If n is MAX node

! ! mins # successors(n) EXPECTIMINIMAX(s) !     If n is MIN node

! ! %s # successors(n) P(s) . EXPECTIMINIMAX(s)    If n is chance node

Can be backed-up recursively all the way to the root of the game tree as 
in minimax
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Games that include chance

EXPECTIMINIMAX takes O(bmnm), where n is number of distinct dice 
rolls
‣ unealistic to look far ahead, e.g. Backgammon: sometimes not 

more than 3 plies
Problem: 
‣ alpha-beta ignores suboptimal developments, concentrating on 

likely plays
‣ BUT with chance, there are no likely sequences of moves and 

possibilities are multiplied enormously
One can prune chance nodes:
‣ with bounds on utility function, one can have bounds on average
‣ Example: all utilities are +3...-3 -> can place upper bound on value 

of chance node without looking at its children

48
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Summary!

There is more than just taking 
the standard approach to the max

Minimax does not care about approximative nature of evaluations
‣ Better: evaluation gives probability distribution over possible values, may 

get expensive

Alpha-Beta pruning does much irrelevant calculations, e.g. computing 
bounds in a „clear favorite“ situation
‣ Better: consider utility of node expansion by some sort of metareasoning 

in decision making

Search algorithms construct all possible sequences
‣ Better: generate plausible plans for certain goals, based on experience


