Spezielle Themen der Künstlichen Intelligenz

8.Termin:

Bayesian Networks

Degrees of belief as probabilities

Degree of belief or probability of a world

$$
\begin{gathered}
\operatorname{Pr}(\omega) \\
\operatorname{Pr}(\alpha):=\sum_{\omega \neq \alpha} \operatorname{Pr}(\omega)
\end{gathered}
$$

Degree of belief or probability of a sentence

State of belief or joint probability distribution

$$
\sum_{\omega_{i}} \operatorname{Pr}\left(\omega_{i}\right)=1
$$

World	Earthquake	Burglary	Alarm	$\operatorname{Pr}()$.
w1	true	true	true	.0190
w2	true	true	false	.0010
w3	true	false	true	.0560
w4	true	false	false	.0240
$w 5$	false	true	true	.1620
$w 6$	false	true	false	.0180
$w 7$	false	false	true	.0072
$w 8$	false	false	false	.7128

$$
\begin{aligned}
& \operatorname{Pr}(\text { Earthquake })=.1 \\
& \operatorname{Pr}(\text { Burglary })=.2 \\
& \operatorname{Pr}(\text { Alarm })=.2442
\end{aligned}
$$

Independence

(Absolute) Independence

a given state of beliefs finds an event independent of another event iff

$$
\begin{aligned}
& \operatorname{Pr}(\alpha \mid \beta)=\operatorname{Pr}(\alpha) \text { or } \operatorname{Pr}(\beta)=0 \\
& \operatorname{Pr}(\alpha \wedge \beta)=\operatorname{Pr}(\alpha) \cdot \operatorname{Pr}(\beta)
\end{aligned}
$$

Conditional Independence

state of belief Pr finds α conditionally independent of β given event γ iff

$$
\begin{aligned}
& \operatorname{Pr}(\alpha \mid \beta \wedge \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \text { or } \operatorname{Pr}(\beta \wedge \gamma)=0 \\
& \operatorname{Pr}(\alpha \wedge \beta \mid \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \operatorname{Pr}(\beta \mid \gamma) \text { or } \operatorname{Pr}(\gamma)=0
\end{aligned}
$$

Independence is a dynamic notion!

- new evidence can make (in-)dependent facts conditionally (in-)dependent
- determined by the initial state of belief (joint full distribution) one has

Conditional Independence

Example:

Given two noisy, unreliable sensors

Initial beliefs

- $\operatorname{Pr}($ Temp $=$ normal $)=.80$
- $\operatorname{Pr}($ Sensor $I=$ normal $)=.76$
- $\operatorname{Pr}($ Sensor2 $=$ normal $)=.68$

Temp	sensor1	sensor2	$\operatorname{Pr}()$.
normal	normal	normal	.576
normal	normal	extreme	.144
normal	extreme	normal	.064
normal	extreme	extreme	.016
extreme	normal	normal	.008
extreme	normal	extreme	.032
extreme	extreme	normal	.032
extreme	extreme	extreme	.128

After checking sensorl and finding its reading is normal

- $\operatorname{Pr}($ Sensor2=normal | Sensor $1=$ normal $) \sim .768 \rightarrow$ initially dependent

But after observing that temperatur is normal

- $\operatorname{Pr}($ Sensor2=normal \mid Temp $=$ normal $)=.80$
- $\operatorname{Pr}($ Sensor2=normel \mid Temp=normal, Sensor $/=$ normal $)=.80 \rightarrow$ cond. independent

Variable set independence

Notation:
independence between sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ in a belief state Pr denoted as $I_{P r}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$

Example:

- $\mathbf{X}=\{A, B\}, \mathbf{Y}=\{C\}, \mathbf{Z}=\{D, E\}$ (all Boolean variables)
- $I_{P r}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ denotes $4 \times 2 \times 4=32$ different independent statements:
- $A \wedge B$ indep. of C given $D \wedge E$
- $A \wedge \neg B$ indep. of C given $D \wedge E$
- ..
- ..
- $\neg A \wedge \neg B$ indep. of $\neg C$ given $\neg D \wedge \neg E$

Conditional Independence

Is a special case of mutual information:

$$
\begin{array}{r}
M I(X ; Y):= \\
\sum_{x, y} \operatorname{Pr}(x, y) \log _{2} \frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x) \operatorname{Pr}(y)}
\end{array}
$$

- quantifies impact of observing one variable on uncertainty in another
- non-negative
- zero iff X and Y are independent

