

Degrees of belief as probabilities Degree of belief or probability of a world $Pr(\omega)$ $Pr(\alpha) := \sum_{\omega\vDash\alpha} Pr(\omega)$ Degree of belief or probability of a sentence $\sum_{i,j} Pr(\omega_i) = 1$ State of belief or joint probability distribution Earthquake World Burglary Alarm Pr(.) true .0190 w1 true true w2 true true false 0010 w3 true false true 0560 Pr(Earthquake) = .1w4 true false false .0240 true w5 false true 1620 Pr(Burglary) = .2w6 false true false .0180 Pr(Alarm) = .2442false w7 false true .0072 false false false .7128 w8 CITEC 2

Independence

(Absolute) Independence

a given state of beliefs finds an event independent of another event iff

 $Pr(\alpha|\beta) = Pr(\alpha) \text{ or } Pr(\beta) = 0$ $Pr(\alpha \land \beta) = Pr(\alpha) \cdot Pr(\beta)$

Conditional Independence

state of belief Pr finds α conditionally independent of β given event γ iff

$$\begin{aligned} Pr(\alpha|\beta \wedge \gamma) &= Pr(\alpha|\gamma) \text{ or } Pr(\beta \wedge \gamma) = 0\\ Pr(\alpha \wedge \beta|\gamma) &= Pr(\alpha|\gamma)Pr(\beta|\gamma) \text{ or } Pr(\gamma) = 0 \end{aligned}$$

Independence is a dynamic notion!

- new evidence can make (in-)dependent facts conditionally (in-)dependent
- determined by the initial state of belief (joint full distribution) one has

3

Sociable Agents

Conditional Independence

Example:

Given two noisy, unreliable sensors

Initial beliefs

- Pr(Temp=normal)=.80
- Pr(Sensor I = normal)=.76
- Pr(Sensor2=normal)=.68

Temp	sensor1	sensor2	Pr(.)
normal	normal	normal	.576
normal	normal	extreme	.144
normal	extreme	normal	.064
normal	extreme	extreme	.016
extreme	normal	normal	.008
extreme	normal	extreme	.032
extreme	extreme	normal	.032
extreme	extreme	extreme	.128

After checking sensor I and finding its reading is normal

▶ $Pr(Sensor2=normal | Sensor I=normal) \sim .768 \rightarrow initially dependent$

But after observing that temperatur is normal

- Pr(Sensor2=normal | Temp=normal) = .80
- ▶ $Pr(Sensor2=normel | Temp=normal, Sensor l=normal) = .80 \rightarrow cond. independent$

4

СІТЕС

Properties of beliefsRepeated application of Bayes Conditioning gives chain rule $Pr(\alpha_1 \land \alpha_2 \land ... \land \alpha_n) = Pr(\alpha_1 | \alpha_2 \land ... \land \alpha_n) Pr(\alpha_2 | \alpha_3 \land ... \land \alpha_n) ... Pr(\alpha_n)$ If events β_i are mutually exclusive and exhaustive, we can apply case
analysis (or law of total probability) to compute a belief in α :
 $Pr(\alpha) = \sum_i Pr(\alpha \land \beta_i) = \sum_i Pr(\alpha | \beta_i) Pr(\beta_i)$ • compute belief in α by adding up beliefs in exclusive cases $\alpha \land \beta_i$
that cover the conditions under which α holdsBayes rule or Bayes theorem:
• follows directly from product rule $Pr(\alpha | \beta) = \frac{Pr(\beta | \alpha) P(\alpha)}{Pr(\beta)}$

Bayes rule

Example:

A patient has been tested positive for a disease D, which one in every 1000 people has. The test T is not reliable (2% false positive rate and 5% false negative rate). What is our belief Pr(D|T)?

Pr(D) = 1/1000 $Pr(T|\neg D) = 2/100 \implies Pr(\neg T|\neg D) = 98/100$ $Pr(\neg T|D) = 5/100 \implies Pr(T|D) = 95/100$ $P(D|T) = \frac{95/100 \cdot 1/1000}{Pr(T)}$ $P(T) = Pr(T|D)Pr(D) + Pr(T|\neg D)Pr(\neg D)$ $Pr(D|T) = \frac{95}{2093} = 4.5\%$

СІТЕС

9

Sociable Agents

Soft & hard evidence

Useful to disntighuish two types of evidence

- hard evidence: information that some event has occurred
- soft evidence: unreliable hint that an event have may occurred
 - neighbour with hearing problem tells us he had heard the alarm trigger
 - can be interpreted in terms of noisy sensors

