

Time, schedules and resources

Until know: what actions to do?

Real-world:

- + actions have a beginning and an end time
- + actions have a certain duration
- + actions consume certain resources

Job-shop scheduling problem

- complete a set of jobs, each consisting of sequence of actions
- > each action has duration and requires resources
- determine a schedule that minimizes total time to complete all jobs (respecting resource constraints)

3

Recap' planning

Formulating planning problems: STRIPS, ADL

Planning as state-space search

- ▶ progression: start \rightarrow goal, follow action effects
- ▶ regression: goal → start, follow action preconditions

Partial order planning

- refine partial plans with least commitment
- order constraints, causal links

Planning graphs

- single graph structure with all possible worlds and plans
- mutex relations between actions or literals
- used to extract solution, estimate cost heuristics

СІТ≣С

Sociable Agents

2

CITEC

Sociable Agents

How to cope with hugely complex problems?

 \Rightarrow exploit hierarchical structure of the problem domain

 \Rightarrow hierarchical decomposition

- at each level a computational task is reduced to a small number of less complex activities at the next lower level
- the computational cost of arranging these activities is low

Hierarchical task network (HTN) planning: action refinement through decomposition

Building a house = getting a permit + hiring a contractor + doing the construction + paying the contractor

7

Refined until only primitive actions remain

"Hybrid HTN": combine HTN with POP

Sociable Agents

Representing action decomposition

General descriptions stored in plan library

 Each method: Decompose(a,d) = action a can be decomposed into PO plan d

Start action supplies all preconditions of actions not enabled as effects of other actions in the plan

= external preconditions

Finish action has (as preconditions) all effects of actions in the plan not negated by other actions

- = external effects
- > primary effects (used to achieve goal) vs. secondary effects

8

Sociable fagents

Properties of decomposition

Should be a correct implementation of action **a**

• Correct if plan **d** is a complete and consistent PO plan for the problem of achieving effects of **a**, given the preconditions of **a**

Not necessarily unique

Performs information hiding

- higher-level action description hides preconditions+effects
- ignores all internal effects of decomposition
- does not specify intervals inside the activity during which preconditions and effects must hold

11

Information hiding is essential to HTN planning

reduces complexity in reasoning about abstract actions

Hybrid HTN planning: adopt POP

Recall POP

- > Start with empty plan Start<Finish, open preconds of Finish
- Successfor function: picks one open precondition p of action B and generates successor plan for every possible consistent way of choosing action A that achieves p

Now, modify the successor function to apply decomposition to the current plan

Select non-primitive action a' in current partial plan P

For any **Decompose(a,d)** method in library, where **a** and **a'** unify with substitution θ , do: Replace **a'** with **d'** = *subst*(θ , **d**)

СІТЁС

Sociable Agents

CITEC

How to hook up **d** in **a**?

- I. Replace action **a'** in **P** with $d\theta$
- 2. Connect ordering steps for a' to steps in d'
 - Maintain constraints of the form **B<a'** in **P** for steps **s** of **d'**
 - \blacktriangleright Watch out for too strict orderings, e.g. simply setting B<s for every step s with Start<s
 - Record reasons for constraints and relax as possible

3. Connect causal links

 If B-p->a' is a causal link in P, replace by a set of causal links from B to all steps in d' with preconds p supplied by Start step

15

- Ex: BuyLand-Land->BuildHouse replaced by BuyLand-Land->GetPermit
- Analog for **a'-p->C**

CITEC

- Ex: PayBuilder-House->Finish

Discussion of HTN planning

Problem: decomposition becomes undecidable when recursive actions can be taken, can be coped with by bounding recursion and using POP

Complexity: d possible decompositions into k actions at next level, n primitive actions

- ► $l+k+k^2+...+k^{\log_k(n-1)}=(n-1)/(k-1)$ internal decomp nodes
- that is, one can have $d^{(n-1)/(k-1)}$ possible decomposition trees
- efficient only with d small, k large = small lib of long decomp's

In practice: almost all large-scale planners are HTN-based

- allows human expert to provide crucial knowledge
- Example: O-PLAN used e.g. for HITACHI production plans

Sociable flgents

CITEC

Handling indeterminacy in planning

Sensorless planning (conformant planning)

 Find plan that achieves goal in all possible circumstances (regardless of initial state and action effects)

Conditional planning (contingency planning)

Construct conditional plan with different branches for possible contingencies

Execution monitoring and replanning

• While constructing and executing a plan, judge whether plan requires revision

Continuous planning

 Planner persists over time: adapt plan to changed circumstances, reformulate goals if necessary

So fa	far, observable, static, deterministic domains agent can plan first and then execute plan with eyes closed		
But,	in reality we have uncertain environments incomplete: partially observable, non-deterministic incorrect, incomplete information: world and beliefs may differ		
 Degree of uncertainty depends on indeterminacy Bounded: actions can have unpredictable effects, but these can be listed in action description axioms Unbounded: preconditions and effects are unknown or too large to enumerate 			
сітес	18 Socia	able fi gents	

Example: A.I. in space

I Incertain domains

http://www.aaai.org/aitopics/pmwiki/pmwiki.php/AITopics/Astronomy

"It's one small step in the history of space flight. But it was one giant leap for computer-kind, with a state of the art artificial intelligence system being given primary command of a spacecraft."

