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Künstlichen Intelligenz

8. Termin: 

Bayesian Networks: Building & Inferencing
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Definition: A Bayesian network for variables    is a pair (   ,   ) with
‣ Structure     : a directed acyclic graph with

- a set of nodes, one per random variable
- a set of edges representing direct causal influence between variables

‣ Parametrization    : a conditional probability table (CPT) for each variable 

- probability distribution for each node given its parents:
Pr(Xi | Parents(Xi))  or  Pr(Xi) if there are no parents

- parameterizes the independence structure
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Bayesian networks

Each Bayesian network defines a set of cond. indep. statements:

‣ every variable is conditionally indep. of its nondescendants given its parents
- Markovian assumptions:

‣                    are direct causes,                            are effects of  
- given direct causes of  V, beliefs in V are no longer influenced by any other 

variable, except possibly by its effects
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I(V, Parents(V ), NonDescendants(V ))

Markov(G)
Parents(V ) Descendants(V ) V

Compact representation of a full joint distribution: network structure 
and parametrization are satisfied by one and only one prob. distribution 
given by the chain rule for Bayesian networks

Pr(z) =
�

θx|u∼z

θx|u =
�

Pr(x|u)∼z

Pr(x|u), with u parents of x
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(chain rule of prob. calculus / repeated Bayesian cond.) Pr(c, a, r, b, e)
= Pr(c|a, r, b, e)Pr(a|r, b, e)Pr(r|b, e)Pr(b|e)Pr(e)

= Pr(c|a)Pr(a|b, e)Pr(r|e)Pr(b)Pr(e)
(decomposition / independencies)

= θc|aθa|b,eθr|eθbθe
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A B C

Pr(a, b, c) = Pr(c|b, a)Pr(b|a)Pr(a) = Pr(c|b)Pr(b|a)Pr(a)

requires 8 rows
(exponential)

requires 2 rows
(+ normalization)

a b c Pr(.)
T T T ...
T T F ...
T F T ...
T F F ...
F T T ...
F T F ...
F F T ...
F F F ...

a b c Pr(a) Pr(b|a) Pr(c|b)
T T T ... ... ...

F F T ... ... ...
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Probabilistic independence

Bayesian network induces a belief state/prob distribution Pr satisfying 
the indep. relations

Plus further implied independencies, can be derived graphically
‣ 3 types of „valves“ with var W, either open or closed given var‘s z

‣ closed valves block a path in the graph, create d-separation

6

Sequential valve Divergent valve Convergent valve

I(V, Parents(V ), NonDescendants(V ))

closed if W in z closed if W in z closed if W not in z, nor 
any descendant of W
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d-separation

Definition:
Variable sets X and Y are d-separated by Z iff every path between a 
node in X and a node in Y is blocked by Z (at least one valve on the 
path is closed given Z).

Theorem:
For every network graph    there is a parametrization    such that

‣ dsep is always correct (sound) 

‣ dsep is complete for a suitable parametrization (but not for every!)
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dsepG(X,Z,Y)

IPr(X,Z,Y)↔ dsepG(X,Z,Y)

ΘG
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Examples:
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d-separation

Are B and C d-separeted by S?
Two paths:
- 1st one closed valve (C<-S->B) 

because S given
- 2nd one closed valve (B->D<-P) 

because D not given

! B and C are d-separated by S
! B and C are cond. indep. given S
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Bayesian networks & independence

Terminology:
Graph G is an independence map (I-MAP) of a prob. distribution Pr over 
the same variables iff
‣ d-separation in G implies independence in Pr

(by definition for every Pr induced by the Bayesian network)

‣ minimal if G is no longer an I-MAP when removing any edge

Graph G is an dependence map (D-MAP) of a prob. distribution Pr over 
the same variables iff
‣ lack of d-separation in G implies dependence in Pr

‣ G is not necessarily a D-MAP of any Pr induced by the Bayesian 
network, but of at least one with appropriate parameters

If G is both I-MAP and D-MAP of Pr, then G is called perfect map (P-MAP)
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Θ

IPr(X,Z,Y) only if dsepG(X,Z,Y)

dsepG(X,Z,Y) only if IPr(X,Z,Y)
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Bayesian networks & independence
Is there always a P-MAP for any distribution Pr?
‣ No, there are distributions for which there are no P-MAPs!

- reasonable since indep. captured by G satisfies properties (see above) not 
satisfied by any distribution

Given a distribution Pr, can we construct a minimal I-MAP?
‣ Yes, for variable Xi select parents P with 

‣ not unique, depending on order in which variables are considered

‣ Example:
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supposed P-MAP of Pr minimaI I-MAP of Pr

IPr(Xi,P, {X1, ...,Xi−1}\P)

not necessarily reasonable w.r.t causal 
relationships, yet with indep. relations!
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Reasoning with Bayesian networks

How can a Bayesian network be used for answering queries about a 
domain?

There are (at least) four general types of queries one can pose:
‣ probability of evidence: 

how likely is a variable instantiation e  ! Pr(e)=?

‣ prior and posterior marginals: how probable is an instantiation of a 
limited set of variables ! Pr(x1,...,xm)=? or Pr(x1,...,xm|e)=?

‣ most probable explanation (MPE): what is the most probable instantiation 
of all network var‘s given some evidence e ! x with Pr(x1,...,xn|e)=max?

‣ maximum a posteriori hypothesis (MAP): what is the most probable 
instantiation of a subset of var‘s given some evidence e ! x with Pr
(x1,...,xm|e)=max?
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Probability of evidence

Query:  How likely is some variable instantiation e  ! Pr(e)=?

