Spezielle Themen der Künstlichen Intelligenz

7.Termin:

Uncertainty, Degrees of Belief and Probabilities

Uncertainty

Intelligent agents need to cope with uncertainties in their...

knowledge

- incomplete: partially observable, noisy sensors, non-deterministic environments
- incorrect: world and beliefs may differ

reasoning \& action selection

- reasoning rules may be not correct, or not fully applicable
- conclusions might be less or more uncertain than their antecedents
- actions may have unpredictable effects (bounded or undounded indeterminacy)
- deducing all consequences may be too complex, need to do pruning based on approximation and heuristics

Recap': handling uncertainty in planning

Sensorless planning (conformant planning)

- find plan that achieves goal in all possible circumstances, often not possible

Conditional planning (contingency planning)

- construct conditional plan with different branches for possible contingencies
- gets intractable fast, need to skip contingencies in plan

Execution monitoring \& replanning

, while constructing and executing a plan, judge whether plan requires revision

Continuous planning

- planner persists over time: adapt plan to changed circumstances, reformulate goals if necessary

Acting under uncertainty

Let action $A_{t}=$ leave for airport t minutes before flight
Question: Will A_{t} get me there on time?
What are the problems for a purely logical agent?

Acting under uncertainty

A purely logical approach either
, risks falsehood:" A_{25} will get me there on time"= true

- leads to conclusions too weak and unreliable
 for decision making

Example:

- A90 will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact and
- plan success not inferrable (qualification problem)

Logical agent would be unable to act rationally

- Instead: rational decision depends on both relative importance of goals and likelihood that they will be achieved to the necessary degree

Acting under uncertainty

Idea in a nutshell

Use probabilistic assertions (not propositions) to summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability relates facts to the own state of knowledge

- degree of belief, e.g., $\operatorname{Pr}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents $)=0.06$
- not a degree of truth, i.e. no assertions about the world, only about belief

Probabilities of assertions change with new evidence

- posterior or conditional probabilites:
$\operatorname{Pr}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents, 5 a.m. $)=0.15$

Acting under uncertainty

Idea in a nutshell

Suppose the agent believes the following:

- $\operatorname{Pr}\left(\mathrm{A}_{25}\right.$ gets me there on time | ...) $=0.04$
- $\operatorname{Pr}\left(A_{90}\right.$ gets me there on time $\left.\mid \ldots\right)=0.70$
- $\operatorname{Pr}\left(\mathrm{A}_{120}\right.$ gets me there on time $\left.\mid \ldots\right)=0.95$
- $\operatorname{Pr}\left(\mathrm{A}_{1440}\right.$ gets me there on time $\left.\mid \ldots\right)=0.999$

Which action to choose depends on preferences for possible outcomes (risks, costs, rewards, etc.) represented using utility theory

- decision theory = probability theory + utility theory

Principle of maximum expected utility (MEU)

An agent is rational iff it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action

Acting under uncertainty

Idea in a nutshell

```
function DT-AGENT(percept) returns eine Aktion
    static: belief_state, probabilistischer Glauben über den aktuellen Zustand
            der Welt
            action, die Aktion des Agenten
    aktualisiere belief_state basierend auf action und percept
    berechne Ergebniswahrscheinlichkeiten für Aktionen
            abhängig von Aktionsbeschreibungen und aktuellem belief_state
    wähle action mit dem höchsten erwarteten Nutzen
        für gegebene Wahrscheinlichkeiten der Ergebnisse und Nutzeninformation
    return action
```


Decision-theoretic Agent

From propositions to degree of beliefs

Classical knowledge-based (or model-based) reasoning

Probabilistic reasoning

Propositional logics

World = state of affairs in which each
propositional variable is known

- variable assignment with values

Models $=$ worlds that satisfy a sentence

- every sentence represents a set of worlds $=$ (atomic) event

World	Earthquake	Burglary	Alarm
w1	true	true	true
w2	true	true	false
w3	true	false	true
w4	true	false	false
w5	false	true	true
w6	false	true	false
w7	false	false	true
w8	false	false	false

$$
\begin{aligned}
& \operatorname{Mods}(\alpha \wedge \beta)=\operatorname{Mods}(\alpha) \cap \operatorname{Mods}(\beta) \\
& \operatorname{Mods}(\alpha \vee \beta)=\operatorname{Mods}(\alpha) \cup \operatorname{Mods}(\beta) \\
& \operatorname{Mods}(\neg \alpha)=\overline{\operatorname{Mods}(\alpha)}
\end{aligned}
$$

