
gentsSociable

Dr. Stefan Kopp
Center of Excellence „Cognitive Interaction Technology“

AG Sociable Agents

Spezielle Themen der
Künstlichen Intelligenz

6. Termin: Planning & Uncertainty

gentsSociable

Recap‘ planning

Formulating planning problems: STRIPS, ADL
Planning as state-space search
‣ progression: start ! goal, follow action effects

‣ regression: goal ! start, follow action preconditions

Partial order planning
‣ refine partial plans with least commitment

‣ order constraints, causal links

Planning graphs
‣ single graph structure with all possible worlds and plans

‣ mutex relations between actions or literals

‣ used to extract solution, estimate cost heuristics

2

gentsSociable3

Time, schedules and resources

Until know: what actions to do?

Real-world:
‣ + actions have a beginning and an end time
‣ + actions have a certain duration
‣ + actions consume certain resources

Job-shop scheduling problem
‣ complete a set of jobs, each consisting of sequence of actions
‣ each action has duration and requires resources
‣ determine a schedule that minimizes total time to complete all jobs

(respecting resource constraints)

gentsSociable

Example: Interactive Scheduling

4

gentsSociable5

Planning vs. scheduling

How does the scheduling problem differ from a standard planning
problem?
‣ need to determine when an action should start and when it

should end
‣ need to consider order (planning) and duration

Critical path method to determine start and end times
‣ Path = linear action sequence from start to end
‣ Critical path = path with longest total duration

- determines the duration of the entire plan
- should be executed without delay

gentsSociable6

Example: Car construction scheduling

„Slack“ of 15

critical path

Init(Chassis(C1) ! Chassis(C2) ! Engine
(E1,C1,30) ! Engine(E1,C2,60) !
Wheels(W1,C1,30) ! Wheels
(W2,C2,15))

Goal(Done(C1) ! Done(C2))
Action(AddEngine(e,c,m)
! PRECOND: Engine(e,c,d) ! Chassis(c)

! ¬EngineIn(c)
! EFFECT: EngineIn(c) ! Duration(d))
Action(AddWheels(w,c)
! PRECOND: Wheels(w,c,d) ! Chassis(c)
! EFFECT: WheelsOn(c) ! Duration(d))
Action(Inspect(c)
! PRECOND: EngineIn(c) ! WheelsOn(c)

! Chassis(c)
! EFFECT: Done(c) ! Duration(10))

gentsSociable7

Hierarchical task network planning

How to cope with hugely complex problems?
" exploit hierarchical structure of the problem domain
" hierarchical decomposition
‣ at each level a computational task is reduced to a small number of less

complex activities at the next lower level

‣ the computational cost of arranging these activities is low

Hierarchical task network (HTN) planning: action refinement through
decomposition

‣ Building a house = getting a permit + hiring a contractor + doing the
construction + paying the contractor

‣ Refined until only primitive actions remain

„Hybrid HTN“: combine HTN with POP

gentsSociable8

Representing action decomposition

General descriptions stored in plan library
‣ Each method:

Decompose(a,d) = action a can be decomposed into PO plan d

Start action supplies all preconditions of actions not enabled as
effects of other actions in the plan

= external preconditions

Finish action has (as preconditions) all effects of actions in the plan
not negated by other actions

= external effects
‣ primary effects (used to achieve goal) vs. secondary effects

gentsSociable9

Buildhouse example

External precond External effects

Build-house decomposed into plan with 4 lower level actions

gentsSociable10

Buildhouse example

Action(Buyland, PRECOND: Money, EFFECT: Land ! ¬Money)
Action(GetLoan, PRECOND: Goodcredit, EFFECT: Money ! Mortgage)
Action(BuildHouse, PRECOND: Land, EFFECT: House)
Action(GetPermit, PRECOND: Land, EFFECT: Permit)
Action(HireBuilder, EFFECT: Contract)
Action(Construction, PRECOND: Permit ! Contract, EFFECT: HouseBuilt ! ¬Permit),
Action(PayBuilder, PRECOND: Money ! HouseBuilt, EFFECT: ¬Money ! House ! ¬

Contract),
Decompose(BuildHouse,
 Plan ::STEPS{ S1: GetPermit, S2:HireBuilder, S3:Construction, S4:PayBuilder}
 ORDERINGS: {Start <S1<S3<S4<Finish, Start<S2<S3},
 LINKS

!