20

- from NASA's DEEP SPACE I - REMOTE AGENT site

CITEC

CITEC

Sociable Agents

Continuous Activity Scheduling Planning Execution and

Replanning

http://ai.jpl.nasa.gov/public/projects/casper/

Problem with batch planning for spacecraft control:

- constructing a plan is computationally intensive and onboard computational resources are typically quite limited
 - Planner on-board the New Millennium Deep Space One mission:
 ~4 hours to produce a 3 day operations plan (with 25% of CPU load)
- under changing conditions, need to increase the time for which the spacecraft has a consistent plan

Approch: continuous planning and replanning

- current goal set, a plan, a current state, expected future state
- incremental update invokes planner to maintain consistent plan

22

• iterative plan repair techniques

сіт≣с

Sociable Agents

Conditional planning STRIPS-like description • Actions: *left*, *right*, *suck* States: conjunction of *AtL*, *AtR*, *CleanL*, *CleanR* How to include indeterminism? • actions can have disjunctive effects (more than one) - E.g. moving left sometimes fails Action(Left, PRECOND: AtR, EFFECT: AtL) ... becomes ... Action(Left, PRECOND: AtR, EFFECT: AtL v AtR) ▶ actions can have conditional effects when <cond.>: effect Action(Left, PRECOND: AtR, EFFECT: AtL \lor (AtL \land when *CleanL*: \neg *CleanL*) \lor ... Sociable figents CITEC 27

Conditional planning

Deal with uncertainty by checking what is really happening at predetermined points

Let's start with fully observable, but non-deterministic environments

- current state is always known
- outcome of an action is unknown (but there)

Build plan with conditional steps that check state of the environment

Problem: How to construct such a conditional plan?

СІТЕС

26

Sociable fagents

Con	ditional planning	
Cond	itional plans require conditional steps	
•	If <test> then plan_A else plan_B</test>	
•	Example: if <i>AtL</i> ^ <i>CleanL</i> then <i>Right</i> else <i>Suck</i>	
•	plans become (game) trees	
"Gam	es Against Nature"	
•	goal: find conditional plans that work, regard outcomes actually occur	lless of which action
•	assume vacuum-world:	
	Initial state = $AtR \land CleanL \land Cle$	eanR
•	"double murphy" cleaner: possibility of despositing dirt when moving t possibility of despositing dirt when action is	to other square, and s Suck
сіт≣с	28	Sociable figents

Conditional Planning on belief states Note: Belief state is always fully observable! can use AND-OR-GRAPH-SEARCH on belief states. Representation of belief states? 3 choices: sets of full state descriptions, easy but expensive $\{(AtR \land CleanR \land CleanL) \lor (AtR \land CleanR \land \neg CleanL)\}$ Iogical sentences that capture the set of possible worlds in the belief state (open-world assumption) $AtR \wedge CleanR$ knowledge propositions describing what the agent knows (closed-world assumption: the rest is assumed false) $K(AtR) \wedge K(CleanR)$ Choice 2 and 3 are roughly equivalent, let's continue with 3 Sociable Agents CITEC 35

Plan on AND-OR-graph of belief states

How to "feed" knowledge propositions?

Sensing in Conditional Planning

- Automatic sensing: At every time step the agent gets all available percepts
- Active sensing: Percepts are obtained through specific sensory actions that must be planned for
 - \rightarrow additional actions *checkDirt* and *checkLocation*

Given the knowledge proposition representation and the sensing, action descriptions can now be formulated in STRIPS:

Monitoring & replanning

Realistic world: unbounded indeterminancy \rightarrow some unanticipated circumstances will arise

Monitor whether everything is going as planned and replan when something unexpected happens

- action vs. plan monitoring: verify next action vs. entire remaining plan
- replan by *repairing* old plan, find way back to old plan

Advantages:

- allows to start out with easy plans
- works in both fully and partially observable environments, and with a variety of planning representations

38

СІТЕС

Sociable Agents

Sociable figents

<section-header><section-header><text><image><image>

Cooperation: Joint goals and plans

Multi-agent planning: e.g. double tennis where agents want to return ball

- agent as parameter of actions: At(A, [Left, Baseline])
- solution: joint plan with actions for each agent and committment of each agent
- coordination required for agents to reach same joint plan
- at coordination problems, communicate!

Multi-body planning: one agent plans actions of everybody using slightly extended $\ensuremath{\mathsf{POP}}$

- world not static, need to plan synchronization
- plan joint actions: <Go(A,[Left,Net]), Go(B,[Right,Baseline]>
- ... or add concurrent action conditions to actions

Cooperation to ensure agreement on joint plan

- Convention: constraint on the selection of joint plans
- Communication

43

Sociable Agents

Next week(s)

How to model uncertain knowledge and reasoning about it?

- Probability theory
- Degrees of belief
- Bayesian (belief) networks, influence diagrams, graphical probabilistic models, ...
- Inference in Bayesian networks