Propositional logics

Important properties of sentences

- consistent / satisfiable
- valid

$$
\begin{aligned}
& \operatorname{Mods}(\alpha) \neq\{ \} \\
& \operatorname{Mods}(\alpha) \neq \Omega \quad \vDash \alpha
\end{aligned}
$$

Important relationships of sentences

- equivalent
$\operatorname{Mods}(\alpha)=\operatorname{Mods}(\beta)$
- mutually exclusive
$\operatorname{Mods}(\alpha) \cap \operatorname{Mods}(\beta)=\{ \}$
- exhaustive
- implies
$\alpha \vDash \beta$
$\operatorname{Mods}(\alpha) \cup \operatorname{Mods}(\beta)=\Omega$
$\operatorname{Mods}(\alpha) \subseteq \operatorname{Mods}(\beta)$

Monotonicity of logical reasoning

World	Earthquake	Burglary	Alarm
w1	true	true	true
w2	true	true	false
w3	true	false	true
$w 4$	true	false	false
$w 5$	false	true	true
$w 6$	false	true	false
$w 7$	false	false	true
$w 8$	false	false	false

$$
\begin{aligned}
\alpha: & (\text { Earthquake } \vee \text { Buglary }) \Rightarrow \text { Alarm } \\
& \operatorname{Mods}(\alpha)=\left\{\omega_{1}, \omega_{3}, \omega_{5}, \omega_{7}, \omega_{8}\right\} \\
\beta: & \text { Earthquake } \Rightarrow \text { Burglary }
\end{aligned}
$$

$+$

$$
\begin{array}{r}
M o d s(\alpha \wedge \beta) \\
=\operatorname{Mods}(\alpha) \cap \operatorname{Mods}(\beta) \\
=\left\{\omega_{1}, \omega_{5}, \omega_{7}, \omega_{8}\right\}
\end{array}
$$

Monotonicity

learning new information can only rule out worlds:

- if a implies c, then (a and b) will imply c as well

Especially problematic in light of qualification problem! (why?)

Modeling degrees of belief as probabilities

Degree of belief or probability of a world - in fuzzy logic, interpreted as possibility (not the view adopted here)

Degree of belief or probability of a sentence

State of belief or joint probability distribution

World	Earthquake	Burglary	Alarm	$\operatorname{Pr}()$.
w1	true	true	true	.0190
w2	true	true	false	.0010
w3	true	false	true	.0560
w4	true	false	false	.0240
w5	false	true	true	.1620
w6	false	true	false	.0180
w7	false	false	true	.0072
w8	false	false	false	.7128

$$
\operatorname{Pr}(\alpha):=\sum_{\omega \models \alpha} \operatorname{Pr}(\omega)
$$

$$
\begin{gathered}
\sum_{\omega_{i}} \operatorname{Pr}\left(\omega_{i}\right)=1 \\
\operatorname{Pr}(\text { Earthquake })=.1 \\
\operatorname{Pr}(\text { Burglary })=.2 \\
\operatorname{Pr}(\text { Alarm })=.2442
\end{gathered}
$$

Properties of beliefs

Properties of (degrees of) beliefs

- bound
$0 \leq \operatorname{Pr}(\alpha) \leq 1 \quad \forall \alpha$
- baseline for inconsistent sentences
$\operatorname{Pr}(\alpha)=0 \forall \alpha$ inconsistent
- baseline for valid sentences
$\operatorname{Pr}(\alpha)=1 \quad \forall \alpha$ valid