Start Land" # " " S1,Start Money" # " " S4,S1 Permit" # " " S3,S2 Contract" # " " S3,
S3 HouseBuilt" # " " " S4,S4 house" # " " Finish,S4 ¬Money" # " " Finish

$
%
&

'
(
)

gentsSociable11

Properties of decomposition

Should be a correct implementation of action a
‣ Correct if plan d is a complete and consistent PO plan for the problem

of achieving effects of a, given the preconditions of a

Not necessarily unique

Performs information hiding
‣ higher-level action description hides preconditions+effects
‣ ignores all internal effects of decomposition
‣ does not specify intervals inside the activity during which preconditions

and effects must hold

Information hiding is essential to HTN planning
‣ reduces complexity in reasoning about abstract actions

gentsSociable12

Hybrid HTN planning: adopt POP

Recall POP
‣ Start with empty plan Start<Finish, open preconds of Finish

‣ Successfor function: picks one open precondition p of action B and

generates successor plan for every possible consistent way of
choosing action A that achieves p

Now, modify the successor function to apply decomposition to the
current plan

‣ Select non-primitive action a’ in current partial plan P

For any Decompose(a,d) method in library, where a and a’ unify
with substitution #, do: Replace a’ with d’ = subst(#,d)

gentsSociable13

POP+HTN example

a’P

Library

gentsSociable14

POP+HTN example

a’

d

P

gentsSociable15

How to hook up d in a’?

1. Replace action a’ in P with dθ

2. Connect ordering steps for a’ to steps in d’
‣ Maintain constraints of the form B<a’ in P for steps s of d‘

‣ Watch out for too strict orderings, e.g. simply setting B<s for every step s with
Start<s

‣ Record reasons for constraints and relax as possible

3. Connect causal links
‣ If B-p->a’ is a causal link in P, replace by a set of causal links from B to all

steps in d’ with preconds p supplied by Start step
- Ex: BuyLand-Land->BuildHouse replaced by BuyLand-Land->GetPermit

‣ Analog for a’-p->C
- Ex: PayBuilder-House->Finish

gentsSociable

Discussion of HTN planning

Problem: decomposition becomes undecidable when recursive actions
can be taken, can be coped with by bounding recursion and using POP

Complexity: d possible decompositions into k actions at next level, n
primitive actions
‣ 1+k+k2+...+klogk(n-1)=(n-1)/(k-1) internal decomp nodes

‣ that is, one can have d(n-1)/(k-1) possible decomposition trees
‣ efficient only with d small, k large = small lib of long decomp‘s

In practice: almost all large-scale planners are HTN-based
‣ allows human expert to provide crucial knowledge

‣ Example: O-PLAN used e.g. for HITACHI production plans

16

gentsSociable

What if one cannot be certain?

17 gentsSociable18

Uncertain domains

So far, observable, static, deterministic domains
‣ agent can plan first and then execute plan with eyes closed

But, in reality we have uncertain environments
‣ incomplete: partially observable, non-deterministic

‣ incorrect, incomplete information: world and beliefs may differ

Degree of uncertainty depends on indeterminacy
‣ Bounded: actions can have unpredictable effects, but these can be

listed in action description axioms
‣ Unbounded: preconditions and effects are unknown or too large to

enumerate

gentsSociable19

Handling indeterminacy in planning

Sensorless planning (conformant planning)
‣ Find plan that achieves goal in all possible circumstances (regardless of initial

state and action effects)

Conditional planning (contingency planning)
‣ Construct conditional plan with different branches for possible contingencies

Execution monitoring and replanning
‣ While constructing and executing a plan, judge whether plan requires revision

Continuous planning
‣ Planner persists over time: adapt plan to changed circumstances, reformulate

goals if necessary

gentsSociable

Example: A.I. in space

http://www.aaai.org/aitopics/pmwiki/pmwiki.php/AITopics/Astronomy

"It's one small step in the history of space flight. But it was one giant leap for
computer-kind, with a state of the art artificial intelligence system being given
primary command of a spacecraft."

- from NASA's DEEP SPACE 1 - REMOTE AGENT site

20

gentsSociable

„The Earth Observing One spacecraft, launched
Nov. 2000, has been under the control of AI
software for several years - experimentally since
2003 and since November 2004 as the primary
operations system.

