Resolving deictic references with fuzzy CSPs

Resolving deictic references with fuzzy CSPs

Thies Pfeiffer

A.I. Group, Faculty of Technology, Bielefeld University

Problem

Introduction

When humans communicate, we use **deictic** expressions to refer to other entities, such as places, events or persons.

Figure: "put the red bolt in this block"

Problem

Introduction

"put the red bolt in this block"
This is an expression which can be easily understood by a human interlocutor, given the right context, i.e. if both interlocutors are situated in the same environment and perceive each other and their surroundings.

Figure: "put the red bolt in this block"

Problem

Introduction

"put the red bolt in this block"
How can this expression be interpreted by a computer system?

Figure: "put the red bolt in this block"

Problem

Expression

"put the red bolt in this block"

Problem description revised

The situation is defined by the **world** W. The speaker utters a deictic expression to discriminate the **topic** T from all possible subsets of W.

Figure: Communicating a topic

Problem

Expression

"put the red bolt in this block"

Problem statement

- Find the topic T in W so that the instances in T satisfy the deictic expression.
- The deictic expression formulates constraints on W to discriminate T.
- → constraint satisfaction problem

Figure: Communicating a topic

Content

- 1 Problem
- 2 Introduction
- 3 Constraint Satisfaction Problems
- 4 Fuzzy Logic
- 5 Distributed Ontologybased Object Reference Resolution System
- 6 Summary

Constraint Satisfaction Problems

Definition Solving CSPs Types of CSPs Example Open Questions

Definition

Definition

A **constraint satisfaction problem (CSP)** is a tuple (X, P). X is the set $\{x_i|x_i \in D_i\}$ of **variables** of the CSP, each with an individual domain D_i . P is the set of **predicates** over the variables:

 $p_k(x_{k1},\ldots,x_{kn}): D_{k1}\times\cdots\times D_{kn}\to \{true,false\}.$

Grade of a CSP

Predicates can include any number of variables, the maximum count for an individual predicate defines the **grade** of the CSP. CSPs of any grade can be transformed into CSPs of grade 2 (Bacchus & van Beek, 1998). Hence, algorithms concentrate on solving CSPs of grade 2. In addition, these CSPs can be visualized as graphs.

Solving CSPs

Search

- Generate-and-Test (pro: finds all solutions, con: not efficient)
- Backtracking (pro: finds all solutions, con: naïve algorithm may take even longer than Generate-and-Test)

optimizing backtracking

- intelligent backtracking returns directly to conflicting variable
- consistency checks test early in the processing effects on other variables (Mackworth, 1977; Mackworth & Freuder, 1985)

Types of CSPs

Types of CSPs

- weighted CSPs associates costs with assignments and tries to minimize the overall cost of the solution
- probabilistic CSPs associate probabilities to predicates
- fuzzy CSPs associate a value in [0...1] with an assignment and provide the assignment with the maximum minimal assignment to an individual variable as a solution

A.I. Group, Faculty of Technology, Bielefeld University

Problem Introduction CSPs Fuzzy Logic DOORS Summary References

Example

Expression

"put the red bolt in this block"

as CSF

```
(var "?object-1" BOLT)
(var "?object-2" BLOCK)
(has-color "?object-1" RED)
(fits "?object-1" "?object-2")
```

Example

Expression

"put the red bolt in this block"

as CSP

```
(var "?object-1" BOLT)
(var "?object-2" BLOCK)
(has-color "?object-1" RED)
(fits "?object-1" "?object-2")
```

Open Questions

Expression

"put the red bolt in this block"

Open Questions

- How to test for different shades of red?
- How to express that a constraint might be there or not, e.g. a possible pointing gesture accompanying this?
- How to differentiate between alternative solutions? Can heuristics be included? E.g. objects recently been used should be preferred.

Fuzzy Logic

Origin
Definition
Properties
Finetuning
Norms
Example

Origin

- Fuzzy-sets have been developed by Lotfi A. Zadeh (1965).
- Good introductions can be found, e.g. in Pal & Mitra (1999).

