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Spezielle Themen der 
Künstlichen Intelligenz

8. Termin: 

Bayesian Networks
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Degrees of belief as probabilities

Degree of belief or probability of a world

Degree of belief or probability of a sentence

State of belief or joint probability distribution
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Pr(ω)

Pr(α) :=
�

ω�α

Pr(ω)

World Earthquake Burglary Alarm Pr(.)
w1 true true true .0190

w2 true true false .0010

w3 true false true .0560

w4 true false false .0240

w5 false true true .1620

w6 false true false .0180

w7 false false true .0072

w8 false false false .7128

�

ωi

Pr(ωi) = 1

Pr(Earthquake) = .1
Pr(Burglary) = .2
Pr(Alarm) = .2442
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Independence

(Absolute) Independence
a given state of beliefs finds an event independent of another event iff

Conditional Independence
state of belief Pr finds    conditionally independent of    given event    iff

Independence is a dynamic notion!
‣ new evidence can make (in-)dependent facts conditionally (in-)dependent

‣ determined by the initial state of belief (joint full distribution) one has
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Pr(α|β) = Pr(α) or Pr(β) = 0
Pr(α ∧ β) = Pr(α) · Pr(β)

γα β

Pr(α|β ∧ γ) = Pr(α|γ) or Pr(β ∧ γ) = 0
Pr(α ∧ β|γ) = Pr(α|γ)Pr(β|γ) or Pr(γ) = 0

gentsSociable

Example:
Given two noisy, unreliable sensors

Initial beliefs
‣ Pr(Temp=normal)=.80

‣ Pr(Sensor1=normal)=.76

‣ Pr(Sensor2=normal)=.68

After checking sensor1 and finding its reading is normal
‣ Pr(Sensor2=normal | Sensor1=normal) ~ .768   ! initially dependent

But after observing that temperatur is normal ....
‣ Pr(Sensor2=normal | Temp=normal) = .80

‣ Pr(Sensor2=normel | Temp=normal, Sensor1=normal) = .80  ! cond. independent
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Conditional Independence

Temp sensor1 sensor2 Pr(.)

normal normal normal .576

normal normal extreme .144

normal extreme normal .064

normal extreme extreme .016

extreme normal normal .008

extreme normal extreme .032

extreme extreme normal .032

extreme extreme extreme .128
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Variable set independence

Notation:  
independence between sets of variables X,Y, Z in a belief state Pr 
denoted as 

Example: 
‣ X={A,B}, Y={C}, Z={D,E}  (all Boolean variables)
‣                    denotes 4x2x4=32 different independent statements:

- A∧B  indep. of C given D∧E

- A∧¬B indep. of C given D∧E

- ..
- ..
- ¬A∧¬B indep. of ¬C given ¬D∧¬E
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IPr(X,Y,Z)

IPr(X,Y,Z)
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Conditional Independence

Is a special case of mutual information: 

‣ quantifies impact of observing one variable on uncertainty in another

‣ non-negative
‣ zero iff X and Y are independent

Relation to entropy as defined earlier:

‣ with conditional entropy:

‣ Note:
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MI(X;Y ) := ENT (X)− ENT (X|Y ) = ENT (Y )− ENT (Y |X)

ENT (X|Y ) :=
�

y Pr(y)log2ENT (X|y)

ENT (X|y) := −
�

x Pr(x|y)logsPr(x|y)

ENT (X|Y ) ≤ ENT (X)

MI(X;Y ) :=
�

x,y

Pr(x, y)log2
Pr(x, y)

Pr(x)Pr(y)
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Properties of beliefs

Repeated application of Bayes Conditioning gives chain rule

If events     are mutually exclusive and exhaustive, we can apply case 
analysis (or law of total probability) to compute a belief in    :

‣ compute belief in    by adding up beliefs in exclusive cases 
that cover the conditions under which    holds

Bayes rule or Bayes theorem:
‣ follows directly from product rule
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Pr(α1 ∧ α2 ∧ ... ∧ αn) = Pr(α1|α2 ∧ ... ∧ αn)Pr(α2|α3 ∧ ... ∧ αn)...P r(αn)

βi

α

Pr(α) =
�

i Pr(α ∧ βi) =
�

i Pr(α|βi)Pr(βi)

α

Pr(α|β) = Pr(β|α)P (α)
Pr(β)

α ∧ βiα
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Proposed a solution to problem of 
"inverse probability"
‣ published posthumously by R. Price in 

Phil. Trans. of Royal Soc. Lond. (1763)

