Outline

Spezielle Themen der » What are games?
KUnStliChen Inte”igenz » Optimal decisions in games

- Which strategy leads to success?

3.Termin: Game Playing » o-f pruning and various improvements

» Games & uncertainty
- games of imperfect information
- games that include an element of chance

Dr. Stefan Kopp
Center of Excellence ,,Cognitive Interaction Technology*
AG Sociable Agents

CIT=C Soci ﬂgents 2 Soci Agents

Games = Search ? Types of Games

Search — no adversary (opponent)
» solution is (heuristic) method for finding goal
heuristics and CSP techniques can find optimal solution

14 e
deterministic chance
» evaluation function: estimate of cost from start to goal through given node
» examples: path planning, scheduling perfect information chess, checkers, backgammon
go, othello monopoly
Games — adversary imperfect information bridge, poker, scrabble
L. _ . . nuclear war
» solution is strategy = specifies move for every possible opponent reply

» time limits force an approximate solution

» evaluation function: evaluate “goodness” of
game position

» examples: chess, checkers, Othello, backgammon

3 Sociable Agents a Sociable Agents

Game setup

Two players: MAX and MIN
» MAX moves first and they take turns until the game is over
» winner gets award, looser gets penalty

Game as search:

Initial state: board configuration of chess

Successor function: list of (move,state) pairs specifying legal moves
Goal test: is the game finished?

Utility function: gives numerical value of terminal states. e.g. win (+1),
loose (-1) and draw (0) in tic-tac-toe

v v v v

MAX uses search tree to determine next move

Optimal strategies

Find the contingent strategy for MAX assuming
» infallible MIN opponent
» both players play optimally

Given a game tree, the optimal strategy can be determined using the
minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY (n) If n is a terminal
MaX; e ecessorsiy MINIMAX-VALUE(s) If n is 2 MAX node
min MINIMAX-VALUE(s) If is a MIN node

s € successors(n)

Partial Game Tree for Tic-Tac-Toe

MAX (X)

MIN (0)

MAX (X)

MIN (0)

[X[o]x] [X[o[x] [x
TERMINAL | [O]X| [0]0]X]|
Lol] [x[x[9] [x

Utility -1 0

Q|x|0

b4

Two-Player Game Tree

MAX

MIN

Two-Ply Game Tree

MAX
MIN
O
9 Sociable fAgents
Two-Ply Game Tree
'he minimax decision
MAX B 3
MIN

Minimax maximizes the worst-case outcome for max

1 Sociable Agents

Two-Ply Game Tree

MAX

MIN

10 Sociable Agents

Minimax Algorithm

function MINIMA X-DECISION(state) returns an action
inputs: state, current state in game

| v<—MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

| function MAX-VALUE(state)Ireturns a utility value

if TERMINAL-TEST(state) then return UTILITY (state)
Minimax V < -0
~backward for a,s in SUCCESSORS(state) do
induction [v < MAX(V,MIN-VALUE(s)) |

return v
Max- and function MIN-VALUE(state)|returns a utility value
Min-Value if TERMINAL-TEST(state) then return UTILITY (state)
are dual- Y <— 0
recursive for a,s in SUCCESSORS(state) do

[v < MIN(V,MAX-VALUE(s)) |

return v

Sociable Agents

Properties of Minimax

Criterion Minimax
Complete? Yes
©
Time O(b™)
Space O(bm
p (bm) ©
Optimal? Yes
m: max. depth ©

b: #legal moves

13

Explores the
entire tree...

