
gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Spezielle Themen der
Künstlichen Intelligenz

3. Termin: Game Playing

gentsSociable2

Outline

‣ What are games?

‣ Optimal decisions in games
- Which strategy leads to success?

‣ !-" pruning and various improvements

‣ Games & uncertainty
- games of imperfect information
- games that include an element of chance

gentsSociable3

Games = Search ?

Search – no adversary (opponent)
‣ solution is (heuristic) method for finding goal
‣ heuristics and CSP techniques can find optimal solution

‣ evaluation function: estimate of cost from start to goal through given node

‣ examples: path planning, scheduling

Games – adversary
‣ solution is strategy = specifies move for every possible opponent reply

‣ time limits force an approximate solution

‣ evaluation function: evaluate “goodness” of
game position

‣ examples: chess, checkers, Othello, backgammon

gentsSociable4

Types of Games

gentsSociable5

Game setup

Two players: MAX and MIN
‣ MAX moves first and they take turns until the game is over
‣ winner gets award, looser gets penalty

Game as search:
‣ Initial state: board configuration of chess
‣ Successor function: list of (move,state) pairs specifying legal moves
‣ Goal test: is the game finished?
‣ Utility function: gives numerical value of terminal states. e.g. win (+1),

loose (-1) and draw (0) in tic-tac-toe

MAX uses search tree to determine next move

gentsSociable6

Partial Game Tree for Tic-Tac-Toe

gentsSociable7

Optimal strategies

Find the contingent strategy for MAX assuming
‣ infallible MIN opponent
‣ both players play optimally

Given a game tree, the optimal strategy can be determined using the
minimax value of each node:

! MINIMAX-VALUE(n)=
! ! UTILITY(n)! ! ! If n is a terminal
! ! maxs # successors(n) MINIMAX-VALUE(s) ! If n is a MAX node

! ! mins # successors(n) MINIMAX-VALUE(s) ! If n is a MIN node

gentsSociable8

Two-Player Game Tree

gentsSociable9

Two-Ply Game Tree

gentsSociable10

Two-Ply Game Tree

gentsSociable11

Two-Ply Game Tree

The minimax decision

Minimax maximizes the worst-case outcome for max

gentsSociable

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
 v$MAX-VALUE(state)
 return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v $ -!
 for a,s in SUCCESSORS(state) do
 v $ MAX(v,MIN-VALUE(s))
 return v

12

Minimax Algorithm

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v $!
 for a,s in SUCCESSORS(state) do
 v $ MIN(v,MAX-VALUE(s))
 return v

Minimax
~backward
induction

Max- and
Min-Value
are dual-
recursive

gentsSociable13

Properties of Minimax

Criterion Minimax

Complete? Yes

Time O(bm)

Space O(bm)

Optimal? Yes

!

"

m: max. depth
b: #legal moves

"

"

Explores the
entire tree...

...in a depth-
first manner

gentsSociable14

What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN plays optimally
‣ maximizes worst-case outcome for MAX

But if MIN does not play optimally, MAX will do even better
[can be proved]

Minimax is the optimal strategy against optimal opponents, and still a
very good one for suboptimal opponents

gentsSociable15

Multiplayer games

Games allow more than two players
‣ minimax values become vectors

gentsSociable16

Problem of Minimax search: complexity

Number of game states is exponential to the number of moves
‣ chess: average branching factor is~35 (=number of moves possible

at a given), 355~50.000.000
‣ Minimax could look ahead only 5 moves (~novice level)

Solution: Do not examine every node!
‣ „Alpha-beta pruning“

- Alpha = best score that can be forced for MAX, anything worse
can be ignored because MAX can and will avoid it

- Beta = worst-case scenario for MIN to endure, anything better
can be ignored because MIN can and will avoid it

gentsSociable17

General alpha-beta pruning

Consider node n in the tree:

If player has a better choice at
‣ parent node of n

‣ or any choice point further up

then n will never be reached in
actual play and its child nodes
simply don‘t matter

Hence when enough is known
about n, it can be pruned

gentsSociable18

Alpha-Beta Example

[-!, +!]

[-!,+!]

Range of possible [alpha,beta] values

Do DF-search until first leaf

gentsSociable19

Alpha-Beta Example (continued)

[-!,3]

[-!,+!]

gentsSociable20

Alpha-Beta Example (continued)

[-!,3]

[-!,+!]

gentsSociable21

Alpha-Beta Example (continued)

[3,+!]

[3,3]

gentsSociable22

Alpha-Beta Example (continued)

[-!,2]

[3,+!]

[3,3]

gentsSociable23

Alpha-Beta Example (continued)

[-!,2]

[3,+!]

