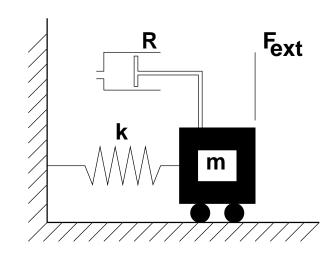


Klangsynthese und Audiobearbeitung

Thomas Hermann & Peter Meinicke
AG Neuroinformatik
Universität Bielefeld

Termin 3, Akustik & Signalverarbeitung, 29. April 2002 http://www.techfak.uni-bielefeld.de/ags/ni/projects/datason/l/KlangsyntheseSS2002.html

3.3 Erzwungene Schwingungen



System: Externe Kraft F_{ext} wirkt auf Masse-Feder-System Bewegungsgleichung (DGL):

$$F_{ext}(t) = m\ddot{x}(t) + R\dot{x}(t) + kx(t)$$
 (1)

Lösung: DGL ist linear, d.h. die Lösung ist allgemein

$$x(t) = x_{hom}(t) + x_{inhom}(t) \tag{2}$$

o. B. d. A.
$$F_{ext}(t) = \hat{F}e^{i\omega t}$$

Linearität: Lösung für Basisfunktionen ⇒ Lösung für alle Funktionen!

Erzw. Schwingung - Lösung

$$F_{ext}(t) = m\ddot{x}(t) + R\dot{x}(t) + kx(t)$$

Lösungsansatz:

$$x(t) = Ae^{Bt}$$

$$\dot{x}(t) = ABe^{Bt}$$

$$\ddot{x}(t) = AB^2e^{Bt}$$

Einsetzen in DGL: $\hat{F}e^{i\omega t}=mAB^2e^{Bt}+RABe^{Bt}+kAe^{Bt}$

- Es gilt $\forall t \Rightarrow B = i\omega$
- $\bullet \Rightarrow \frac{\hat{F}}{m} = -A\omega^2 + 2\gamma Ai\omega + \omega_0 A$
- Isoliere *A*:

$$A = \frac{\hat{F}/m}{\omega^2 - \omega_0^2 + 2i\gamma\omega}$$

Neuroinformatics Erzw. Schwingung - Folgerungen

- Amplitude hängt von Anregungsfrequenz ω ab.
- A ist komplex $A = \hat{A}e^{i\phi}$.
- Phasenverschiebung ϕ zwischen x(t) und F(t).

Einschub: Phase und Betrag komplexer Zahlen:

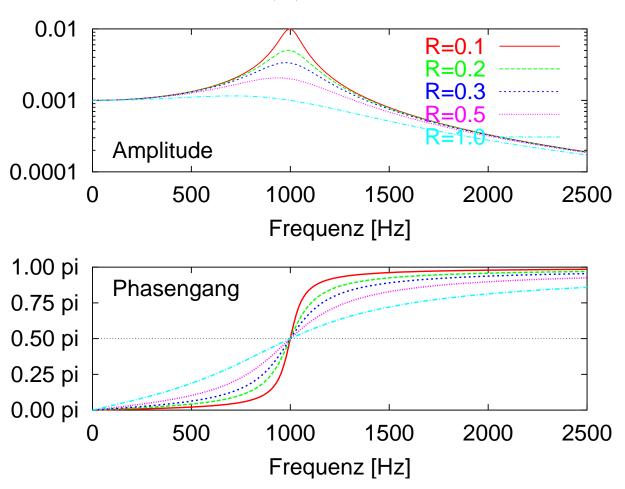
$$z=a+bi=|z|e^{i\phi}$$
 mit $|z|=a^2+b^2$ und $an(\phi)=b/a$

Maximale Amplitude bei der Resonanzfrequenz ω_r . Bedingung: \hat{A} maximal \rightarrow Nennerbetrag minimal

$$\hat{A} = \frac{\hat{F}/m}{\sqrt{(\omega^2 - \omega_0^2)^2 + 4\gamma^2 \omega^2}}$$
 (3)

Frequenzgang und Phasengang

Plot des Betrags der Amplitude $\hat{A}(\omega)$:



Zusammenfassung

Frequenzgang:

- Amplitude maximal in Resonanz: Energie oszilliert
- Je kleiner R, desto ausgeprägter die Resonanzamplitude.

