Spezielle Themen der
Kunstlichen Intelligenz

6.Termin: Planning & Uncertainty

Dr. Stefan Kopp
Center of Excellence ,,Cognitive Interaction Technology*
AG Sociable Agents

CITZC Sociable figents

Recap’ planning

Formulating planning problems: STRIPS, ADL
Planning as state-space search

» progression: start => goal, follow action effects

» regression: goal => start, follow action preconditions

Partial order planning
» refine partial plans with least commitment
» order constraints, causal links

Planning graphs
» single graph structure with all possible worlds and plans
» mutex relations between actions or literals
» used to extract solution, estimate cost heuristics

Time, schedules and resources
Until know: what actions to do?

Real-world:
» + actions have a beginning and an end time
» + actions have a certain duration
» + actions consume certain resources

Job-shop scheduling problem
» complete a set of jobs, each consisting of sequence of actions
» each action has duration and requires resources

» determine a schedule that minimizes total time to complete all jobs
(respecting resource constraints)

Example: Interactive Scheduling

n

Planning vs. scheduling

How does the scheduling problem differ from a standard planning

problem?
» need to determine when an action should start and when it
should end

» need to consider order (planning) and duration

Critical path method to determine start and end times
» Path = linear action sequence from start to end
» Critical path = path with longest total duration
- determines the duration of the entire plan
- should be executed without delay

Example: Car construction scheduling

Init(Chassis(C1) A Chassis(C2) n Engine
(E1,C1,30) A Engine(E1,C2,60) A

»Slack® of 15

Wheels(W1,C1,30) A Wheels GRE) ICRE)

(W2,C2,15)) AR AwiREE Inspect
Goal(Done(C1) A Done(C2)) [0-01 [35351"
Action(AddEngine(e,c,m) o o o e e

PRECOND: Engine(e,c,d) n Chassis(c) AGHEngine2 f———{ AddWheels2 [——{ Inspect2

A —Engineln(c) - B 10

EFFECT: Engineln(c) a Duration(d)) critical path
Action(AddWheels(w,c)

PRECOND: Wheels(w,c,d) n Chassis(c) 4 — B l

EFFECT: WheelsOn(c) n Duration(d)) \ — ‘ qlmmﬂ] ‘
Action(Inspect(c)

PRECOND: Engineln(c) A WheelsOn(c) [AddEngine2 Inspect2 |

A Chassis(c) i
AddWheels2

EFFECT: Done(c) A Duration(10))

Hierarchical task network planning

How to cope with hugely complex problems?
=> exploit hierarchical structure of the problem domain
=> hierarchical decomposition

» at each level a computational task is reduced to a small number of less
complex activities at the next lower level

» the computational cost of arranging these activities is low

Hierarchical task network (HTN) planning: action refinement through
decomposition
» Building a house = getting a permit + hiring a contractor + doing the
construction + paying the contractor
» Refined until only primitive actions remain

,»Hybrid HTN*: combine HTN with POP

Representing action decomposition

General descriptions stored in plan library

» Each method:
Decompose(a,d) = action a@ can be decomposed into PO plan d

Start action supplies all preconditions of actions not enabled as
effects of other actions in the plan
= external preconditions

Finish action has (as preconditions) all effects of actions in the plan
not negated by other actions
= external effects
» primary effects (used to achieve goal) vs. secondary effects

Buildhouse example

Build-house decomposed into plan with 4 lower level actions

Build
House

decomposes to
External precond........ccoeoecccecens *

"""""""""" romeeExternal effects

Land House

Get '
Permit H
L \ Pay House SeLs
- Finish

Start Construction

- Builder — Mon
Hire / /‘/!or\ey
Builder i

Buildhouse example

Action(Buyland, PRECOND: Money, EFFECT: Land n ~Money)
Action(GetLoan, PRECOND: Goodcredit, EFFECT: Money n Mortgage)
Action(BuildHouse, PRECOND: Land, EFFECT: House)
Action(GetPermit, PRECOND: Land, EFFECT: Permit)
Action(HireBuilder, EFFECT: Contract)
Action(Construction, PRECOND: Permit n Contract, EFFECT: HouseBuilt A —Permit),
Action(PayBuilder, PRECOND: Money n HouseBuilt, EFFECT: ~“Money n House A —
Contract),
Decompose(BuildHouse,
Plan ::STEPS{ S1: GetPermit, S2:HireBuilder, S3:Construction, S4.:PayBuilder}
ORDERINGS: {Start <S1<S3<S4<Finish, Start<S2<S3),
LINKS

