

Uncertainty

Intelligent agents need to cope with uncertainties in their...

knowledge

- incomplete: partially observable, noisy sensors, non-deterministic environments
- incorrect: world and beliefs may differ

reasoning & action selection

- reasoning rules may be not correct, or not fully applicable
- conclusions might be less or more uncertain than their antecedents
- actions may have unpredictable effects (bounded or undounded indeterminacy)
- deducing all consequences may be too complex, need to do pruning based on approximation and heuristics

Recap': handlin	ig uncertainty ii	n planning
	conformant planning) as goal in all possible circums	tances, often not possible
 construct conditional 	(contingency planning I plan with different branches need to skip contingencies in	s for possible contingencies
Continuous planning	nd executing a plan, judge wh	
СІТЕС	3	Sociable Agents

- degree of belief, e.g., Pr(A₂₅ | no reported accidents) = 0.06
- <u>not</u> a degree of truth, i.e. no assertions about the world, only about belief

Probabilities of assertions change with new evidence

posterior or conditional probabilites:
 Pr(A₂₅ | no reported accidents, 5 a.m.) = 0.15

Propositional logicsWorld = state of affairs in which each
propositional variable is known
$$\omega$$
• variable assignment with valuesModels = worlds that satisfy a sentence
• every sentence represents a
set of worlds = (atomic) event $Mods(\alpha) = \{\omega : \omega \models \alpha\}$ $\frac{World}{4}$ $\frac{Earthquake}{10}$ $\frac{Burglary}{10}$ $\frac{World}{4}$ $\frac{Earthquake}{10}$ $\frac{Burglary}{10}$ $\frac{World}{6}$ $\frac{Farthquake}{10}$ $\frac{Farthquake}{10}$ $\frac{World}{10}$ $\frac{Farthquake}{10}$ $\frac{Burglary}{10}$ $\frac{World}{10}$ $\frac{Farthquake}{10}$ $\frac{Farthquake}{10}$ $\frac{World}{10}$ <

Monotonicity of logical reasoning

World	Earthquake	Burglary	Alarm
w1	true	true	true
w2	true	true	false
w3	true	false	true
w4	true	false	false
w5	false	true	true
w6	false	true	false
w7	false	false	true
w8	false	false	false

$\alpha : (Earthquake \lor Buglary) \Rightarrow Alarm$ $Mods(\alpha) = \{\omega_1, \omega_3, \omega_5, \omega_7, \omega_8\}$

 $\beta: Earthquake \Rightarrow Burglary$

$$Mods(\alpha \land \beta)$$

= $Mods(\alpha) \cap Mods(\beta)$
= { $\omega_1, \omega_5, \omega_7, \omega_8$ }

Monotonicity

learning new information can only rule out worlds:

• if a implies c, then (a and b) will imply c as well

Especially problematic in light of qualification problem! (why?)

сіт≣с

+

Sociable Agents

 Degree of belief or probability of a world in fuzzy logic, interpreted as possibility (not the view adopted here) 			$Pr(\omega)$		
Degre	e of belief	or prob	ability	of a sentence	e $Pr(\alpha) := \sum_{\omega \vDash \alpha} Pr(\alpha)$
		• •	1	lity distributi	ion $\sum Pr(\omega_i) = 1$
World	Earthquake	Burglary	Alarm	Pr(.)	ion $\sum_{\omega_i} Pr(\omega_i) = 1$
		• •	1	,	ion $\sum_{\omega_i} Pr(\omega_i) = 1$
World w1	Earthquake	Burglary	Alarm true	Pr(.) .0190	$\sum_{\omega_i} Pr(\omega_i) = 1$
World w1 w2	Earthquake true true	Burglary true true	Alarm true false	Pr(.) .0190 .0010	ion $\sum_{\omega_i} Pr(\omega_i) = 1$ $Pr(Earthquake) = .1$
World w1 w2 w3	Earthquake true true true	Burglary true true false	Alarm true false true	Pr(.) .0190 .0010 .0560	$\sum_{\omega_i} Pr(\omega_i) = 1$ $Pr(Earthquake) = .1$
World w1 w2 w3 w4	Earthquake true true true true	Burglary true true false false	Alarm true false true false	Pr(.) .0190 .0010 .0560 .0240	$\sum_{\omega_i} Pr(\omega_i) = 1$ $Pr(Earthquake) = .1$ $Pr(Burglary) = .2$
World w1 w2 w3 w4 w5	Earthquake true true true true false	Burglary true true false false true	Alarm true false true false true	Pr(.) .0190 .0010 .0560 .0240 .1620	$\sum_{\omega_i} Pr(\omega_i) = 1$ $Pr(Earthquake) = .1$