So far, conditioning on hard evidence. How to update in light of soft evidence? Two methods:

new state of beliefs Pr' = old beliefs + new evidence (,,all things considered") → bayesian conditioning leads to Jeffrey's rule:

 $Pr'(\alpha) = qPr(\alpha|\beta) + (1-q)Pr(\alpha|\neg\beta)$ with $Pr'(\beta) = q$ $Pr'(\alpha) = \sum_{i} q_i Pr(\alpha|\beta_i)$ with q_i exclusive and exhaustive

CITEC

Soft evidence					
 <u>Example</u>: Murder with investigator Rich has t O(killer=david) = H 	three suspects, he following state of belief: Pr(david)/Pr(not david) =2	$egin{array}{c} \omega_1 \ \omega_2 \ \omega_3 \end{array}$	<i>Killer</i> david dick jane	Pr(.) 2/3 1/6 1/6	
new soft evidence is o	obtained that triples the odds /O(killer=david) = 3	of kill	er=davi	id	
 new belief in David Pr'(killer=david) = 	l being the killer: (3*2/3) / (3*2/3+1/3) = 6/7				
only the first statemer other agents to update	nt (k; nothing else considered e their belief according to β	l) can l	be used	l by	
CITEC	12		Social	ble (1 ger	nts

So, what's th	nis all good for?	
Key observation: Full joint distribution uncertain beliefs an determines pro	on or state of belief can be use ad update them in face of soft b for every event given any combin	ed to model or hard evidence nation of evidence
But, the joint distri	bution is exponential ndom variables and domain size	d
 Independence wou absolute indep conditional ind ,,our most basic, environments" 	Id help: O(d ⁿ) → O(n) endence unfortunately rare ependence not so rare robust, and commonly available know	vledge about uncertain
СІТЕС	13	Soci <mark>able A</mark> gents

- the reliance on Bayes's conditioning as the basis for updating beliefs
- the distinction between causal and evidential modes of reasoning

CITEC

Bayesian networks Bayesian networks rely on insight that independence forms a significant aspect of beliefs • a compact representation of a full belief state (= joint distribution) also called probabilistic networks or DAG models • Each Bayesian network defines a set of cond. indep. statements: I(V, Parents(V), NonDescendants(V))every variable is conditionally indep. of its nondescendants given its parents Markovian assumptions: Markov(G)-Parents(V) are direct causes, Descendants(V) are effects of V given direct causes of V, beliefs in V are no longer influenced by any other variable, except possibly by its effects Sociable Agents CITEC 18

Bayesian networks Example: "I'm at work, neighbor John calls to say my burglar alarm is ringing. Sometimes it's set off by minor earthquakes. John sometimes confuses the alarm with a phone ringing. Real earthquakes usually are reported on radio. This would increase my belief in the alarm triggering and in receiving John's call." Variables: Burglary, Earthquake, Alarm, Call, Radio Network topology reflects believed causal knowledge about domain: burglar and earthquake can set the alarm off Þ alarm can cause John to call ► earthquake can cause a radio report + independence assumptions.....? Sociable figents CITEC

Sociable Agents

CII=C

distribution Pr s assumptions	pecified by a Bayesian network s I(V, Parents(V), NonDescendan	atisfies the indep. $ts(V)$)
	Markov(G)	
e.g. in the p	revious example: $I_{Pr}(D, \{A, C\})$	(E,E)
This is due to so	ome properties of prob. indepen	dence known as
This is due to so graphoid axioms	ome properties of prob. indepen s:	dence known as
This is due to so graphoid axioms symmetry decomposit	ome properties of prob. indepen s: tion	dence known as
This is due to so graphoid axioms symmetry decomposit weak union	ome properties of prob. indepen s: tion	dence known as
This is due to so graphoid axioms symmetry decomposit weak union contraction	ome properties of prob. indepen s: tion	dence known as

<section-header> *Definition:*Variable sets X and Y are d-separated by Z iff every path between a node in X and a node in Y is blocked by Z (at least one valve on the path is closed given Z). *dsep*_G(X, Z, Y) *Iheorem:*For every network graph G there is a parametrization ⊖ such that I_{Pr}(X, Z, Y) ↔ dsep_G(X, Z, Y) *dsep* is correct (sound) *dsep* is complete for a suitable parametrization (but not for every!)