Definition

Fuzzy-sets

A **fuzzy-set** is a pair (A, μ_A) . A is a subset of a set $R = \{r\}$ characterized by the **membership function** $\mu_A(r)$. $\mu_A : R \to [0, 1]$ represents the **grade** of membership of r regarding A.

Support

The **support** *S* of *A* is defined as $S(A) = \{r | r \in R \land \mu_A(r) > 0\}.$

Definition

Generic membership functions (A)

$$\mu_{A}(r; \alpha, \beta, \gamma) = \begin{cases} 0 : r \leq \alpha \\ 2(\frac{r-\alpha}{\gamma-\alpha})^{2} : \alpha < r \leq \beta \\ 1 - 2(\frac{r-\gamma}{\gamma-\alpha})^{2} : \beta < r \leq \gamma \\ 1 : \gamma < r \end{cases}$$

with crossover-point $\beta = (\alpha + \gamma)/2$, i.e. the point where μ_A is 0.5

Definition

Generic membership functions (B)

$$\pi(r;\gamma,\lambda) = \begin{cases} \mu_{A}(r;\gamma-\lambda,\gamma-\frac{\lambda}{2},\gamma) & : \quad r \leq \gamma \\ 1 - \mu_{A}(r;\gamma,\gamma+\frac{\lambda}{2},\gamma+\lambda) & : \quad r > \gamma \end{cases}$$

with the bandwidth λ and the center γ

Properties

Properties of fuzzy-sets

A = B : $\mu_A(r) = \mu_B(r)$

 $A = \overline{B} : \mu_{A}(r) = \mu_{\overline{B}}(r) = 1 - \mu_{B}(r)$ $A \subseteq B : \mu_{A}(r) \le \mu_{B}(r)$ $A \cup B : \mu_{A \cup B}(r) = \max(\mu_{A}(r), \mu_{B}(r))$

 $A \cap B$: $\mu_{A \cap B}(r) = \min(\mu_A(r), \mu_B(r))$

Finetuning

Finetuning (1/2)

The contrast of a membership function can be increased with the following function:

$$\mu_{\mathit{INT}(A)}(r) = \left\{ egin{array}{ll} 2(\mu_{A}(r))^2 & : & 0 \leq \mu_{A}(r) \leq 0.5 \\ 1 - 2(1 - \mu_{A}(r))^2 & : & \textit{otherwise} \end{array} \right.$$

Finetuning

Finetuning (2/2)

Other modifying functions are:

 $\mu_{\text{not small}} = 1 - \mu_{\text{small}}$

 $\mu_{\text{very small}} = (\mu_{\text{small}})^2$

 μ not very small = 1 - μ very small

 $\mu_{\text{more or less small}} = (\mu_{\text{small}})^{0.5}$

Norms

Relevant for using fuzzy set theory in the context of constraint satisfaction problems are two **norms**, **T-norm** (**T**) and **T-conorm** (**S**). Think of them as generalized versions of **AND** and **OR**.

Norms

$$T, S: [0,1] \times [0,1] \rightarrow [0,1]$$

Properties

commutativity
$$X(a,b)=X(b,a)$$
 associativity $X(X(a,b),c)=X(a,X(b,c))$ monotonicity $X(a,b)\geq X(c,d)\mid a\geq c\wedge b\geq d$ borders $T(a,1)=a$ $S(a,0)=a$

Norms

T-norm (AND)

Different variants of the T-norm:

minimum
$$T^{m}(a,b) = \min(a,b)$$

product $T^{p}(a,b) = a*b$
quasilinear $T^{q}(a,b) = \max(0,a+b-1)$
whoever $T(a,b) = \begin{cases} a:b=1\\b:a=1\\0:otherwise \end{cases}$
Yager $T_{p}(a,b) = 1-\min(1,((1-a)^{p}+(1-b)^{p})^{\frac{1}{2}})$
with $p>0$

Norms

T-conorm (OR)

maximum
$$S^m(a,b) = \max(a,b)$$

prob. sum $S^p(a,b) = a+b-ab$
quasilinear $S^q(a,b) = \min(1,a+b)$
Yager $S_p(a,b) = \min(1,(a^p + b^p)^{\frac{1}{2}})$
with $p \ge 0$