...in a depth-
first manner

What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN plays optimally
» maximizes worst-case outcome for MAX

But if MIN does not play optimally, MAX will do even better
[can be proved]

Minimax is the optimal strategy against optimal opponents, and still a
very good one for suboptimal opponents

14

Multiplayer games

Games allow more than two players
» minimax values become vectors

to move
A

Cc

(1,2.6) (4.2.3) (6.1.2) (7.4-1) (5-1-1) (-1.5.2)

15

(71.7-1) (5.4.5)

Problem of Minimax search: complexity

Number of game states is exponential to the number of moves

» chess:average branching factor is~35 (=number of moves possible
at a given), 35°~50.000.000

» Minimax could look ahead only 5 moves (~novice level)

Solution: Do not examine every node!
» ,Alpha-beta pruning*
- Alpha = best score that can be forced for MAX, anything worse
can be ignored because MAX can and will avoid it

- Beta = worst-case scenario for MIN to endure, anything better
can be ignored because MIN can and will avoid it

16

General alpha-beta pruning

Consider node 7 in the tree:

Player

If player has a better choice at
» parent node of n

» or any choice point further up Opponent

then 7 will never be reached in
actual play and its child nodes
simply don‘t matter

Player

Hence when enough is known Opponent
about 7, it can be pruned

17

Alpha-Beta Example (continued)

MAX

MIN [-0,3]

19

Alpha-Beta Example

Do DF-search until first leaf
Range of possible [alpha,beta] values

MAX

18

Alpha-Beta Example (continued)

MAX

MIN

Alpha-Beta Example (continued)

MAX

MIN

21 ﬂ (

MAX

This node is worse
for MAX -> prune

MIN

23 Soc Agents

Alpha-Beta Example (continued)

MAX

MIN

22 S0C ﬂ N1

Alpha-Beta Example (continued)

MAX

MIN [3.3]

24 Soc Agents

Alpha-Beta Example (continued)

MAX

MIN

25 o0 ﬂ 11¢

Alpha-Beta Example (continued)

MAX

[3,3] S 2

MIN

A

wn
@]
(@]

27

()

D

%)

Alpha-Beta Example (continued)

MAX
MIN - [3,3] SR ML 2
26 Agents
function ALPHA-BETA-SEARCH(state) returns action
AIPha_Beta inputs: state, current state in game
Algorithm | v—MAX-VALUE(state, -, +o)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state,o., B)|returns a urility value
if TERMINAL-TEST(state) then return UTILITY (state)
Y €< -00

for a,s in SUCCESSORS(state) do
v < MAX(v,MIN-VALUE(s, a, B))
if v > B then return v

a < MAX(a ,v)
return v
function| MIN-VALUE(state, o, B) returns a utility value
if TE - state) then return UTILITY (state)
y < +o0

for a,s in SUCCESSORS(state) do
v <= MIN(v,MAX-VALUE(s, o, B))
if v < o then return v
f < MIN(B ,v)

return v

Comments an alpha-beta

» Entire subtrees can be pruned, but pruning must not affect the final
results

» [alpha,beta] is called search window; only moves with scores in
this window are considered, all others are pruned

> Usually used in alpha- int AlphaBeta(int depth, int alpha, int beta)
; {
beta negamax variant if (depth == 0) return Evaluate();
- no need for different GenerateLegalMoves();
MAX-VALUES, MIN- while (MovesLeft()) {
VALUES functions MakeNextMove();
- swaps and inverts alpha- val = -AlphaBeta(depth-1, -beta, -alpha);
beta between levels UpmakeMove();
if (val >= beta) return beta;
if (val > alpha)
alpha = val;

}

return alpha;

29 SEETEEETEEN

Imperfect, real-time decisions

Minimax and alpha-beta pruning require too much leaf-node evaluations
» often impractical within a reasonable amount of time

Classical idea (Shannon 1950; for chess): Depth-limited game search

» Fixed-depth limit so that the amount of time will not exceed what
the rules of the game allow

» Cut off search and use evaluation heuristic
- replace
if TERMINAL-TEST(state) then return UTILITY(state)
by
if CUTOFF-TEST(state, depth) then return EVAL(state)

31

Comments an alpha-beta

Move order affects the effectiveness of pruning
» with worst ordering, it equates Minimax (no pruning effectively)
» with perfect ordering, complexity is O(b™?)
- Branching factor of sqrt(b), e.g. chess: 6 instead of ~35