Bayes' theorem
‣ expresses the posterior (i.e. after 

evidence E is observed) of a hypothesis 
H in terms of the priors of H and E, and 
the prob of E given H

‣ implies that evidence has a stronger 
confirming effect if it was more unlikely 
before being observed
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Thomas Bayes (1702–1761) 

Pr(α|β) = Pr(β|α)P (α)
Pr(β)
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Bayes rule

Example:  
A patient has been tested positive for a disease D, which one in every 
1000 people has. The test T is not reliable (2% false positive rate and 5% 
false negative rate). What is our belief Pr(D|T)?
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Pr(D) = 1/1000

Pr(T |¬D) = 2/100 Pr(¬T |¬D) = 98/100

Pr(¬T |D) = 5/100 Pr(T |D) = 95/100
⇒
⇒

P (D|T ) = 95/100·1/1000
Pr(T )

P (T ) = Pr(T |D)Pr(D) + Pr(T |¬D)Pr(¬D)

Pr(D|T ) = 95
2093 = 4.5%
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Soft & hard evidence

Useful to disntighuish two types of evidence
‣ hard evidence: information that some event has occurred
‣ soft evidence: unreliable hint that an event have may occurred

- neighbour with hearing problem tells us he had heard the alarm trigger
- can be interpreted in terms of noisy sensors

So far, conditioning on hard evidence. How to update in light of soft 
evidence? Two methods:

1. new state of beliefs Pr‘ = old beliefs + new evidence („all things 
considered“)  bayesian conditioning leads to Jeffrey‘s rule: 
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Pr�(α) = qPr(α|β) + (1− q)Pr(α|¬β) with Pr�(β) = q

Pr�(α) =
�

i qiPr(α|βi) with qi exclusive and exhaustive
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Soft & hard evidence

2. use strenght of evidence, independent of current beliefs 
(„nothing else considered“)

‣ Definition: Odds of event: 
- states how many times we believe more in     than in      

‣ Definition: Bayes factor of the „strength“ of evidence:
- relative change induced on odds of 
- k=1: indicates neutral evidence

k=2: indicates evidence strong enough to double the odds of
k!inf.: hard evidence conforming   ,  k!0: hard evidence against 

‣ update according to evidence    with known Bayes factor k:
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O(β) := Pr(β)
Pr(¬β)

β ¬β

β
k := O

�(β)
O(β)

β
β β

Pr�(β) = kPr(β)
kPr(β)+Pr(¬β)

β

Pr�(α) = kPr(α∧β)+Pr(α∧¬β)
kPr(β)+Pr(¬β)

(from def. of O) (together with Jeffrey‘s rule)
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Soft evidence

Example: Murder with three suspects, 
investigator Rich has the following state of belief:
‣ O(killer=david) = Pr(david)/Pr(not david) =2

new soft evidence is obtained that triples the odds of killer=david
‣ k=O‘(killer=david)/O(killer=david) = 3

!  new belief in David being the killer:
‣ Pr‘(killer=david) = (3*2/3) / (3*2/3+1/3) = 6/7

only the first statement (k; nothing else considered) can be used by 
other agents to update their belief according to 
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Killer Pr(.)

david 2/3

dick 1/6

jane 1/6

ω1

ω2

ω3

β
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So, what‘s this all good for?

Key observation: 
Full joint distribution or state of belief can be used to model 
uncertain beliefs and update them in face of soft or hard evidence
‣ determines prob for every event given any combination of evidence

But, the joint distribution is exponential 
‣ O(dn) with n random variables and domain size d

Independence would help: O(dn) ! O(n)
‣ absolute independence unfortunately rare

‣ conditional independence not so rare 
„our most basic, robust, and commonly available knowledge about uncertain 
environments“
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So, what‘s this all good for?

Independence allows to decompose the joint distribution
‣ Pr(Cavity,Catch,Toothache)    ! 23=8 worlds needed

= Pr(Tootha.,Catch|Cavity) Pr(Cavity)     (Bayes rule)
= Pr(Tootha.|Cavity) Pr(Catch|Cavity) Pr(Cavity)  (cond. ind. of Tootha. & Catch 
given Cavity)                           ! 2+2+1=5 worlds needed

Common pattern: 
a cause directly implies multiple effects, all of which are conditionally 
independent given the cause

‣ the cause sufficiently „explains“ each effect, knowing about other effects 
doesn‘t change the belief in it anymore