[3,3]

This node is worse
for MAX -> prune

gentsSociable24

Alpha-Beta Example (continued)

[-!,2]

[3,14]

[3,3] [-!,14]

,

gentsSociable25

Alpha-Beta Example (continued)

["!,2]

[3,5]

[3,3] [-!,5]

,

gentsSociable26

Alpha-Beta Example (continued)

[2,2]["!,2]

[3,3]

[3,3]

gentsSociable27

Alpha-Beta Example (continued)

[2,2]

[3,3]

[3,3] ["!,2]

gentsSociable28

Alpha-Beta
Algorithm

function ALPHA-BETA-SEARCH(state) returns action
 inputs: state, current state in game
 v$MAX-VALUE(state, -!, +!)
 return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state,! , ") returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v $ -!
 for a,s in SUCCESSORS(state) do
 v $ MAX(v,MIN-VALUE(s, ! , "))
 if v ≥ " then return v
 ! $ MAX(! ,v)
 return v
function MIN-VALUE(state, ! , ") returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v $ +!
 for a,s in SUCCESSORS(state) do
 v $ MIN(v,MAX-VALUE(s, ! , "))
 if v ≤ ! then return v
 " $ MIN(" ,v)
 return v

gentsSociable29

Comments an alpha-beta

‣ Entire subtrees can be pruned, but pruning must not affect the final
results

‣ [alpha,beta] is called search window; only moves with scores in
this window are considered, all others are pruned

int AlphaBeta(int depth, int alpha, int beta)
{
 if (depth == 0) return Evaluate();
 GenerateLegalMoves();
 while (MovesLeft()) {
 MakeNextMove();
 val = -AlphaBeta(depth-1, -beta, -alpha);
 UnmakeMove();
 if (val >= beta) return beta;
 if (val > alpha)
 alpha = val;
 }
 return alpha;
}

‣ Usually used in alpha-
beta negamax variant
- no need for different

MAX-VALUES, MIN-
VALUES functions

- swaps and inverts alpha-
beta between levels

gentsSociable

Move order affects the effectiveness of pruning
‣ with worst ordering, it equates Minimax (no pruning effectively)
‣ with perfect ordering, complexity is O(bm/2)

- Branching factor of sqrt(b), e.g. chess: 6 instead of ~35
- Alpha-beta pruning can look twice as far as minimax in the same

amount of time

Repeated states are still possible
‣ store evaluations in memory = transposition table
‣ can have dramatic effects, e.g. double search depth

30

Comments an alpha-beta

gentsSociable31

Imperfect, real-time decisions

Minimax and alpha-beta pruning require too much leaf-node evaluations
‣ often impractical within a reasonable amount of time

Classical idea (Shannon 1950; for chess): Depth-limited game search

‣ Fixed-depth limit so that the amount of time will not exceed what
the rules of the game allow

‣ Cut off search and use evaluation heuristic
- replace

if TERMINAL-TEST(state) then return UTILITY(state)
- by

if CUTOFF-TEST(state, depth) then return EVAL(state)

gentsSociable32

Using a heuristic EVAL function

EVAL function crucial, e.g., for pruning
‣ performance depends on quality of EVAL

Idea: produce an estimate of the expected utility of the game
from a given position

Requirements:
‣ EVAL should order terminal-nodes in the same way as UTILITY
‣ computation must not take too long
‣ for non-terminal states, EVAL should be strongly correlated with the

actual chance of winning

gentsSociable

Calculate features of the state, which would lead to wins/
draws/losses
‣ e.g. #pawns, #bishops, good pawn stucture, etc.
‣ weighted linear function of the features

Addition presumes feature independence
‣ better often use non-linear combinations

Features & weights encode game experience, not rules
‣ could be estimated by machine learning

33

Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)

gentsSociable

Cut-off & heuristic difficulties

Horizon effect: moves that cause damage, but may eventually be
unavoidable
‣ may be forestalled by own moves
‣ when pushed over the search horizon (depth limit), search

doesn‘t see it anymore, thinks they have been avoided
‣ singular extension: search only moves that outperform all other;

get deeper with branching factor 1

34

Fixed depth search
for Black thinks it
can avoid the
queening move by
checking white king

gentsSociable

Cut-off & heuristic difficulties

EVAL only useful for quiescent states = no wild swings in value in
near future

35

Heuristic counts pieces won: (left) black ahead by one knight and two
pawns and black will win, (right) white‘s next move will capture the black
queen and black will loose

gentsSociable

Quiescent search
Non-quiescent states can be expanded until quiescent states are reached,
usually testing moves like captures

When alpha-beta runs out of depth, a quiescent search function evaluates
the position
‣ being careful to avoid overlooking obvious tactical conditions

int Quiesc(state, ! , ")
- Calls EVAL for state
- If score is >", a cutoff is immediately made (return ")
- If score isn't good enough to cause a cutoff, but is >!, ! is updated
- „Good captures“ s are tried and tested with recursive call

v=-Quiesc(s, -! , -")
- When it comes back, check as above for "-cutoff

Can get deep if liberal definition of "good" capture is applied

36

gentsSociable

Iterative Deepening

Useful as a framework:
‣ alpha-beta is extremely sensitive to move ordering
‣ let alpha-beta return the move sequence predicted to be best

for both sides: principal variation
‣ search it first in next iteration, because it tends to be very good
‣ can result in big improvements overall

37

for (depth=1;; depth++) {
 val = AlphaBeta(depth, -!, +!);
 if (TimedOut())
 break;
}

gentsSociable

Deep Blue (IBM, 1997)

generated 30 billion positions per move, reaching depth 14 routinely
iterative deepening alpa-beta search with transposition table, PLUS
‣ extensions beyond depth limit for interesting lines of moves (up

to depth 40)
‣ heuristic evaluation function out of 8.000 features
‣ database of solved endgames (5-6 pieces)

38

gentsSociable39 gentsSociable

Aspiration search

Speed up by small search (alpha-beta) windows!