Relation to entropy as defined earlier:

$$
M I(X ; Y):=E N T(X)-E N T(X \mid Y)=E N T(Y)-E N T(Y \mid X)
$$

b with conditional entropy:

$$
\begin{aligned}
& \operatorname{ENT}(X \mid Y):=\sum_{y} \operatorname{Pr}(y) \log _{2} E N T(X \mid y) \\
& \operatorname{ENT}(X \mid y):=-\sum_{x} \operatorname{Pr}(x \mid y) \log _{s} \operatorname{Pr}(x \mid y)
\end{aligned}
$$

- Note: $\quad \operatorname{ENT}(X \mid Y) \leq \operatorname{ENT}(X)$

Properties of beliefs

Repeated application of Bayes Conditioning gives chain rule
$\operatorname{Pr}\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}\right)=\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2} \wedge \ldots \wedge \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \wedge \ldots \wedge \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n}\right)$

If events β_{i} are mutually exclusive and exhaustive, we can apply case analysis (or law of total probability) to compute a belief in α :

$$
\operatorname{Pr}(\alpha)=\sum_{i} \operatorname{Pr}\left(\alpha \wedge \beta_{i}\right)=\sum_{i} \operatorname{Pr}\left(\alpha \mid \beta_{i}\right) \operatorname{Pr}\left(\beta_{i}\right)
$$

- compute belief in α by adding up beliefs in exclusive cases $\alpha \wedge \beta_{i}$ that cover the conditions under which α holds

Bayes rule or Bayes theorem:

- follows directly from product rule

$$
\operatorname{Pr}(\alpha \mid \beta)=\frac{\operatorname{Pr}(\beta \mid \alpha) P(\alpha)}{\operatorname{Pr}(\beta)}
$$

Proposed a solution to problem of "inverse probability"

- published posthumously by R. Price in Phil.Trans. of Royal Soc. Lond. (I763)

Bayes' theorem

- expresses the posterior (i.e. after evidence E is observed) of a hypothesis H in terms of the priors of H and E, and the prob of E given H

Thomas Bayes (1702-1761)

- implies that evidence has a stronger confirming effect if it was more unlikely before being observed

$$
\operatorname{Pr}(\alpha \mid \beta)=\frac{\operatorname{Pr}(\beta \mid \alpha) P(\alpha)}{\operatorname{Pr}(\beta)}
$$

Bayes rule

Example:

A patient has been tested positive for a disease D, which one in every 1000 people has. The test T is not reliable (2% false positive rate and 5% false negative rate). What is our belief $\operatorname{Pr}(\mathrm{D} \mid \mathrm{T})$?

$$
\begin{aligned}
& \operatorname{Pr}(D)=1 / 1000 \\
& \operatorname{Pr}(T \mid \neg D)=2 / 100 \Rightarrow \operatorname{Pr}(\neg T \mid \neg D)=98 / 100 \\
& \operatorname{Pr}(\neg T \mid D)=5 / 100 \Rightarrow \operatorname{Pr}(T \mid D)=95 / 100 \\
& P(D \mid T)=\frac{95 / 100 \cdot 1 / 1000}{\operatorname{Pr}(T)} \\
& P(T)=\operatorname{Pr}(T \mid D) \operatorname{Pr}(D)+\operatorname{Pr}(T \mid \neg D) \operatorname{Pr}(\neg D) \\
& \operatorname{Pr}(D \mid T)=\frac{95}{2093}=4.5 \%
\end{aligned}
$$

Soft \& hard evidence

Useful to disntighuish two types of evidence

- hard evidence: information that some event has occurred
- soft evidence: unreliable hint that an event have may occurred
- neighbour with hearing problem tells us he had heard the alarm trigger
- can be interpreted in terms of noisy sensors

So far, conditioning on hard evidence. How to update in light of soft evidence? Two methods:
I. new state of beliefs Pr' = old beliefs + new evidence (,,all things considered") \rightarrow bayesian conditioning leads to Jeffrey's rule:

$$
\begin{aligned}
& \operatorname{Pr}^{\prime}(\alpha)=q \operatorname{Pr}(\alpha \mid \beta)+(1-q) \operatorname{Pr}(\alpha \mid \neg \beta) \text { with } \operatorname{Pr}^{\prime}(\beta)=q \\
& \operatorname{Pr}^{\prime}(\alpha)=\sum_{i} q_{i} \operatorname{Pr}\left(\alpha \mid \beta_{i}\right) \text { with } q_{i} \text { exclusive and exhaustive }
\end{aligned}
$$

Soft \& hard evidence

2. use strenght of evidence, independent of current beliefs (,,nothing else considered")