‣ Naive Bayes model (also called Bayesian classifier): 
Bayes rule + presumed independence where there is no 
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Pr(Cause, E1, ..., En) = Pr(Cause)
�

i

Pr(Ei|Cause)
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Definition: A Bayesian network for variables    is a pair (   ,   ) with
‣ Structure     : a directed acyclic graph with

- a set of nodes, one per random variable
- a set of edges representing direct causal influence between variables

‣ Parametrization    : a conditional probability table (CPT) for each variable 

- probability distribution for each node given its parents:
Pr(Xi | Parents(Xi))  or  Pr(Xi) if there are no parents

- parameterizes the independence structure

15

Bayesian networks

GZ Θ
G

Θ
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(1988)

Judea Pearl coined the term Bayesian networks to emphasize:

‣ the the subjective nature of the input information
‣ the reliance on Bayes's conditioning as the basis for updating beliefs
‣ the distinction between causal and evidential modes of reasoning

(2000)
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Bayesian networks

Bayesian networks
‣ rely on insight that independence forms a significant aspect of beliefs
‣ a compact representation of a full belief state (= joint distribution)
‣ also called probabilistic networks or DAG models

Each Bayesian network defines a set of cond. indep. statements:

‣ every variable is conditionally indep. of its nondescendants given its parents
- Markovian assumptions:

‣                    are direct causes,                            are effects of  
- given direct causes of  V, beliefs in V are no longer influenced by any other 

variable, except possibly by its effects
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I(V, Parents(V ), NonDescendants(V ))

Markov(G)

Parents(V ) Descendants(V ) V
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‣ Weather is (even absolutely) independent of all other variables
‣ Cavity causally influences Toothache and Catch

‣ Toothache and Catch are conditionally independent given Cavity
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Bayesian networks

Example: 
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Example: 
„I'm at work, neighbor John calls to say my burglar alarm is ringing. Sometimes 
it's set off by minor earthquakes. John sometimes confuses the alarm with a 
phone ringing. Real earthquakes usually are reported on radio. This would 
increase my belief in the alarm triggering and in receiving John‘s call. “

Variables:  Burglary, Earthquake, Alarm, Call, Radio

Network topology reflects believed causal knowledge about domain:
‣ burglar and earthquake can set the alarm off
‣ alarm can cause John to call
‣ earthquake can cause a radio report
‣ + independence assumptions......?
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Bayesian networks
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Bayesian networks
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‣ given Alarm, Call is cond. indep. of Earthquake, Burglary, Radio
‣ given Earthquake, Radio is cond. indep. of Alarm, Burglary, Call

‣ given Earthquake and Burglary, Alarm is cond. indep. of Radio

‣ Earthquake and Burglary are indep. of each non-descendant

I(C, A, {B, E,R})
I(R,E, {A, B,C})

I(A, {B,E}, R)
I(B, {}, {E,R})

I(E, {}, B)

gentsSociable22

Bayesian networks

Hidden Markov Models (HMM)

‣ Si represent state of a 
dynamic system at times i

‣ Oi represent sensor 
readings at times i

I(St, St−1, {S1, ..., St−2, O1, ..., Ot−1})

‣ given last state of the system, our belief in present system 
state is indep. of any other information from the past
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Bayesian networks

Notation:

‣          denotes the CPT for variable X and parents U
‣          denotes the cond. prob.               (network parameter)

- must hold: 
- compatible with a network instantiation z if they agree on all values assigned 

to common variable:  

Properties:

‣ the network structure and parametrization of a network 
instantiation are satisfied by one and only one prob. distribution 
given by the chain rule for Bayesian networks:
- product of all parameters compatible with z
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ΘX|U

θx|u Pr(x|u)
�

x

θx|u = 1

θx|u ∼ z

Pr(z) =
�

θx|u∼z

θx|u
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Pr(a, b, c, d, e) = θaθb|aθc|aθd|b,cθe|c

= (.6)(.2)(.2)(.9)(1)
= .0216

Pr(a, b, c, d, e)
= θaθb|aθc|aθd|b,cθe|c

= (.4)(.25)(.9)(1)(1)
= .09

Example:
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Probabilistic independence

distribution Pr specified by a Bayesian network satisfies the indep. 
assumptions

...plus some others that implicitly follow from the above ones!!
‣ e.g. in the previous example:

This is due to some properties of prob. independence known as 
graphoid axioms:
‣ symmetry

‣ decomposition

‣ weak union
‣ contraction
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I(V, Parents(V ), NonDescendants(V ))

IPr(D, {A, C}, E)