Assumption: The value in the next iteration (depth+1) is not too much
different from the value in the current iteration

Idea: Call alpha-beta with an artificially narrow aspiration window, centered
around the previous search value. If the result is within that window, you've
saved time

- alpha = previous - valWINDOW;
- beta = previous + valWINDOW;

If search fails, window must be widened again and search started again

40

gentsSociable

Principal variation search (PVS)/NegaScout

Best variant of alpha-beta around, used in all good chess, checkers,
etc. programs

Uses zero-width window if possible

Idea: If moves are in good order, all you need to do is to prove that
first node is better than remaining nodes
‣ zero window size ~ test if actual score is equal to the guess

Also depends on node ordering !!
‣ techniques such as sorting the move list or storing best move in a hash

table need to be employed

41 gentsSociable

PVS/NegaScout algorithm

Searches first node with wide window, gives value v
‣ assuming that it is best, checks remaining nodes with null

window [v,v+1] („scout test“)
‣ if proof fails, 1st node was not best, repeat search with full-

width window (like normal alpha-beta)

42

function NegaScout(node, depth, #, $)
 if node is terminal node or depth = 0
 return the heuristic value of node (* cut-off *)
 b := $
 foreach child of node
 v := -NegaScout (child, depth-1, -b, -#)
 if #<v<$ and not the first child (* re-search *)
 v := -NegaScout(child, depth-1, -$, -v)
 # := max(#, v)
 if #%$ return # (* prune; cut-off *)
 b := #+1 (* set new null window *)
 return #

Aspiration
NegaScout is at the
heart of much of the
best game-playing
AI software around!

gentsSociable

Recent trends: Memory-enhanced test algorithms

Make use of efficient memory (transposition tables!) and efficiency of
runs with zero window size

Idea: Alpha-beta with zero-size window [gamma,gamma+1] will fail
either high or low; this gives an upper or lower bound on minimax
value
‣ run multiple times to converge on the real value
‣ need good first guess, often used with iterative deepening, re-

using previous value as next first guess

43 gentsSociable

The state of the art for some games

Chess:
‣ 1997: IBM Deep Blue defeats Kasparov

‣ … there is still debate about whether computers are really better

Checkers:
‣ Computer world champion since 1994

‣ … there was still debate about whether computers are really better…

‣ until 2007: checkers solved optimally by computer

Go:
‣ Computers still not very good, branching factor really high

‣ Some recent progress with heuristic probabilistic methods
- e.g.: http://senseis.xmp.net/?UCT

Poker:
‣ Competitive with top humans in some 2-player games

‣ 3+ player case much less well-understood

gentsSociable45

Games that include chance

Many games combine luck and skill, e.g. Backgammon
‣ impossible to construct standard game-tree, because opponent‘s

legal moves are not clear

Build game tree with additional chance nodes
‣ branches denote possible dice rolls, labelled with chances they

occur

gentsSociable46

Example: Backgammon

Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)
[1,1], [6,6] chance 1/36, all other chance 1/18

chance nodes

gentsSociable47

Games that include chance

Can not calculate definite minimax value, only the expected value taken
over all possible dice rolls

Generalize to: EXPECTIMINIMAX(n)=
! ! UTILITY(n)! ! ! ! If n is a terminal

! ! maxs # successors(n) EXPECTIMINIMAX(s) ! If n is MAX node

! ! mins # successors(n) EXPECTIMINIMAX(s) ! If n is MIN node

! ! %s # successors(n) P(s) . EXPECTIMINIMAX(s) If n is chance node

Can be backed-up recursively all the way to the root of the game tree as
in minimax

gentsSociable

Games that include chance

EXPECTIMINIMAX takes O(bmnm), where n is number of distinct dice
rolls
‣ unealistic to look far ahead, e.g. Backgammon: sometimes not

more than 3 plies
Problem:
‣ alpha-beta ignores suboptimal developments, concentrating on

likely plays
‣ BUT with chance, there are no likely sequences of moves and

possibilities are multiplied enormously
One can prune chance nodes:
‣ with bounds on utility function, one can have bounds on average
‣ Example: all utilities are +3...-3 -> can place upper bound on value

of chance node without looking at its children

48

gentsSociable49

Summary!

There is more than just taking
the standard approach to the max

Minimax does not care about approximative nature of evaluations
‣ Better: evaluation gives probability distribution over possible values, may

get expensive

Alpha-Beta pruning does much irrelevant calculations, e.g. computing
bounds in a „clear favorite“ situation
‣ Better: consider utility of node expansion by some sort of metareasoning

in decision making

Search algorithms construct all possible sequences
‣ Better: generate plausible plans for certain goals, based on experience

