
gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Spezielle Themen der 
Künstlichen Intelligenz

5. Termin: Planning

gentsSociable2

Planning

‣ The Planning problem
‣ Planning with State-space search
‣ Partial-order planning
‣ Planning graphs

gentsSociable3

What is Planning?

Generate sequences of actions to perform tasks and achieve 
objectives

Search for solution over abstract space of action sequences

Used to assists humans in many practical applications
‣ design and manufacturing

‣ military operations

‣ games

‣ space exploration
‣ scheduling

‣ ...

gentsSociable4



gentsSociable5

Problem: difficulty of the real world

Assume a problem-solving agent using some search method,
needs to build on answers to... 

‣ which actions are relevant?
- exhaustive search vs. backward search

‣ what is a good heuristic function?
- good estimate of the cost of the state?
- problem-dependent vs. -independent

‣ how to decompose the problem?
- TSP: O(n!) vs. O((n/k)!*k), if k equal subparts
- most real-world problems are nearly decomposable

gentsSociable6

Problem: language of planning

What is a good language to describe a planning problem?
‣ expressive enough to describe a wide variety of problems, with 

numerous states and how those change upon actions

‣ restrictive enough to allow algorithms to operate on it

‣ algorithms should be able to exploit logical structure of the problem

STRIPS and ADL
‣ STRIPS = Stanford Research Institute Problem Solver

‣ ADL = Action Description Language

PDDL (Planning domain description language)
‣ standardize languages to make the international Planning Competitions 

possible (ICP/ICAPS, 1998-)

‣ contains STRIPS,  ADL and more

gentsSociable7

Language features

Representation of states
‣ Decompose the world in logical conditions and represent a state as a 

conjunction of positive literals 
- Propositional literals: Poor ! Unknown
- First order (FO), grounded and function-free: 

At(Plane1, Melbourne) ! At(Plane2, Sydney)
‣ Closed world assumption: any conditions not mentioned in a state are 

assumed to be false

Representation of goals
‣ Partially specified state, represented as a conjunction of positive ground 

literals
‣ A goal is satisfied by state s, if s contains (at least) all the literals in the goal

gentsSociable8

Language features

Representations of actions
‣ Action = PRECOND + EFFECT, e.g. flying a plane:

Action(Fly(p, from, to),
 PRECOND: At(p,from) ! Plane(p) ! Airport(from) ! Airport(to)
 EFFECT: ¬AT(p,from) ! At(p,to))

=  action schema for which p, from, to are instantiated
- Action name and parameter list of variables
- Precondition: conjunction of function-free literals
- Effect: conjunction of function-free literals; literal P is asserted to be true in 

the resulting state, not P is false



gentsSociable

Classical problems of symblic KR

Frame problem
‣ specifying only what is changed by actions does not allow to 

conclude, in logic, that other conditions are not changed

‣ can be solved by adding so-called frame axioms
- specify that all conditions not affected by the action are not changed

‣ different solutions in different formalisms

Qualification problem
‣ impossibility of listing all the preconditions required for an action 

to have its intended effect

Ramification problem
‣ how to represent what happens implicitly due to an action?

9 gentsSociable10

Language semantics

How do actions affect states?

‣ An action is applicable in any state that satisfies preconditions

‣ FO action schema applicability involves unification, i.e. a substitution " 
for the variables in the PRECOND
- State: 

At(P1,JFK) ! At(P2,SFO) ! Plane(P1) ! Plane(P2) ! Airport(JFK) 
! Airport(SFO)

- Satisfies precondition of Action(Fly(p, from, to): 
At(p,from) ! Plane(p) ! Airport(from) ! Airport(to)
with " ={p/P1,from/JFK,to/SFO}

- Thus the action is applicable

gentsSociable11

Language semantics

How do actions affect states?

The resulting state s’ of action a in state s is the same as s, except
‣ any positive literal P in the effect of a is added to s’
‣ any negative literal ¬P in the effect of a is removed from s’
‣ Example:  After Fly(P1, JFK, SFO) current state becomes

At(P1,SFO) ! At(P2,SFO) ! Plane(P1) ! 
Plane(P2) ! Airport(JFK) ! Airport(SFO)

STRIPS assumption to avoid the representational frame problem:
Implicit assumption that every literal in s that is not in the effects 
remains unchanged

gentsSociable12

Expressiveness and extensions

STRIPS is simplified  
‣ important limit: function-free literals
‣ allows for turning action schemas into propositional action 

representations without variables (by universal insertion)
‣ function symbols lead to infinitely many states and actions

Extension: Action Description language (ADL)
‣ positive and negative literals
‣ quantified variables and conj.+discj. in goals
‣ conditional effects „when P: E“
‣ equality predicate, variables with types