Markov(G)
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‣ symmetry
- if learning y doesn‘t change belief in x, 

then learning x doesn‘t change belief in y 

- Example:
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Graphoid axioms

IPr(X, Z, Y ) iff IPr(Y,Z, X)

IPr(A, {B, E}, R)
→ IPr(R, {B, E}, A)
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‣ decomposition

- every variable X is indep. of any subset of its descendants given its parents
- any part of irrelevant information is irrelevant too

- Example:
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Graphoid axioms

IPr(X,Z, Y ∪W ) only if IPr(X, Z, Y ) and IPr(X,Z,W )

I(B, S, {A, C, P, T, X})
→ I(B, S, C)

once knowing smoker, belief in 
bronchitis no longer influenced 
by info about cancer

IPr(X,Parents(X), W ) for every W ⊆ NonDescendants(X)

gentsSociable

‣ decomposition (cont‘d)
- allows to prove chain rule for Bayesian networks, given an 

appropriate „bottom-up“ ordering of variables 
- implies a simple method to calculate degree of belief in an event:

Example:

28

(chain rule of prob. calculus)

Pr(c, a, r, b, e)
= Pr(c|a, r, b, e)Pr(a|r, b, e)Pr(r|b, e)Pr(b|e)Pr(e)

= Pr(c|a)Pr(a|b, e)Pr(r|e)Pr(b)Pr(e)
(decomp. / independencies)

= θc|aθa|b,eθr|eθbθe

equals results given by chain rule of Bayesian networks!

Graphoid axioms
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‣ weak union
- if info yw is not relevant to our belief in x, then the partial info y will not 

make the rest of the info w relevant

- Example:
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Graphoid axioms

IPr(X,Z, Y ∪W ) onlfy if IPr(X,Z ∪ Y,W )

I(C, A, {B, E, R})
→ I(C, {A, E, B}, R)
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‣ contraction

- if after learning irrelevant info y the info w is found to be irrelevant to belief 
in x, then combined info yw must have been irrelevant from beginning

‣ [ intersection ]

- if info w is irrelevant given y and info y is irrelevant given w, then the 
combined info yw is irrelevant to start with

- holds only for strictly positive prob. distributions (assign non-zero prob. to 
every consistent event)
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Graphoid axioms

IPr(X,Z, Y ) and IPr(X,Z ∪ Y,W ) only if IPr(X, Z, Y ∪W )

IPr(X,Z ∪W,Y ) and IPr(X, Z ∪ Y,W ) only if IPr(X, Z, Y ∪W )
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Graphical test of independence

Bayesian network induces a belief state/prob distribution Pr

All independencies in Pr (implied by Graphoid axioms) can be derived 
efficiently using a graphical test called d-separation

Idea:  there are three types of causal structures („valves“) in a graph
‣ a valve can be either open or closed

‣ closed valves block a path in the graph, implying independence
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W intermediary 
between cause and effect

Sequential valve Divergent valve Convergent valve

W common cause
of two effects

W common effect
of two causes

gentsSociable

Given a set of variables Z, a valve with variable W is closed iff...
‣ sequential valve:  W appears in Z

- Example: E -> A -> C closed if A given, E and C become cond. indep.

‣ divergent valve:  W appears in Z
- Example: R <- E -> A closed if E given, R and A become cond. indep.

‣ convergent valve:  neither W nor any of its descendants appears in Z
- Example: E -> A <- B closed if neither A nor C given
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Graphical test of independence
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d-separation

Definition:
Variable sets X and Y are d-separated by Z iff every path between a 
node in X and a node in Y is blocked by Z (at least one valve on the 
path is closed given Z).

Theorem:
For every network graph    there is a parametrization    such that

‣ dsep is correct (sound) 

‣ dsep is complete for a suitable parametrization (but not for every!)
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dsepG(X,Z,Y)

IPr(X,Z,Y)↔ dsepG(X,Z,Y)

ΘG
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d-separation

Examples:
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Two valves between R and B, first
valve (divergent) is closed given E
! R and B are d-separated by E
! R and B are cond. indep. given E

Two valves between R and C, 
both are open
! R and C are not d-separated 
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Examples:
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d-separation

Are B and C d-separeted by S?
Two paths:
- 1st one closed valve (C<-S->B) 

because S given
- 2nd one closed valve (B->D<-P) 

because D not given

! B and C are d-separated by S
! B and C are cond. indep. given S
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Next week(s)

‣ How to build a Bayesian network?

‣ How to use it for inferencing?

‣ Inference algorithms
- exact
- approximative
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