This software includes: model-based planning and
scheduling, procedural execution, and event
detection software learned by support vector
machine (SVM) techniques. It has enabled a
100x increase in the mission science return per
data downlinked and a >$1M/year reduction in
operations costs.“

21

http://eo1.gsfc.nasa.gov/

gentsSociable

Continuous Activity Scheduling Planning Execution and
Replanning
http://ai.jpl.nasa.gov/public/projects/casper/

Problem with batch planning for spacecraft control:
‣ constructing a plan is computationally intensive and onboard

computational resources are typically quite limited
- Planner on-board the New Millennium Deep Space One mission:

~4 hours to produce a 3 day operations plan (with 25% of CPU load)

‣ under changing conditions, need to increase the time for which the
spacecraft has a consistent plan

Approch: continuous planning and replanning
‣ current goal set, a plan, a current state, expected future state

‣ incremental update invokes planner to maintain consistent plan

‣ iterative plan repair techniques

22

gentsSociable

Example: Autonomous navigation on Mars

23 gentsSociable24

Recall: the vacuum-world

gentsSociable25

Sensorless planning

Find plan that works
without sensory info
‣ plan over sets

of world states
‣ employ

coercive
actions

gentsSociable26

Conditional planning

Deal with uncertainty by checking what is really happening at
predetermined points

Let‘s start with fully observable, but non-deterministic
environments
‣ current state is always known

‣ outcome of an action is unknown (but there)

Build plan with conditional steps that check state of the
environment

Problem: How to construct such a conditional plan?

gentsSociable27

Conditional planning

STRIPS-like description
‣ Actions: left, right, suck
‣ States: conjunction of AtL, AtR, CleanL, CleanR

How to include indeterminism?
‣ actions can have disjunctive effects (more than one)

- E.g. moving left sometimes fails
! Action(Left, PRECOND: AtR, EFFECT: AtL)

... becomes ...
Action(Left, PRECOND: AtR, EFFECT: AtL $ AtR)

‣ actions can have conditional effects when <cond.>: effect
! Action(Left, PRECOND: AtR, EFFECT: AtL $ (AtL ! when

CleanL: ¬CleanL) $...

gentsSociable28

Conditional planning

Conditional plans require conditional steps
‣ If <test> then plan_A else plan_B

‣ Example: if AtL!CleanL then Right else Suck
‣ plans become (game) trees

„Games Against Nature“
‣ goal: find conditional plans that work, regardless of which action

outcomes actually occur
‣ assume vacuum-world:

Initial state = AtR ! CleanL ! CleanR
‣ „double murphy“ cleaner:

possibility of despositing dirt when moving to other square, and
possibility of despositing dirt when action is Suck

gentsSociable29

„Game tree“

State node (~OR)

chance node (~AND)

gentsSociable30

Solution of „games against nature“!

Solution is a subtree that
‣ has a goal node at every leaf
‣ specifies one action at each of its state nodes
‣ includes every outcome branch at each of the chance nodes

Example: solution in previous example (bold lines)
[Left, if AtL ! CleanL ! CleanR then [] else Suck]

For exact solutions use minimax algorithm with two modifications
‣ Max and Min nodes become OR and AND nodes

- OR: plan is just the action selected at state node
- AND: plan is nested series of if-then-else steps

‣ Algorithm returns conditional plan instead of single move

gentsSociable31

And-Or-search algorithm

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan or failure
 return OR-SEARCH(INITIAL-STATE[problem], problem, [])

function AND-SEARCH(state_set, problem, path) returns a conditional plan or failure
 for each si in state_set do
 plani % OR-SEARCH(si, problem,path)
 if plan = failure then return failure
 return [if s1 then plan1 else if s2 then plan2 else … if sn-1 then plann-1 else plann]

function OR-SEARCH(state, problem, path) returns a conditional plan or failure
 if GOAL-TEST[problem](state) then return the empty plan
 if state is on path then return failure /* detected circle */
 for action,state_set in SUCCESSORS[problem](state) do
 plan % AND-SEARCH(state_set, problem, [state | plan])
 if plan & failure then return [action | plan]
 return failure

gentsSociable32

Problems with cycles

When a state already appeared on the path, return failure
‣ ensures algorithm termination

But sometimes only cyclic solutions exist
‣ Consider „tripple murphy“: += sometimes a move is not performed

[Left, if CleanL then [] else Suck] is not a solution
‣ Must repeat parts of the plan until it works, but may run into infinite loops;

need labels to denote portions of the plan
[L1: Left, if AtR then L1 else if CleanL then [] else Suck]

gentsSociable33

Partially observable environment

What if the agent has limited information about the current state of
the environment?

Modeled as a set of possible states = the agent‘s belief states
‣ E.g. assume a vacuum agent that

- cannot sense presence or absence of dirt in other squares than the one it
is on

- can leave behind dirt when moving to other square

‣ Cyclic solution in fully observable world:

keep moving left and right, sucking dirt whenever it appears until
both squares are clean and I’m in square left

gentsSociable34

Plan on AND-OR-graph of belief states

gentsSociable35

Conditional Planning on belief states

Note: Belief state is always fully observable!
‣ can use AND-OR-GRAPH-SEARCH on belief states

Representation of belief states? 3 choices:
‣ sets of full state descriptions, easy but expensive

{(AtR!CleanR!CleanL) $ (AtR!CleanR!¬CleanL)}

‣ logical sentences that capture the set of possible worlds in the belief
state (open-world assumption)

AtR ! CleanR

‣ knowledge propositions describing what the agent knows (closed-world
assumption: the rest is assumed false)

K(AtR) ! K(CleanR)

Choice 2 and 3 are roughly equivalent, let‘s continue with 3

gentsSociable36

How to „feed“ knowledge propositions?