Action(Fly(p:Plane, from: Airport, to: Airport),
 PRECOND: At(p,from) ! (from # to)
 EFFECT: ¬At(p,from) ! At(p,to)) 



gentsSociable13

Example: air cargo transport

Init(At(C1, SFO) ! At(C2,JFK) ! At(P1,SFO) ! At(P2,JFK) ! Cargo(C1) ! Cargo(C2) ! Plane
(P1) ! Plane(P2) ! Airport(JFK) ! Airport(SFO))

Goal(At(C1,JFK) ! At(C2,SFO))
Action(Load(c,p,a)
! PRECOND: At(c,a) !At(p,a) !Cargo(c) !Plane(p) !Airport(a)
! EFFECT: ¬At(c,a) !In(c,p)) 
Action(Unload(c,p,a)
! PRECOND: In(c,p) !At(p,a) !Cargo(c) !Plane(p) !Airport(a)
! EFFECT: At(c,a) ! ¬In(c,p))
Action(Fly(p,from,to)
! PRECOND: At(p,from) !Plane(p) !Airport(from) !Airport(to)
! EFFECT: ¬ At(p,from) ! At(p,to))

Solution:
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

gentsSociable14

Example: Spare tire problem

Init(At(Flat, Axle) ! At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)
! PRECOND: At(Spare,Trunk)!
! EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground)) 
Action(Remove(Flat,Axle)
! PRECOND: At(Flat,Axle)!
! EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground)) 
Action(PutOn(Spare,Axle)
! PRECOND: At(Spare,Groundp) !¬At(Flat,Axle)
! EFFECT: At(Spare,Axle) ! ¬Ar(Spare,Ground))
Action(LeaveOvernight
! PRECOND:
! EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At(Flat,Ground) ! 

¬ At(Flat,Axle) )

This example goes beyond STRIPS: negative literal in pre-condition

gentsSociable15

Planning with state-space search

Both forward and backward search possible, because 
preconds and effects are given

Progression planners
‣ Forward state-space search, 

start from initial state

‣ Follow effects of possible 
actions in a given state

Regression planners 
‣ Backward state-state search, 

start from goal state
‣ Follow preconditions that must 

have been true in the previous 
state

gentsSociable16

Progression algorithm

Formulation as state-space search problem:
‣ Initial state = initial state of the planning problem

- Literals not appearing are false

‣ Actions = those whose preconditions are satisfied
- Add positive effects, delete negative

‣ Goal test = does the state satisfy the goal?
‣ Step cost = constant, each action costs +1

State space is finite
‣ any graph search that is complete is a complete planning algorithm
‣ too inefficient to be practical

- irrelevant actions are considered
- good heuristic required for efficient search



gentsSociable17

Regression algorithm
How to determine predecessors states from which an action leads to goal?
‣ Goal state = At(C1, B) ! At(C2, B) ! … ! At(C20, B)
‣ Relevant action for first conjunct: Unload(C1,p,B)
‣ Works only if pre-conditions are satisfied -> add conj.
‣ Previous state= In(C1, p) ! At(p, B) ! At(C2, B) ! … ! At(C20, B)

- subgoal At(C1,B) should not be present in this state anymore

Important that actions do not undo desired literal (consistent)

Can use any standard search algorithm, but needs a good admissible 
heuristics

Main advantage: only relevant actions are considered
‣ Often much lower branching factor than forward search
‣ In FO case, satisfaction might require a substitution

gentsSociable18

Partial-order planning (POP)

Progression and regression planning are totally ordered plan searches
‣ yield strictly linear sequences of actions
‣ cannot take advantage of problem decomposition!
‣ decisions must be made on how to sequence actions on all the 

subproblems

Better: Least commitment strategy
‣ delay choice during search until really necessary
‣ keep flexibility in order of actions, and during plan construction

gentsSociable19

Very simple example: Put on shoes

Goal(RightShoeOn ! LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Action(RightSock, EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Action(LeftSock, EFFECT: LeftSockOn)

Planner
! plan two independent action sequences 

(1) leftsock, leftshoe 
(2) rightsock, rightshoe

! no need to commit itself to an order

gentsSociable20

Partial-order planning

Any planning algorithm that can place two actions into a plan without 
saying which comes first is a POP



gentsSociable21

POP as a search problem

Search states are (mostly unfinished) plans
‣ The empty plan contains only start and finish actions

Each plan has 4 components:
‣ set of actions that make up the steps of the plan

‣ set of ordering constraints: A<B (A before B)
- cycles (A<B, B<A) represent contradictions!