{Sm” Land S1,Start Money 54,81 Permit $3,52 Contract 33}

§3—Howebuilt_ g g Towse pripich §4—Moner pinre

Properties of decomposition

Should be a correct implementation of action a

» Correct if plan d is a complete and consistent PO plan for the problem
of achieving effects of a, given the preconditions of a

Not necessarily unique

Performs information hiding
» higher-level action description hides preconditions+effects
» ignores all internal effects of decomposition

» does not specify intervals inside the activity during which preconditions
and effects must hold

Information hiding is essential to HTN planning
» reduces complexity in reasoning about abstract actions

11

Hybrid HTN planning: adopt POP

Recall POP
» Start with empty plan Start<Finish, open preconds of Finish
» Successfor function: picks one open precondition p of action B and

generates successor plan for every possible consistent way of
choosing action A that achieves p

Now, modify the successor function to apply decomposition to the
current plan

» Select non-primitive action @’ in current partial plan P

For any Decompose(a,d) method in library, where a and a” unify
with substitution 0, do: Replace @’ with d’ = subst(0,d)

POP+HTN example

| stan ’M—anquuyLand“ Land :::i House | Finish

Library

Land| Get

Perm'ﬂ

T = 2] Hous
Start Buy Land Construction Pay | Hause ! Finisn
Builder i |
Hire o :
1 Builder ey, ;
Gd Loan ‘

GoodCredIi

13

POP+HTN example

‘ Start ’M—OHEL}BuyLand; Land l_i“l:‘:e House | Finish

Get
Permit
start "% By Land Construction |— B;fdyer Hapse | Finish
| Hire /oney
- Builder
GoodCredit | Ot Loan \ "

14

How to hook up d in @?
I. Replace action @’ in P with dO®

2. Connect ordering steps for a’ to steps in d’
» Maintain constraints of the form B<a’ in P for steps s of d*

> Watch out for too strict orderings, e.g. simply setting B<s for every step s with
Start<s

» Record reasons for constraints and relax as possible

3. Connect causal links

» If B=p=>a’is a causal link in P, replace by a set of causal links from B to all
steps in d” with preconds p supplied by Start step

- Ex:Buyland-Land=>BuildHouse replaced by Buyland-Land->GetPermit
» Analog for a’-p->C
- Ex: PayBuilder-House->Finish

15

Discussion of HTN planning

Problem: decomposition becomes undecidable when recursive actions
can be taken, can be coped with by bounding recursion and using POP

Complexity: d possible decompositions into k actions at next level, n
primitive actions

» | +k+k?+...+kPg(M1)=(n-1)/(k-1) internal decomp nodes

» that is, one can have d™//(<!) possible decomposition trees

» efficient only with d small, k large = small lib of long decomp’s

In practice: almost all large-scale planners are HTN-based
» allows human expert to provide crucial knowledge
» Example: O-PLAN used e.g. for HITACHI production plans

What if one cannot be certain? Uncertain domains

So far; observable, static, deterministic domains
» agent can plan first and then execute plan with eyes closed

But, in reality we have uncertain environments
» incomplete: partially observable, non-deterministic

» incorrect, incomplete information: world and beliefs may differ

Degree of uncertainty depends on indeterminacy

» Bounded: actions can have unpredictable effects, but these can be
listed in action description axioms

» Unbounded: preconditions and effects are unknown or too large to
enumerate

shardenre

17 18

Handling indeterminacy in planning Example: A.l.in space

http://www.aaai.org/aitopics/pmwiki/pmwiki.php/AlTopics/Astronomy

Sensorless planning (conformant planning)
» Find plan that achieves goal in all possible circumstances (regardless of initial
state and action effects) "It's one small step in the history of space flight. But it was one giant leap for
computer-kind, with a state of the art artificial intelligence system being given
primary command of a spacecraft."
- from NASA's DEEP SPACE | - REMOTE AGENT site

Conditional planning (contingency planning)
» Construct conditional plan with different branches for possible contingencies

Execution monitoring and replanning
» While constructing and executing a plan, judge whether plan requires revision

Continuous planning

» Planner persists over time: adapt plan to changed circumstances, reformulate
goals if necessary

Al IN SPACE

19 20

Onboard
Initial Image Image
taken by Processing &
Feature/Cloud
Spacecraft Detection http://eo.gsfc.nasa.gov/

,,The Earth Observing One spacecraft, launched
Nov. 2000, has been under the control of Al
software for several years - experimentally since
2003 and since November 2004 as the primary
operations system.

This software includes: model-based planning and
scheduling, procedural execution, and event
detection software learned by support vector
machine (SVM) techniques. It has enabled a
100x increase in the mission science return per
) g :) s : data downlinked and a >$1Mlyear reduction in
S i operations costs.