Example: Pr(X=yes, D=no)=?

Example: Pr(X=yes ∨ D=yes)=?

can be computed indirectly with
the auxiliary-node technique:

‣ add node E with X,D as parents and 
Pr(e|x,d)=1 iff e=1 and (d=1 or x=1)

‣ possible when not too many evidence var‘s
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E= X ∨ D
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Prior and posterior marginals

Query:  How probable is an instantiation of a limited set of variables
! Pr(x1,...,xm)=? or Pr(x1,...,xm|e)=?

Definition: Given a joint distribution Pr(x1,...xn) and a limited number m of 
variables,
‣ prior marginal :
‣ posterior marginal given e :
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Pr(x1, ..., xm) =
�

xm+1,...xn

Pr(x1, ..., xn)

Pr(x1, ..., xm|e) =
�

xm+1,...xn

Pr(x1, ..., xn|e)
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Most probable explanation (MPE)

Query: What is the most probable instantiation of all network var‘s 
given some evidence e ! x with Pr(x1,...,xn|e)=max?

Example: MPE for positive x-ray and
not dyspnoea?

Note: cannot be computed directly 
from the maximal posterior marginals
‣ choosing xi such that Pr(xi|e)=max

yields expl. p with smoker=true and
Pr(p|e)=20.03% whereas 
Pr(mpe|e)=38.57%
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Maximum a posteriori hypothesis (MAP)

Query:  What is the most probable instantiation of a subset of var‘s 
M=X1,...,Xm given some evidence e ! m with Pr(m|e)=max?

‣ MPE is a special case of MAP, easier to compute algorithmically

Example: Given X=yes, D=no, what is the
most probable instantiation of M={A,S}?

Approximative method to find MAP:

‣ compute MPE and return values
for MAP variables (projecting MPE on
MAP var‘s)

‣ but, here, leads to A=no, S=yes with
prob ~48%, while A=no, S=no is MAP with prob ~50%
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Modeling with Bayesian networks

Using Bayesian networks for real-world problems requires two steps:
‣ constructing an appropriate Bayesian network
‣ solve the problems by applying one of the previous queries

How to construct a Bayesian network?
1. define network variables and their values

- distinguish between query, evidence, and intermediary variables

- query and evidence var‘s usually determined from problem statement, 
intermediary var‘s less obvious

2. define network structure
- for each var X, answer the question: what set of var‘s are direct causes of X?

3. define network parameters (CPTs)
- difficulty and objectivity depend on problem
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Example I: diagnosis model from expert

„Flu is an acute disease characterized by fever, body aches, and pains, and 
can be associated with chilling and a sore throat. The cold is a bodily disorder 
popularly associated with chilling and can cause a soar throat. Tonsillitis is an 
inflammation of the tonsils that leads to a soar throat and can be associated 
with fever.“

Variables:
‣ query: flu, cold, tonsillitis

‣ evidence: chilling, body ache and pain, sore throat, fever

‣ intermediary: -
‣ values: {true,false}

Structure?
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CPTs normally obtained from experts 
(subjective beliefs, empirical data)
‣ problem of parameter estimation

‣ Example: Given N patient records di , 
find parametrization     such that 
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Example I: diagnosis model from expert

Θ
N�

i=1

Pr(di) = max

‣ class variable Condition ∈ 
{normal, cold, flu, tonsillitis}

‣ attributes Chilling, Body Ache, ... 

‣ single-fault assumption: only one 
cond. can hold at any time

‣ inconsistent with info given: given 
Cond.=cold, Fever and Sore Throat 
become independent

Naive Bayes structure
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„Few weeks after inseminating a cow, we have three possible tests to confirm 
pregnancy. The first is scanning with a false positive of 1% and a false negative of 
10%. The second is a blood test of progesterone with a false positive of 10% and 
a false negative of 30%. The third is a urine test of progesterone with false 
positive of 10% and a false negative of 20%. The prob. of a detectable 
progesterone level is 90% given pregnancy and 1% given no pregnany. The prob. 
that insemination will impregnate a cow is 87%.“

Goal: Build network to compute prob of pregnany given some test results

Variables:

‣ query: pregnancy? (P)

‣ evidence: scanning (S), blood test (B), urine test (U)

‣ intermediary: progesterone level (L)
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Example II: diagnosis model from expert

gentsSociable

Example: After insemination, 
all three tests are negative.
‣ Pr(P|e)=?

Still 10,21%
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Example II: diagnosis model from expert

CPTs directly given by
problem statement, e.g.

P L P(l|p)

yes undetect. 10

no detectable 1

Structure:
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Example: sensitivity analysis

Q: What kind of a test is needed to get this error prob. down to ~5%?
‣ acceptable false positive/false negative?
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„sensitivity analysis“: 
which network parameters do 
we have to change, and how 
much, in oder to ensure that 
Pr(P|L=neg.,B=neg.,U=neg.)≤5% ?

‣ only improving the scanning 
test to a false negative of 
4,63% helps
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Further examples

See Darwiche (chap. 5) for further examples on
‣ diagnosis: model from design

‣ reliability analysis: model from design
- depending on lifetime

‣ noisy channel coding

‣ commonsense knowledge

‣ how to deal with large CPTs

Next: main algorithms for drawing exact inferences
‣ by variable elimination / marginalization
‣ by factor elimination
‣ by (recursive) conditioning
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