‣ set of causal links
- „A achieves p for B“

- Plan not extended by adding action C if its effect is ¬p and if it could come 
after A and before B

‣ set of open preconditions
- Not achieved by some action in the plan

! 

A p" # " B

gentsSociable22

POP as a search problem

A plan is consistent iff there are no cycles in the ordering 
constraints and no conflicts with the causal links

A consistent plan with no open preconditions is a solution
‣ every linearization is a total solution

A partial order plan is executed by repeatedly choosing any of the 
possible next actions
‣ benefit in non-deterministic, non-cooperative environments

gentsSociable23

Solving POP search problems

Assume propositional planning problems!

‣ The initial plan contains Start and Finish, the ordering constraint 
Start < Finish, no causal links, all the preconditions in Finish are 
open

‣ Successor function:
- picks one open precondition p on an action B
- generates a successor plan for every possible consistent way of choosing 

action A that achieves p
‣ causal link A-p->B  and ordering constraint A<B added to the plan; 

if A new, also add constraints start<A and A<B

‣ resolve conflicts between link(s) and action(s) by constraining actions to 
occur outside protected intervals

‣ Test goal: check whether no open preconditions left

‣ Search refines the plan gradually, from incomplete/vague to complete/
correct plans

gentsSociable24

Example: Mounting spare tire

Init(At(Flat, Axle) ! At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)
! PRECOND: At(Spare,Trunk)!
! EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground)) 
Action(Remove(Flat,Axle)
! PRECOND: At(Flat,Axle)!
! EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground)) 
Action(PutOn(Spare,Axle)
! PRECOND: At(Spare,Ground) !¬At(Flat,Axle)
! EFFECT: At(Spare,Axle) ! ¬Ar(Spare,Ground))
Action(LeaveOvernight
! PRECOND:
! EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! 

¬ At(Flat,Ground) ! ¬ At(Flat,Axle) )

(LeaveOvernight ! bad neighborhood, all tires will disappear)



gentsSociable25

Solving the problem

Intial plan: Start with EFFECTS and Finish with PRECOND.

gentsSociable26

Solving the problem

Pick an open precondition: At(Spare, Axle)
Only PutOn(Spare, Axle) is applicable
Add causal link: 
Add constraint : PutOn(Spare, Axle) < Finish

! 

PutOn(Spare,Axle) At(Spare,Axle )" # " " " " Finish

gentsSociable27

Solving the problem

Pick an open precondition: At(Spare, Ground)
Only Remove(Spare, Trunk) is applicable
Add causal link: 
Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

! 

Remove(Spare,Trunk) At(Spare,Ground )" # " " " " PutOn(Spare,Axle)

gentsSociable28
! 

Remove(Spare,Trunk) At(Spare,Ground )" # " " " " PutOn(Spare,Axle)

Solving the problem

Pick other open precondition: not At(Flat, Axle)
LeaveOverNight is applicable, add causal link to PutOn(Spare,Axle)
conflict with
To resolve, add constraint: LeaveOverNight < Remove(Spare,Trunk)  



gentsSociable29

Solving the problem

Pick open precondition: At(Spare, Trunk)
Only Start is applicable
Add causal link: 
Conflict with effect At(Spare,Trunk) of LeaveOverNight
‣ No re-ordering solution possible

Backtrack (chronological)! 

Start At(Spare,Trunk )" # " " " " Remove(Spare,Trunk)

gentsSociable30

Solving the problem

Remove Start, LeaveOverNight and causal links
Choose Remove(Flat,Axle) for precond not At(Flat, Axle), add link

Choose Start for precondition At(Spare, Trunk), add link
Finish because Start meets also precond At(Flat,Axle), no conflicts

gentsSociable31

Planning graphs (PG)

Data structure to achieve better heuristic estimates
‣ A solution can also be directly extracted using GRAPHPLAN

Sequence of levels that correspond to time steps in the plan
‣ Level 0 is the initial state
‣ Each level consists of a set of literals and a set of actions

- Literals = all those that could be true at that time step, depending upon 
actions at preceding step

- Actions = all those that could have their preconds satisfied at that time step, 
depending on literals that actually hold

gentsSociable32

Planning graphs (PG)