- Definition: Odds of event:
- states how many times we believe more in β than in $\neg \beta$
- Definition: Bayes factor of the ,,strength" of evidence: $k:=\frac{O^{\prime}(\beta)}{O(\beta)}$
- relative change induced on odds of β
- $\mathrm{k}=\mathrm{l}$: indicates neutral evidence
$\mathrm{k}=2$: indicates evidence strong enough to double the odds of β
$\mathrm{k} \rightarrow$ inf.: hard evidence conforming $\beta, \mathbf{k} \rightarrow 0$: hard evidence against β
- update according to evidence β with known Bayes factor k :
$\operatorname{Pr}^{\prime}(\beta)=\frac{k \operatorname{Pr}(\beta)}{k \operatorname{Pr}(\beta)+\operatorname{Pr}(\neg \beta)}$
$\operatorname{Pr}^{\prime}(\alpha)=\frac{k \operatorname{Pr}(\alpha \wedge \beta)+\operatorname{Pr}(\alpha \wedge \neg \beta)}{k \operatorname{Pr}(\beta)+\operatorname{Pr}(\neg \beta)}$
(from def. of O)
(together with Jeffrey's rule)

Soft evidence

Example: Murder with three suspects, investigator Rich has the following state of belief:

- O (killer=david) $=\operatorname{Pr}($ david $) / \operatorname{Pr}($ not david $)=2$

		Killer
	$\operatorname{Pr}()$.	
ω_{1}	david	$2 / 3$
ω_{2}	dick	$1 / 6$
ω_{3}	jane	$1 / 6$

new soft evidence is obtained that triples the odds of killer=david

- $k=O$ '(killer=david) $/ O($ killer=david $)=3$
\rightarrow new belief in David being the killer:
- $\operatorname{Pr}^{\prime}($ killer=david $)=(3 * 2 / 3) /(3 * 2 / 3+1 / 3)=6 / 7$
only the first statement (k; nothing else considered) can be used by other agents to update their belief according to β

So, what's this all good for?

Key observation:

Full joint distribution or state of belief can be used to model uncertain beliefs and update them in face of soft or hard evidence

- determines prob for every event given any combination of evidence

But, the joint distribution is exponential

- $O\left(d^{n}\right)$ with n random variables and domain size d

Independence would help: $O\left(\mathrm{~d}^{n}\right) \rightarrow O(n)$

- absolute independence unfortunately rare
- conditional independence not so rare
,,our most basic, robust, and commonly available knowledge about uncertain environments"

So, what's this all good for?

Independence allows to decompose the joint distribution

- Pr (Cavity,Catch,Toothache) $\rightarrow 2^{3}=8$ worlds needed
$=\operatorname{Pr}($ Tootha.,Catch \mid Cavity) $\operatorname{Pr}($ Cavity $) \quad$ (Bayes rule)
$=\operatorname{Pr}($ Tootha. \mid Cavity) Pr (Catch \mid Cavity) $\operatorname{Pr}($ Cavity) (cond. ind. of Tootha. \& Catch given Cavity) $\quad \rightarrow 2+2+1=5$ worlds needed

Common pattern:

a cause directly implies multiple effects, all of which are conditionally independent given the cause

$$
\operatorname{Pr}\left(\text { Cause }, E_{1}, \ldots, E_{n}\right)=\operatorname{Pr}(\text { Cause }) \prod_{i} \operatorname{Pr}\left(E_{i} \mid \text { Cause }\right)
$$

- the cause sufficiently ,explains" each effect, knowing about other effects doesn't change the belief in it anymore
- Naive Bayes model (also called Bayesian classifier):

Bayes rule + presumed independence where there is no

Bayesian networks

Definition:A Bayesian network for variables Z is a pair (G, Θ) with

- Structure G : a directed acyclic graph with
- a set of nodes, one per random variable
- a set of edges representing direct causal influence between variables
- Parametrization Θ : a conditional probability table (CPT) for each variable
- probability distribution for each node given its parents:
$\operatorname{Pr}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ or $\operatorname{Pr}\left(X_{i}\right)$ if there are no parents
- parameterizes the independence structure

(1988)

(2000)

Judea Pearl coined the term Bayesian networks to emphasize:

- the the subjective nature of the input information
- the reliance on Bayes's conditioning as the basis for updating beliefs
- the distinction between causal and evidential modes of reasoning

Bayesian networks

Bayesian networks

- rely on insight that independence forms a significant aspect of beliefs
- a compact representation of a full belief state (= joint distribution)
- also called probabilistic networks or DAG models