Junctions of beliefs

- disjunction
$\operatorname{Pr}(\alpha \vee \beta)=\operatorname{Pr}(\alpha)+\operatorname{Pr}(\beta)-\operatorname{Pr}(\alpha \wedge \beta)$
- conjunction
$\operatorname{Pr}(\alpha \wedge \beta)=0$ if α, β mutually exclusive

$$
\begin{array}{r}
\operatorname{Pr}(\text { Earthquake } \wedge \text { Burglary })=\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)=.02 \\
\operatorname{Pr}(\text { Earthquake } \vee \text { Burglary })=.1+.2-.02=.28
\end{array}
$$

Uncertainty and entropy

Entropy = quantifies uncertainty about a certain variable

$$
E N T(X):=-\sum_{x} \operatorname{Pr}(x) \log _{2} \operatorname{Pr}(x)
$$

$$
(0 \log 0:=0)
$$

World	Earthquake	Burglary	Alarm	$\operatorname{Pr}()$.
w1	true	true	true	.0190
w2	true	true	false	.0010
w3	true	false	true	.0560
w4	true	false	false	.0240
w5	false	true	true	.1620
w6	false	true	false	.0180
w7	false	false	true	.0072
w8	false	false	false	.7128

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558
$E N T()$.	.469	.722	.802

Updating beliefs

Evidence $=$ a piece of information known to hold
\rightarrow requires to update state of belief with certain certain properties

- accommodate evidence

$$
\begin{aligned}
& \operatorname{Pr}(\beta \mid \beta)=1 \\
& \operatorname{Pr}(\omega \mid \beta)=0 \quad \text { for all } \omega \vDash \neg \beta
\end{aligned}
$$

- normalized

$$
\sum_{\omega \equiv \beta} \operatorname{Pr}(\omega \mid \beta)=1
$$

- retain impossible worlds

$$
\operatorname{Pr}(\omega)=0 \rightarrow \operatorname{Pr}(\omega \mid \beta)=0
$$

- retain relative beliefs in possible worlds

$$
\begin{aligned}
& \quad \frac{\operatorname{Pr}(\omega)}{\operatorname{Pr}\left(\omega^{\prime}\right)}=\frac{\operatorname{Pr}(\omega \mid \beta)}{\operatorname{Pr}\left(\omega^{\prime} \mid \beta\right)} \\
& \forall \omega, \omega^{\prime} \vDash \beta, \operatorname{Pr}(\omega)>0, \operatorname{Pr}\left(\omega^{\prime}\right)>0
\end{aligned}
$$

Updating beliefs

\rightarrow update old state of beliefs through conditioning on evidence β

$$
\operatorname{Pr}(\omega \mid \beta):= \begin{cases}0 & \omega \vDash \neg \beta \\ \frac{\operatorname{Pr}(\omega)}{\operatorname{Pr}(\beta)} & \omega \vDash \beta\end{cases}
$$

new beliefs = old beliefs, normalized with old belief in new evidence

Earthquake	Burglary	Alarm	$\operatorname{Pr}($.	Alarm=true	Earthquake	Burglary	Alarm	Pr(.\|Alarm)
true	true	true	. 0190		true	true	true	.0190/.2442
true	true	false	. 0010		true	true	false	0
true	false	true	. 0560		true	false	true	. $0560 / .2442$
true	false	false	. 0240		true	false	false	0
false	true	true	. 1620		false	true	true	. $1620 / .2442$
false	true	false	. 0180		false	true	false	0
false	false	true	. 0072		false	false	true	. $0072 / .2442$
false	false	false	. 7128		false	false	false	0

$$
\operatorname{Pr}(\text { Burglary })=.2 \rightarrow \operatorname{Pr}(\text { Burglary } \mid \text { Alarm })=.741
$$

Updating beliefs

More efficient: direct update of a sentence from new evidence through Bayesian conditioning

$$
\operatorname{Pr}(\alpha \mid \beta)=\frac{\operatorname{Pr}(\alpha \wedge \beta}{\operatorname{Pr}(\beta)}
$$

follows from the following commitments

- worlds that contradict evidence have zero prob
- worlds that have zero prob continue to have zero prob
- worlds that are consistent with evidence and have positive prob will maintain their relative beliefs