“Could”?
‣ Graph records only a restricted subset of possible negative interactions 

among actions; optimistic about number of steps for a literal to become 
true

Works only for propositional problems, no variables
‣ Example problem

Init(Have(Cake))
Goal(Have(Cake) ! Eaten(Cake))
Action(Eat(Cake), 
PRECOND: Have(Cake), EFFECT: ¬Have(Cake) ! Eaten(Cake))
Action(Bake(Cake), 
PRECOND: ¬ Have(Cake), EFFECT: Have(Cake)) 



gentsSociable33

Cake example

Start at state S0, determine action level A0 and level S1
‣ A0: all actions that could occur in S0, i.e. whose preconditions are satisfied in S0
‣ Links connect A0 actions with preconds in S0 and effects in S1
‣ For every literal L, „in action“ represented by persistence actions with 

precond and effect L

‣ Conflicts between actions represented by mutex links

define what remains true because no action alters it; 
cf. frame problem in situation calculus

gentsSociable34

Cake example

S1 contains literals that result from any subset of actions in A0
‣ conflicts between literals also represented by mutex links, e.g. either Have(Cake) 

or Eaten(Cake) true, depending on choice of actions on A0
‣ S1 defines multiple states at the same time, mutex links define this set of states

Continue until two consecutive levels are identical („leveled off“)
‣ or contain the same amount of literals (explanation follows later)

gentsSociable35

Cake example

A mutex relation holds between two actions with
‣ Inconsistent effects: one action negates the effect of another
‣ Interference: one effect of one action is negation of a precond of the other
‣ Competing needs: one precond of one action is mutually exclusive with the precond 

of the other

A mutex relation holds between two literals when
‣ one is the negation of the other, or 
‣ each possible action pair that could achieve them is mutex‘ed (inconsistent support)

gentsSociable36

PG and heuristic estimation

PG’s provide valuable information about the problem
‣ literal that does not appear in the final level of the graph cannot be achieved by 

any plan
‣ If a literal appears, there is a plan that possibly achieves it 

(no binary mutex‘es, but could still be from >2 actions)

Can use PG to estimate cost heuristic
‣ level of appearance Si as cost estimate of achieving a goal literal = level cost of 

the goal
‣ But several actions can occur at each level

- compute heuristic with serial planning graph: restrict to one action at a time step

‣ appraoches to estimates the costs of a conjuction of goals: 
- max-level (maximum level cost of any of the goals; admissible)
- level sum (sum of the level costs of goals; inadmissible but works quite well)
- set-level (level at which all literals in the conjunctive goal appear in the PG as 

pairwise not mutually exclusive)



gentsSociable37

The GRAPHPLAN Algorithm

Now, how to extract a solution directly from the PG?

function GRAPHPLAN(problem) return solution or failure
 graph $ INITIAL-PLANNING-GRAPH(problem)

 goals $ GOALS[problem]

 loop do

  if goals all non-mutex in last level of graph then do

       solution $ EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

       if solution # failure then return solution

       else if NO-SOLUTION-POSSIBLE(graph) then return failure
        graph $ EXPAND-GRAPH(graph, problem)

gentsSociable38

GRAPHPLAN example

Initially the plan consist of 5 literals from the initial state (! S0)
‣ no goal literal At(Spare,Axle)

Add actions with precond satisfied by EXPAND-GRAPH (! A0)
‣ Also add persistence actions and mutex relations
‣ Add the effects at level S1

Repeat until goal is in level Si, then EXTRACT-SOLUTION (! S2)

gentsSociable39

GRAPHPLAN example

EXPAND-GRAPH also looks for mutex relations
‣ Inconsistent effects: E.g. Remove(Spare, Trunk) and LeaveOverNight
‣ Interference: E.g. Remove(Flat, Axle) and LeaveOverNight
‣ Competing needs: E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
‣ Inconsistent support: E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

gentsSociable40

GRAPHPLAN example

In S2, the goal literal exists and is not mutex with any other
‣ Solution might exist and EXTRACT-SOLUTION will try to find it

Can use Boolean CSP or a search process
‣ Initial state = last level of PG and goals of planning problem
‣ Actions = set of non-conflicting actions in A(i-1) that cover goals in state; new state at 

level S(i-1) with goals = preconds of selected actions
‣ Goal = reach state at level S0 such that all goals are satisfied



gentsSociable41

Another way: planning with propositional logic

Planning can also be done by proving theorem in situation calculus
Here: test the satisfiability of a logical sentence:

Sentence contains propositions for every action occurrence
‣ A model will assign true to the actions that are part of the correct plan and false to the 

others
‣ An assignment that corresponds to an incorrect plan will not be a model because of 

inconsistency with the assertion that the goal is true
‣ If planning is unsolvable the sentence will be unsatisfiable

See Russel & Norvig, pp. 402-406

! 

initial state"all possible action descriptions" goal

gentsSociable42

Next week

So far: fully observable, static and deterministic domains.
‣ Agent can plan first and then execute plan with eyes closed

Uncertain environments 
‣ partially observable
‣ nondeterministic
‣ incorrect information (differences between world and model)