Each Bayesian network defines a set of cond. indep. statements:
$I(V, \operatorname{Parents}(V), N o n D e s c e n d a n t s(V))$

- every variable is conditionally indep. of its nondescendants given its parents
- Markovian assumptions: $\operatorname{Markov}(G)$
- Parents (V) are direct causes, Descendants (V) are effects of V
- given direct causes of V, beliefs in V are no longer influenced by any other variable, except possibly by its effects

Bayesian networks

Example:

- Weather is (even absolutely) independent of all other variables
- Cavity causally influences Toothache and Catch
- Toothache and Catch are conditionally independent given Cavity

Bayesian networks

Example:

„,'m at work, neighbor John calls to say my burglar alarm is ringing. Sometimes it's set off by minor earthquakes. John sometimes confuses the alarm with a phone ringing. Real earthquakes usually are reported on radio. This would increase my belief in the alarm triggering and in receiving John's call."

Variables: Burglary, Earthquake, Alarm, Call, Radio

Network topology reflects believed causal knowledge about domain:

- burglar and earthquake can set the alarm off
- alarm can cause John to call
- earthquake can cause a radio report
- + independence assumptions......?

Bayesian networks

$$
\begin{array}{r}
I(C, A,\{B, E, R\}) \\
I(R, E,\{A, B, C\}) \\
I(A,\{B, E\}, R) \\
I(B,\{ \},\{E, R\}) \\
I(E,\{ \}, B)
\end{array}
$$

- given Alarm, Call is cond. indep. of Earthquake, Burglary, Radio
- given Earthquake, Radio is cond. indep. of Alarm, Burglary, Call
- given Earthquake and Burglary, Alarm is cond. indep. of Radio
- Earthquake and Burglary are indep. of each non-descendant

Bayesian networks

Hidden Markov Models (HMM)

- S_{i} represent state of a dynamic system at times i
- O_{i} represent sensor readings at times i
$I\left(S_{t}, S_{t-1},\left\{S_{1}, \ldots, S_{t-2}, O_{1}, \ldots, O_{t-1}\right\}\right)$
- given last state of the system, our belief in present system state is indep. of any other information from the past

Bayesian networks

Notation：

－$\Theta_{X \mid \mathrm{U}}$ denotes the CPT for variable X and parents U
－$\theta_{x \mid \mathbf{u}}$ denotes the cond．prob． $\operatorname{Pr}(x \mid \mathbf{u})$（network parameter）
－must hold：$\sum \theta_{x \mid u}=1$
－compatible with a network instantiation \mathbf{z} if they agree on all values assigned to common variable：$\theta_{x \mid \mathbf{u}} \sim \mathbf{z}$

Properties：

－the network structure and parametrization of a network instantiation are satisfied by one and only one prob．distribution given by the chain rule for Bayesian networks：
－product of all parameters compatible with \mathbf{z}

$$
\operatorname{Pr}(\mathbf{z})=\prod_{\theta_{x \mid \mathbf{u}} \sim \mathbf{z}} \theta_{x \mid \mathbf{u}}
$$

Example：

B	C	D	$\Theta_{D \mid B, C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Probabilistic independence

distribution Pr specified by a Bayesian network satisfies the indep. assumptions

$$
\begin{gathered}
I(V, \operatorname{Parents}(V), N o n D e s c e n d a n t s(V)) \\
M a r k o v(G)
\end{gathered}
$$

...plus some others that implicitly follow from the above ones!!

- e.g. in the previous example: $\quad I_{P r}(D,\{A, C\}, E)$

This is due to some properties of prob. independence known as graphoid axioms:

- symmetry
- decomposition
- weak union
- contraction

Graphoid axioms

- symmetry $\quad I_{P r}(X, Z, Y)$ iff $\quad I_{P r}(Y, Z, X)$
- if learning y doesn't change belief in x, then learning x doesn't change belief in y
- Example:

$$
\begin{aligned}
& I_{P r}(A,\{B, E\}, R) \\
\rightarrow & I_{P r}(R,\{B, E\}, A)
\end{aligned}
$$

Graphoid axioms

- decomposition

$$
\begin{aligned}
& I_{P r}(X, Z, Y \cup W) \text { only if } I_{P r}(X, Z, Y) \text { and } I_{P r}(X, Z, W) \\
& I_{P r}(X, \operatorname{Parents}(X), W) \text { for every } W \subseteq N o n D e s c e n d a n t s(X)
\end{aligned}
$$