Phasengang:

- "in Phase" bei niedrigen Frequenzen, stiffness-controlled
- "45° im Resonanzfall.
- "Gegenphase" bei hohen Frequenzen, mass-controlled

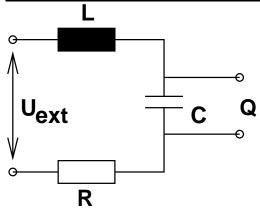
Allg. Lösung:

- Überlagerung der freien und erzwungenen Schwingung, also $x(t)=Ce^{-\gamma t}e^{i\omega_f t}-\hat{A}e^{(-i\omega t-\phi)}$
- 1. Term verschwindet (transient)
- 2. Term ist stationäre Lösung

Mechanik ⇔ **Elektrodynamik**

Analogon zum Elektrischen Schwingkreis:

Ladung	\overline{Q}	x	Ort
Strom	I	v	Geschwindigkeit
Spannung	U	F	Kraft
Widerstand	" $R = U/I$ "	$R = F_r/v$	Mechanischer Widerstand
Induktivität	L	m	Masse
1/Kapazität	U = Q/C	F = -kx	Federkraft
Induktion	$U = -L\dot{I}$	F = ma	Newtons Gesetz



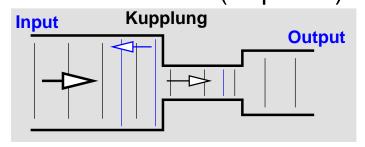
- Elektronik: Input U Output $I \Rightarrow U/I = Z$ Impedanz.
- ullet Analog: Mechanische Impedanz Z=F/v.

3.4 Komplexe Systeme

- Saite (1D), Membran (2D), Festkörper (3D) unter Spannung
 modellierbar als Massen/Federn-Netzwerk
 - Saite (longitudinal / 2 x transversal)

 m₁ m₂ m₃ m₄ m₅ m₆

 k k k k k k
- Schallwellen im Hohlraum (Flöte, Klarinette, Sprachtrakt)
 modellierbar als Wellenleiter/DWG (Kapitel 7)

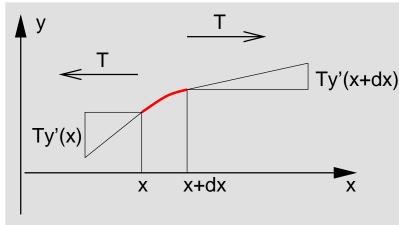


 Weitere Bereiche der Akustik: Schallabstrahlung, Raumakustik, Bewegte Schallquellen, Turbulente und Nichtlineare Phänomene

3.5 Schallwellengleichung

- Am Beispiel der Saite (1D), Transversalwellen
- Kontinuierliche Systeme (Massendichte ϵ [g/m])
- Betrachte: Kraft auf kleines Massenelement dx:

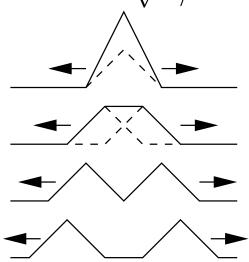
$$F(x) = Ty'(x) - Ty'(x + dx) = T\frac{\partial^2 y}{\partial x^2}$$



- Newton: $F = m\ddot{x}$ mit $m = \epsilon dx$ und $\ddot{x} = \frac{\partial^2 x}{\partial t^2}$
- Wellengleichung $\epsilon \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 x}{\partial t^2}$ (partielle lineare DGL)

Schallwellengleichung: Lösung

- Lösen durch Probieren: $y_+(x,t) = F(x-ct)$ und $y_-(x,t) = F(x+ct)$
- ullet Ableiten und Einsetzen: $c=\sqrt{T/\epsilon}$ Laufgeschwindigkeit



- Einspannungspunkte der Saite führen zur Reflexion
- Details: Kapitel 7 (Physical Modelling)