Retarget for New
Observation Goals

CITZC 21 Sociable Agents

Continuous Activity Scheduling Planning Execution and
Replanning

http://ai.jpl.nasa.gov/public/projects/casper/

Problem with batch planning for spacecraft control:

» constructing a plan is computationally intensive and onboard
computational resources are typically quite limited

- Planner on-board the New Millennium Deep Space One mission:
~4 hours to produce a 3 day operations plan (with 25% of CPU load)

» under changing conditions, need to increase the time for which the
spacecraft has a consistent plan

Approch: continuous planning and replanning
» current goal set, a plan, a current state, expected future state
» incremental update invokes planner to maintain consistent plan
» iterative plan repair techniques

CITZC 2 Sociable Agents

Example: Autonomous navigation on Mars

CITZC 23 Sociable Agents

Recall: the vacuum-world

E‘Q'B
O

CITZC 24 Sociable Agents

Sensorless planning

Find plan that works
without sensory info
» plan over sets
of world states
» employ
coercive
actions

Conditional planning

Deal with uncertainty by checking what is really happening at
predetermined points

Let's start with fully observable, but non-deterministic
environments

» current state is always known

» outcome of an action is unknown (but there)

Build plan with conditional steps that check state of the
environment

Problem: How to construct such a conditional plan?

26

Conditional planning

STRIPS-like description
» Actions: left, right, suck
» States: conjunction of AtL, AtR, CleanL, CleanR

How to include indeterminism?
» actions can have disjunctive effects (more than one)
- E.g.moving left sometimes fails
Action(Left, PRECOND: AtR, EFFECT: AtL)
... becomes ...
Action(Left, PRECOND: AtR, EFFECT: AtL v AtR)
» actions can have conditional effects when <cond.>: effect

Action(Left, PRECOND: AtR, EFFECT: AtL v (AtL A when
CleanL: —CleanL) v ...

27

Conditional planning

Conditional plans require conditional steps
> If <test> then plan_A else plan_B
» Example:if AtLACleanL then Right else Suck
» plans become (game) trees

,,Games Against Nature*

» goal: find conditional plans that work, regardless of which action
outcomes actually occur

» assume vacuum-world:
Initial state = AtR A CleanL A CleanR
» ,,double murphy* cleaner:

possibility of despositing dirt when moving to other square, and
possibility of despositing dirt when action is Suck

28

,,Game tree*

State node (~OR)

chance node (~AND)

Suck

29

Solution of ,,games against nature*

Solution is a subtree that
» has a goal node at every leaf
» specifies one action at each of its state nodes
» includes every outcome branch at each of the chance nodes

Example: solution in previous example (bold lines)
[Left, if AtL A CleanL a CleanR then [] else Suck]

For exact solutions use minimax algorithm with two modifications
» Max and Min nodes become OR and AND nodes
- OR:plan is just the action selected at state node
- AND:plan is nested series of if-then-else steps
» Algorithm returns conditional plan instead of single move

30

And-Or-search algorithm

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan or failure
return OR-SEARCH(INITIAL-STATE[problem], problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan or failure
if GOAL-TEST[problem](state) then return the empty plan
if state is on path then return failure /* detected circle */
for action,state_set in SUCCESSORS[problem](state) do
plan < AND-SEARCH(state_set, problem, [state | plan])
if plan = failure then return [action | plan]
return failure

function AND-SEARCH(state_set, problem, path) returns a conditional plan or failure
for each s, in state_set do
plan; <= OR-SEARCH(s,, problem,path)
if plan = failure then return failure
return [if s, then plan, else if s, then plan, else ... if s, ; then plan,_, else plan,]

31

Problems with cycles

When a state already appeared on the path, return failure
» ensures algorithm termination

But sometimes only cyclic solutions exist
» Consider ,,tripple murphy*: += sometimes a move is not performed
[Left, if CleanL then [] else Suck] is not a solution

» Must repeat parts of the plan until it works, but may run into infinite loops;
need labels to denote portions of the plan

[L1: Left, if AtR then LI else if CleanL then [] else Suck]

32

Partially observable environment

What if the agent has limited information about the current state of
the environment!?