- every variable X is indep. of any subset of its descendants given its parents
- any part of irrelevant information is irrelevant too
- Example:

$$
\begin{array}{r}
I(B, S,\{A, C, P, T, X\}) \\
\rightarrow I(B, S, C)
\end{array}
$$

once knowing smoker, belief in bronchitis no longer influenced by info about cancer

Graphoid axioms

- decomposition (cont'd)
- allows to prove chain rule for Bayesian networks, given an appropriate „bottom-up" ordering of variables
- implies a simple method to calculate degree of belief in an event:

Example:

$$
\begin{array}{r}
\operatorname{Pr}(c, a, r, b, e) \\
=\operatorname{Pr}(c \mid a, r, b, e) \operatorname{Pr}(a \mid r, b, e) \operatorname{Pr}(r \mid b, e) \operatorname{Pr}(b \mid e) \operatorname{Pr}(e) \\
\text { (chain rule of prob. calculus) } \\
=\operatorname{Pr}(c \mid a) \operatorname{Pr}(a \mid b, e) \operatorname{Pr}(r \mid e) \operatorname{Pr}(b) \operatorname{Pr}(e) \\
\quad \text { (decomp./ independencies) }
\end{array}
$$

equals results given by chain rule of Bayesian networks!

Graphoid axioms

- weak union $\quad I_{P r}(X, Z, Y \cup W)$ onlfy if $I_{P r}(X, Z \cup Y, W)$
- if info $y w$ is not relevant to our belief in x, then the partial info y will not make the rest of the info w relevant
- Example:

$$
\begin{aligned}
& I(C, A,\{B, E, R\}) \\
\rightarrow & I(C,\{A, E, B\}, R)
\end{aligned}
$$

Graphoid axioms

- contraction
$I_{P r}(X, Z, Y)$ and $I_{P r}(X, Z \cup Y, W)$ only if $I_{P r}(X, Z, Y \cup W)$
- if after learning irrelevant info y the info w is found to be irrelevant to belief in x , then combined info yw must have been irrelevant from beginning
- [intersection]
$I_{P r}(X, Z \cup W, Y)$ and $I_{P r}(X, Z \cup Y, W)$ only if $I_{P r}(X, Z, Y \cup W)$
- if info w is irrelevant given y and info y is irrelevant given w, then the combined info $y w$ is irrelevant to start with
- holds only for strictly positive prob. distributions (assign non-zero prob. to every consistent event)

Graphical test of independence

Bayesian network induces a belief state/prob distribution Pr

All independencies in Pr (implied by Graphoid axioms) can be derived efficiently using a graphical test called d-separation

Idea: there are three types of causal structures (,,valves") in a graph

- a valve can be either open or closed
- closed valves block a path in the graph, implying independence
Sequential valve inergent valve
between cause and effect

CITEC

Graphical test of independence

Given a set of variables \mathbf{Z}, a valve with variable W is closed iff...

- sequential valve: W appears in \mathbf{Z}
- Example: E -> A -> C closed if A given, E and C become cond. indep.
- divergent valve: \mathbf{W} appears in \mathbf{Z}
- Example: R <- E -> A closed if E given, R and A become cond. indep.
- convergent valve: neither W nor any of its descendants appears in \mathbf{Z}
- Example: E -> A <- B closed if neither A nor C given

d-separation

Definition:

Variable sets \boldsymbol{X} and \boldsymbol{Y} are d-separated by \boldsymbol{Z} iff every path between a node in \boldsymbol{X} and a node in \boldsymbol{Y} is blocked by \boldsymbol{Z} (at least one valve on the path is closed given \mathbf{Z}).

$$
\operatorname{dsep}_{G}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})
$$

Theorem:

For every network graph G there is a parametrization Θ such that

$$
I_{P r}(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \leftrightarrow d s e p_{G}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})
$$

- dsep is correct (sound)
- dsep is complete for a suitable parametrization (but not for every!)

d-separation

Examples:

Two valves between R and B, first valve (divergent) is closed given E
$\rightarrow R$ and B are d-separated by E
$\rightarrow R$ and B are cond. indep. given E

Two valves between R and C, both are open
$\rightarrow R$ and C are not d-separated

d-separation

Examples:

Are B and C d-separeted by S ?
Two paths:

- Ist one closed valve (C<-S->B) because S given
- 2nd one closed valve (B->D<-P) because D not given
$\rightarrow B$ and C are d-separated by S
$\rightarrow B$ and C are cond. indep. given S

Next week(s)

- How to build a Bayesian network?
- How to use it for inferencing?
- Inference algorithms
- exact
- approximative