- Alpha-beta pruning can look twice as far as minimax in the same
amount of time

Repeated states are still possible
» store evaluations in memory = transposition table
» can have dramatic effects, e.g. double search depth

30

Using a heuristic EVAL function

EVAL function crucial, e.g., for pruning
» performance depends on quality of EVAL

Idea: produce an estimate of the expected utility of the game
from a given position

Requirements:
» EVAL should order terminal-nodes in the same way as UTILITY
» computation must not take too long

» for non-terminal states, EVAL should be strongly correlated with the
actual chance of winning

32

Heuristic EVAL example

Calculate features of the state, which would lead to wins/
draws/losses

» e.g. #pawns, #bishops, good pawn stucture, etc.

» weighted linear function of the features

Eval(s) =w, f,(s) + w, £5(5) + ... + w, f,(5)

Addition presumes feature independence
» better often use non-linear combinations

Features & weights encode game experience, not rules
» could be estimated by machine learning

33 Sociable fAgents

Cut-off & heuristic difficulties

Horizon effect: moves that cause damage, but may eventually be
unavoidable

» may be forestalled by own moves
» when pushed over the search horizon (depth limit), search
doesn‘t see it anymore, thinks they have been avoided

» singular extension: search only moves that outperform all other;
get deeper with branching factor |

Fixed depth search
for Black thinks it
can avoid the
queening move by
checking white king

34 Sociable fAgents

Cut-off & heuristic difficulties

EVAL only useful for quiescent states = no wild swings in value in
near future

Heuristic counts pieces won: (left) black ahead by one knight and two
pawns and black will win, (right) white‘s next move will capture the black
queen and black will loose

() Whik to mone

s

Quiescent search

Non-quiescent states can be expanded until quiescent states are reached,
usually testing moves like captures

When alpha-beta runs out of depth, a quiescent search function evaluates
the position
» being careful to avoid overlooking obvious tactical conditions

int Quiesc(state, a.,)
- Calls EVAL for state
- If score is >f, a cutoff is immediately made (return 3)
- If score isn't good enough to cause a cutoff, but is >a., o is updated
- ,Good captures” s are tried and tested with recursive call
v=-Quiesc(s, -a., -p)
- When it comes back, check as above for (3-cutoff

Can get deep if liberal definition of "good" capture is applied

36 Sociable Agents

Iterative Deepening Deep Blue (IBM, 1997)

for (depth=1;; depth++) {
val = AlphaBeta(depth, -00, +00);
if (TimedOut()) generated 30 billion positions per move, reaching depth 14 routinely

break; iterative deepening alpa-beta search with transposition table, PLUS

» extensions beyond depth limit for interesting lines of moves (up
to depth 40)

Useful as a framework:
» heuristic evaluation function out of 8.000 features

» alpha-beta is extremely sensitive to move orderin .
P Y) & » database of solved endgames (5-6 pieces)
» let alpha-beta return the move sequence predicted to be best

for both sides: principal variation
» search it first in next iteration, because it tends to be very good

» can result in big improvements overall

A

A

37 38

Aspiration search
Speed up by small search (alpha-beta) windows!

Assumption: The value in the next iteration (depth+1) is not too much
different from the value in the current iteration

Idea: Call alpha-beta with an artificially narrow aspiration window, centered
around the previous search value. If the result is within that window, you've
saved time

- alpha = previous - valWINDOW;

- beta = previous + valWINDOW;

If search fails, window must be widened again and search started again

39 C Agents 40

(0p]

Acent

Principal variation search (PVS)/NegaScout

Best variant of alpha-beta around, used in all good chess, checkers,
etc. programs

Uses zero-width window if possible

Idea: If moves are in good order, all you need to do is to prove that

first node is better than remaining nodes
» zero window size ~ test if actual score is equal to the guess

Also depends on node ordering !!