Modeled as a set of possible states = the agent's belief states

» E.g.assume a vacuum agent that
- cannot sense presence or absence of dirt in other squares than the one it
is on
- can leave behind dirt when moving to other square

» Cyclic solution in fully observable world:

keep moving left and right, sucking dirt whenever it appears until
both squares are clean and I'm in square left

33

Plan on AND-OR-graph of belief states

CleanR

Conditional Planning on belief states

Note: Belief state is always fully observable!
» can use AND-OR-GRAPH-SEARCH on belief states

Representation of belief states? 3 choices:
» sets of full state descriptions, easy but expensive
{(AtRACleanRACleanL) v (AtRACleanRA—CleanL)}

» logical sentences that capture the set of possible worlds in the belief
state (open-world assumption)
AtR A CleanR
» knowledge propositions describing what the agent knows (closed-world
assumption: the rest is assumed false)
K(A4tR) n K(CleanR)

Choice 2 and 3 are roughly equivalent, let's continue with 3

35

How to ,,feed” knowledge propositions!?

Sensing in Conditional Planning
» Automatic sensing: At every time step the agent gets all available
percepts
» Active sensing: Percepts are obtained through specific sensory actions

that must be planned for
=> additional actions checkDirt and checkLocation

Given the knowledge proposition representation and the sensing,
action descriptions can now be formulated in STRIPS:

Action(Left, PRECOND: AtR,
EFFECT: K(AtL)n—=K(AtR) A

when CleanR: = K(CleanR) A . .
when CleanL: K(CleanL) A 47 Assumes automatic sensing,
when —CleanL: K(-CleanL)). otherwise required explicit

sensory actions.

36

Complexity of Conditional Planning
Harder than classical planning problems.Why?

NP problems: exponentional number of candidates, but each
candidate solution can be checked in polynomial time

» true for classical plans

Conditional Plan: exponentional number of candidates, each of which
contains multiple states; must check for all possible states whether
some path exists that satisfies the goals

» cannot be done in polynomial time

Way out: ignore some contingencies, handle others only when they
actually occur

37

Monitoring & replanning

Realistic world: unbounded indeterminancy =» some unanticipated
circumstances will arise

Monitor whether everything is going as planned and replan when
something unexpected happens

» action vs. plan monitoring: verify next action vs. entire remaining plan
» replan by repairing old plan, find way back to old plan

Advantages:
» allows to start out with easy plans

» works in both fully and partially observable environments, and with a
variety of planning representations

38

Rep|anning-agent Action monitoring

function REPLANNING-AGENT (percept) returns an action
static: KB, a knowledge base (+ action descriptions)
plan, a plan initially [] /* remaining unexecuted plan segment */
whole_plan, a plan initially []
goal, a goal
TELL(KB, MAKE-PERCEPT-SENTENCE((percept,t))
current <= STATE-DESCRIPTION(KB, ?)
if plan =[] then /* create initial plan */
whole_plan < plan < PLANNER (current, goal, KB)
if PRECONDITIONS(FIRST (pl/an)) not currently true in KB then
candidates <— SORT (whole_plan, ordered by distance to current)
/* find state s in old plan, closest to current, and a plan current->s */
find state s in candidates such that
failure = repair < PLANNER (current, s, KB)
continuation < the tail of whole_plan starting at s
whole_plan <= plan <= APPEND (repair, continuation)
return POP(plan)

39

Discussion: monitoring & replanning

Algorithm can lead to less intelligent behavior

» E.g. resource problems would not be detected before an action execution
failed

Better: plan monitoring

» check always all preconds of entire remaining plan, which are not
achieved by another step in the plan

» can also take advantage of serendipity (accidental success)
What if in partially observable environments?
» checking all preconds is difficult, if not impossible

» check only important, fallible, and perceivable variables

Complete in environments without dead ends, short-coming: time
demands of replanning

40

Trends: interactive planning

Off-load some planning decisions onto the user
Allow for incremental planning with incessant input by the user

o™

EE9E

lanet

a1 Sociable Agents

Trends: multi-agent planning

Planning in environments
with other agents

» cooperative

» competitive

May simply add other agents
to own world model

» Problem:agents need to
be treated differently

42 Sociable Agents

Cooperation: Joint goals and plans

Multi-agent planning: e.g. double tennis where agents want to return ball
agent as parameter of actions: A#(4,/Left, Baseline])

solution: joint plan with actions for each agent and committment of each agent
coordination required for agents to reach same joint plan

at coordination problems, communicate!

v v v v

Multi-body planning: one agent plans actions of everybody using slightly
extended POP

» world not static, need to plan synchronization
» plan joint actions: <Go(4,[Left,Net]), Go(B,[Right,Baseline]>
» ..or add concurrent action conditions to actions

Cooperation to ensure agreement on joint plan
» Convention: constraint on the selection of joint plans
» Communication

43 Sociable Agents

Next week(s)

How to model uncertain knowledge and reasoning about it?
» Probability theory
» Degrees of belief

» Bayesian (belief) networks, influence diagrams, graphical
probabilistic models, ...

» Inference in Bayesian networks

a4 Sociable Agents