Note: Bayesian conditioning is nothing else than application of the basic product rule

$$
\operatorname{Pr}(\alpha \wedge \beta)=\operatorname{Pr}(\alpha \mid \beta) \cdot \operatorname{Pr}(\beta)
$$

Updating beliefs

Example: State of belief from above

	Pr (Earthquake)	Pr (Burglary)	Pr (Alarm)
true	.1	.2	.2442

Conditioning on first evidence: Alarm=true

	$\operatorname{Pr}(\mathrm{E} \mid$ Alarm $)$	$\operatorname{Pr}(\mathrm{B} \mid$ Alarm $)$	$\operatorname{Pr}(\mathrm{A} \mid$ Alarm $)$
true	.307	.741	1

Conditioning on second evidence:
Earthquake=true

	$\operatorname{Pr}(\mathrm{E} \mid \mathrm{A} \wedge \mathrm{E})$	$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A} \wedge \mathrm{E})$	$\operatorname{Pr}(\mathrm{A} \mid \mathrm{A} \wedge \mathrm{E})$
true	1	.253	1

Belief dynamics under incoming evidence is a consequence of the initial state of beliefs one has !!

Independence

A given state of beliefs finds an event independent of another event iff

$$
\operatorname{Pr}(\alpha \mid \beta)=\operatorname{Pr}(\alpha) \text { or } \operatorname{Pr}(\beta)=0
$$

Equivalent definition (using product rule): $\operatorname{Pr}(\alpha \wedge \beta)=\operatorname{Pr}(\alpha) \cdot \operatorname{Pr}(\beta)$

Examples \& properties:

- in the initial state of beliefs defined above, it is
- Pr (Earthquake) $=.1$ and Pr (Earthquake | Burglary) $=.1$
- Pr (Burglary) $=.2$ and Pr (Burglary | Earthquake) $=.2$
\rightarrow Earthquake and Burglary are independent, knowing one doesn't change belief in the other
- independence (property of beliefs) is always symmetrical
- ...but different from mutual exclusiveness (property of events)

Conditional Independence

Independence is a dynamic notion!

- Earthquake and Burglary are dependent when having evidence Alarm
- $\operatorname{Pr}($ Burglary \mid Alarm $)=.74$ and $\operatorname{Pr}($ Burglary |Alarm^Earthquake $)=.253$
\rightarrow Earthquake changes the belief in Burglary in presence of Alarm
- can also be the other way around (dep. \rightarrow evidence \rightarrow indep.)

Definition:

state of belief Pr finds α conditionally independent of β given event γ iff

$$
\operatorname{Pr}(\alpha \mid \beta \wedge \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \text { or } \operatorname{Pr}(\beta \wedge \gamma)=0
$$

- conditional independence is always symmetric

$$
\operatorname{Pr}(\alpha \wedge \beta \mid \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \operatorname{Pr}(\beta \mid \gamma) \text { or } \operatorname{Pr}(\gamma)=0
$$

Conditional Independence

Example:

Given two noisy, unreliable sensors

Initial beliefs

- $\operatorname{Pr}($ Temp $=$ normal $)=.80$
- $\operatorname{Pr}($ Sensor $I=$ normal $)=.76$
- $\operatorname{Pr}($ Sensor2 $=$ normal $)=.68$

Temp	sensor1	sensor2	$\operatorname{Pr}()$.
normal	normal	normal	.576
normal	normal	extreme	.144
normal	extreme	normal	.064
normal	extreme	extreme	.016
extreme	normal	normal	.008
extreme	normal	extreme	.032
extreme	extreme	normal	.032
extreme	extreme	extreme	.128

After checking sensorl and finding its reading is normal

- $\operatorname{Pr}($ Sensor2=normal | Sensor $1=$ normal $) \sim .768 \rightarrow$ initially dependent

But after observing that temperatur is normal

- $\operatorname{Pr}($ Sensor2=normal \mid Temp $=$ normal $)=.80$
- $\operatorname{Pr}($ Sensor2=normel \mid Temp=normal, Sensorl=normal) $=.80 \rightarrow$ become independent