Sensing in Conditional Planning
‣ Automatic sensing: At every time step the agent gets all available

percepts
‣ Active sensing: Percepts are obtained through specific sensory actions

that must be planned for
! additional actions checkDirt and checkLocation

Given the knowledge proposition representation and the sensing,
action descriptions can now be formulated in STRIPS:

Action(Left, PRECOND: AtR,
 EFFECT: K(AtL)!¬K(AtR) !
 when CleanR: ¬K(CleanR) !
 when CleanL: K(CleanL) !
 when ¬CleanL: K(¬CleanL)).

Assumes automatic sensing,
otherwise required explicit
sensory actions.

gentsSociable

Complexity of Conditional Planning

Harder than classical planning problems. Why?

NP problems: exponentional number of candidates, but each
candidate solution can be checked in polynomial time
‣ true for classical plans

Conditional Plan: exponentional number of candidates, each of which
contains multiple states; must check for all possible states whether
some path exists that satisfies the goals
‣ cannot be done in polynomial time

Way out: ignore some contingencies, handle others only when they
actually occur

37 gentsSociable38

Monitoring & replanning

Realistic world: unbounded indeterminancy ! some unanticipated
circumstances will arise

Monitor whether everything is going as planned and replan when
something unexpected happens
‣ action vs. plan monitoring: verify next action vs. entire remaining plan
‣ replan by repairing old plan, find way back to old plan

Advantages:

‣ allows to start out with easy plans

‣ works in both fully and partially observable environments, and with a
variety of planning representations

gentsSociable39

Replanning-agent

function REPLANNING-AGENT(percept) returns an action
 static: KB, a knowledge base (+ action descriptions)
! ! plan, a plan initially [] /* remaining unexecuted plan segment */
 whole_plan, a plan initially []
! ! goal, a goal
! TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t))
 current % STATE-DESCRIPTION(KB,t)
 if plan = [] then /* create initial plan */
 whole_plan % plan % PLANNER(current, goal, KB)
 if PRECONDITIONS(FIRST(plan)) not currently true in KB then
 candidates % SORT(whole_plan, ordered by distance to current)

/* find state s in old plan, closest to current, and a plan current->s */
 find state s in candidates such that
 failure & repair % PLANNER(current, s, KB)
 continuation % the tail of whole_plan starting at s
 whole_plan % plan % APPEND(repair, continuation)
 return POP(plan)

Action monitoring

gentsSociable40

Discussion: monitoring & replanning

Algorithm can lead to less intelligent behavior
‣ E.g. resource problems would not be detected before an action execution

failed

Better: plan monitoring
‣ check always all preconds of entire remaining plan, which are not

achieved by another step in the plan
‣ can also take advantage of serendipity (accidental success)

What if in partially observable environments?
‣ checking all preconds is difficult, if not impossible
‣ check only important, fallible, and perceivable variables

Complete in environments without dead ends, short-coming: time
demands of replanning

gentsSociable

Trends: interactive planning

Off-load some planning decisions onto the user
Allow for incremental planning with incessant input by the user

41 gentsSociable42

Trends: multi-agent planning

Planning in environments
with other agents
‣ cooperative
‣ competitive

May simply add other agents
to own world model
‣ Problem: agents need to

be treated differently

gentsSociable43

Cooperation: Joint goals and plans

Multi-agent planning: e.g. double tennis where agents want to return ball
‣ agent as parameter of actions: At(A,[Left,Baseline])
‣ solution: joint plan with actions for each agent and committment of each agent
‣ coordination required for agents to reach same joint plan
‣ at coordination problems, communicate!

Multi-body planning: one agent plans actions of everybody using slightly
extended POP
‣ world not static, need to plan synchronization

‣ plan joint actions: <Go(A,[Left,Net]), Go(B,[Right,Baseline]>
‣ ...or add concurrent action conditions to actions

Cooperation to ensure agreement on joint plan
‣ Convention: constraint on the selection of joint plans
‣ Communication

gentsSociable

Next week(s)

How to model uncertain knowledge and reasoning about it?

‣ Probability theory

‣ Degrees of belief

‣ Bayesian (belief) networks, influence diagrams, graphical
probabilistic models, ...

‣ Inference in Bayesian networks

44