A.I. Group, Faculty of Technology, Bielefeld University

Problem Introduction CSPs Fuzzy Logic DOORS Summary References

Example

Expression

"put the red bolt in this block"

as fCSF

```
(var "?object-1" BOLT)
(prefer (recent-object "?object-1"))
(var "?object-2" BLOCK)
(prefer (recent-object "?object-2"))
(very (has-color "?object-1" RED))
(very (fits "?object-1" "?object-2"))
(maybe (pointed-to "?object-2"))
```

Example

Expression

"put the red bolt in this block"

as fCSP

```
(var "?object-1" BOLT)
(prefer (recent-object "?object-1"))
(var "?object-2" BLOCK)
(prefer (recent-object "?object-2"))
(very (has-color "?object-1" RED))
(very (fits "?object-1" "?object-2"))
(maybe (pointed-to "?object-2"))
```

A.I. Group, Faculty of Technology, Bielefeld University

Problem Introduction CSPs Fuzzy Logic DOORS Summary References

Distributed Ontologybased Object Reference Resolution System

Introduction
Application Example
Constraints
Ontology
Architecture

Introduction

DOORS

- Distributed Ontologybased Object Reference Resolution System
- developed by Pfeiffer (2003) as Diploma Thesis
- targets the Virtual Constructor
- resolves multimodal references
- based on fCSPs and hierarchical CSPs

Application Example

Instruction One

1: "put the red bolt in the middle of the three-hole-bar"

K: "OK"

Instruction Two

I: "now put the airscrew perpendicular into the middle of this three-hole-bar"

K: "OK"

Constraints

Basic Constraints

- has-name
- has-color
- has-type
- has-attribute-value
- distinct

Spatial Constraints

- is-target-of-pointing-gesture
- has-position
- has-position-near-to-user
- has-size
- have-close-positions

Constraints

Connection Constraints

- port-is-free
- port-has-anchor-position
- port-has-relative-position
- is-connected-to
- · part-of-same-aggregate
- is-part-of
- · ports-are-connected
- ports-fit

Ontology

Figure: Knowledge about domain stored in an ontology on constructions

Ontology

Constraints

- has-type
- has-role
- is-connected-to
- part-of-same-aggregate

Figure: Knowledge about domain stored in ontology

Architecture

Figure: Shell-Architecture of DOORS

Architecture

Features

- Ontology for constraints (formalism is UML)
- Basic constraints can be inherited by specialized constraints
- Fuzzy CSP to cope with uncertainty in multimodal input
- ...and with defaults (e.g. prefer objects closer together)
- Hierarchical CSP to speed up processing (e.g. simple symbolic constraints first, expensive constraints last)
- Distributed CSP leaves the data where it is (e.g. geometric constraints are evaluated in the scenegraph, symbolic constraints in the knowledge ontology)

Summary

Benefits

- CSPs are an intuitive problem representation
- fuzzy CSPs cope with the ambiguities of the real world
- combination of explicit and implicit constraints possible (also: defaults)
- fast

Drawbacks

 transformation from expression to CSP representation a problem of its own (e.g. rule-based sytem)

Bibliography

- Bacchus, F. & van Beek, P. (1998). On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems. In *Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative Applications of Artificial Intelligence (IAAI-98)*, (pp. 311–318)., Menlo Park. AAAI Press.
- Mackworth, A. (1977). Consistency in networks of relations [AC1-3]. *Artificial Intelligence*, 8, 99–118.
- Mackworth, A. & Freuder, E. (1985). The complexity of some polynomial network consistency algorithms for constraint satisfaction problems [AC1-3]. *Artificial Intelligence*, *25*, 65–74.
- Pal, S. K. & Mitra, S. (1999). *Neuro-Fuzzy Pattern Recognition*. New York: John Wiley & Sons, Inc.
- Pfeiffer, T. (2003). Eine Referenzauflösung für die dynamische Anwendung in Konstruktionssituationen in der Virtuellen Realität. Master's thesis, Faculty of Technology, Bielefeld University.

Bibliography

Zadeh, L. A. (1965). Information and Control, volume 8, chapter Fuzzy Sets, (pp. 338-353). ACM.