» techniques such as sorting the move list or storing best move in a hash
table need to be employed

41

Recent trends: Memory-enhanced test algorithms

Make use of efficient memory (transposition tables!) and efficiency of
runs with zero window size

Idea: Alpha-beta with zero-size window [gamma,gamma-+ 1] will fail
either high or low; this gives an upper or lower bound on minimax
value

» run multiple times to converge on the real value

» need good first guess, often used with iterative deepening, re-
using previous value as next first guess

43

PVS/NegaScout algorithm

Searches first node with wide window, gives value v
» assuming that it is best, checks remaining nodes with null
window [v,v+[] (,,scout test®)
» if proof fails, Ist node was not best, repeat search with full-
width window (like normal alpha-beta)

function NegaScout(node, depth, o,)

if node is terminal node or depth = 0
return the heuristic value of node (* cut-off *)

b:=8

foreach child of node Aspiration
v := -NegaScout (child, depth-1, -b, -a) NegaScout is at the
if a<v<f and not the first child (* re-search *) heart of much of the

V= -NCgaSCOLll(Childﬁ dcplh-lﬁ -[3, -V) best game-p]aying

o := max(a, V) Al software around!
if > return o (* prune; cut-off *)
b = o+l (* set new null window *)

return o

42

The state of the art for some games

Chess:

> 1997:1BM Deep Blue defeats Kasparov

» ... there is still debate about whether computers are really better
Checkers:

» Computer world champion since 1994
» ... there was still debate about whether computers are really better...
» until 2007: checkers solved optimally by computer
Go:
» Computers still not very good, branching factor really high
» Some recent progress with heuristic probabilistic methods
- e.g. http://senseis.xmp.net/?UCT

Poker:
» Competitive with top humans in some 2-player games
» 3+ player case much less well-understood

Games that include chance

Many games combine luck and skill, e.g. Backgammon
» impossible to construct standard game-tree, because opponent’s
legal moves are not clear

Build game tree with additional chance nodes

» branches denote possible dice rolls, labelled with chances they
occur

MAX

CHANCE

45

Example: Backgammon

MAX

CHANCE .
[g < chance nodes

CHANCE

MAX

TERMINAL sS4 1 -1 1

Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)
[1,1],[6,6] chance 1/36,all other chance I/18

46

Games that include chance

Can not calculate definite minimax value, only the expected value taken
over all possible dice rolls

Generalize to: EXPECTIMINIMAX(n)=
UTILITY(n) If nis a terminal
MaX; ¢ gecessorsiy EXPECTIMINIMAX(s) If n is MAX node

min EXPECTIMINIMAX(s) If n is MIN node

s € successors(n)

[, c accesorsiy P(S) - EXPECTIMINIMAX(s) I is chance node |

Can be backed-up recursively all the way to the root of the game tree as
in minimax

47

Games that include chance

EXPECTIMINIMAX takes O(b™n™), where n is number of distinct dice
rolls
» unealistic to look far ahead, e.g. Backgammon: sometimes not
more than 3 plies
Problem:
» alpha-beta ignores suboptimal developments, concentrating on
likely plays
» BUT with chance, there are no likely sequences of moves and
possibilities are multiplied enormously
One can prune chance nodes:
» with bounds on utility function, one can have bounds on average
» Example:all utilities are +3...-3 -> can place upper bound on value
of chance node without looking at its children

48

Summary »

MIN £ 100

There is more than just taking
the standard approach to the max s e Rh e e

Minimax does not care about approximative nature of evaluations
» Better: evaluation gives probability distribution over possible values, may
get expensive

Alpha-Beta pruning does much irrelevant calculations, e.g. computing
bounds in a ,,clear favorite* situation
» Better: consider utility of node expansion by some sort of metareasoning
in decision making

Search algorithms construct all possible sequences
» Better: generate plausible plans for certain goals, based on experience

49