Properties of beliefs					
Properties of (degrees of) beliefs $0 \le Pr(\alpha) \le 1 \forall \alpha$ bound $0 \le Pr(\alpha) \le 1 \forall \alpha$ baseline for inconsistent sentences $Pr(\alpha) = 0 \; \forall \alpha \; inconsist$ baseline for valid sentences $Pr(\alpha) = 1 \forall \alpha \; valid$					
	= $Pr(\alpha) + Pr(\beta) - Pr(\alpha \land \beta)$ = 0 if α, β mutually exclusive				
$Pr(Earthquake \land Burglary) = Pr(\omega_1) + Pr(\omega_2) = .02$ $Pr(Earthquake \lor Burglary) = .1 + .202 = .28$					
CITEC 14	Sociable A gents				

Updating beliefsEvidence = a piece of information known to hold
$$\beta$$
 \rightarrow requires to update state of belief with
certain certain properties $Pr(.) \rightarrow Pr(.|\beta)$ \bullet accommodate evidence $Pr(\beta|\beta) = 1$
 $Pr(\omega|\beta) = 0$ for all $\omega \models \neg \beta$ \bullet normalized $\sum_{\omega \models \beta} Pr(\omega|\beta) = 1$ \bullet retain impossible worlds $Pr(\omega) = 0 \rightarrow Pr(\omega|\beta) = 0$ \bullet retain relative beliefs in
possible worlds $\frac{Pr(\omega)}{Pr(\omega')} = \frac{Pr(\omega|\beta)}{Pr(\omega'|\beta)}$
 $\forall \omega, \omega' \models \beta, Pr(\omega) > 0, Pr(\omega') > 0$ CITEC

Updating beliefs

More efficient: direct update of a sentence from new evidence through Bayesian conditioning

$$Pr(\alpha|\beta) = \frac{Pr(\alpha \land \beta)}{Pr(\beta)}$$

follows from the following commitments

- worlds that contradict evidence have zero prob
- worlds that have zero prob continue to have zero prob
- worlds that are consistent with evidence and have positive prob will maintain their relative beliefs

<u>Note</u>: Bayesian conditioning is nothing else than application of the basic product rule

$$Pr(\alpha \wedge \beta) = Pr(\alpha|\beta) \cdot Pr(\beta)$$

СІТЕС

Sociable Agents

<i>Example</i> : State of belief from above		Pr(Earthquake)	Pr(Burglary)	Pr(Alarm)
<u> </u>	true	.1	.2	.2442
Conditioning on first evidence:		Pr(E Alarm)	Pr(B Alarm)	Pr(A Alarm)
Alarm=true	true	.307	.741	1
Conditioning on second evidence: Earthquake=true	true	Pr(E A∧E)	Pr(B A∧E) .253	Pr(A A∧E)
Belief dynamics under incoming evide	L	1		
consequence of the initial state of be				

Independence A given state of beliefs finds an event independent of another event iff $Pr(\alpha|\beta) = Pr(\alpha)$ or $Pr(\beta) = 0$ Equivalent definition (using product rule): $Pr(\alpha \land \beta) = Pr(\alpha) \cdot Pr(\beta)$ Examples & properties: in the initial state of beliefs defined above, it is - Pr(Earthquake)=.1 and Pr(Earthquake | Burglary)=.1 - Pr(Burglary)=.2 and Pr(Burglary | Earthquake)=.2 → Earthquake and Burglary are independent, knowing one doesn't change belief in the other independence (property of beliefs) is always symmetrical ...but different from mutual exclusiveness (property of events) Sociable Agents CITEC 20

Conditional Independence

Independence is a dynamic notion!

- Earthquake and Burglary are <u>dependent</u> when having evidence Alarm
 - Pr(Burglary | Alarm)=.741 and Pr(Burglary | Alarm A Earthquake)=.253
 - \rightarrow Earthquake changes the belief in Burglary in presence of Alarm
- ▶ can also be the other way around (dep. \rightarrow evidence \rightarrow indep.)

Definition:

state of belief Pr finds α conditionally independent of β given event γ iff

 $Pr(\alpha|\beta \wedge \gamma) = Pr(\alpha|\gamma) \text{ or } Pr(\beta \wedge \gamma) = 0$

conditional independence is always symmetric

$$Pr(\alpha \wedge \beta | \gamma) = Pr(\alpha | \gamma) Pr(\beta | \gamma) \text{ or } Pr(\gamma) = 0$$

21

сіт≣с

Conditional Independence

Example:

Given two noisy, unreliable sensors

Initial beliefs

- Pr(Temp=normal)=.80
- Pr(Sensor I = normal)=.76
- Pr(Sensor2=normal)=.68

Тетр	sensor1	sensor2	Pr(.)
normal	normal	normal	.576
normal	normal	extreme	.144
normal	extreme	normal	.064
normal	extreme	extreme	.016
extreme	normal	normal	.008
extreme	normal	extreme	.032
extreme	extreme	normal	.032
extreme	extreme	extreme	.128

After checking sensor I and finding its reading is normal

▶ $Pr(Sensor2=normal | Sensor I=normal) \sim .768 \rightarrow initially dependent$

But after observing that temperatur is normal

- Pr(Sensor2=normal | Temp=normal) = .80
- Pr(Sensor2=normel | Temp=normal, Sensor l =normal) = .80 → become independent

Sociable Agents