ABSTRACT

We study cross-correlations in irregularly spiking systems. A single system displays spiking sequences that resemble a stochastic (Poisson) process. Linear coupling between two systems leaves the inter-spike interval distribution qualitatively unchanged but induces cross-correlations between the units. For strong coupling this leads to synchronization as expected but for weak coupling, both a good statistic and sonification reveal the presence of "motifs", preferred short firing sequences which are due to the deterministic spiking mechanism. We argue that the use of sonification for time series analysis is superior in the case where intrinsic non-stationarity of an experiment cannot be ruled out.

1. **INTRODUCTION**

The spiking of sensory and cortical neurons is highly irregular in general. Numerous investigations have been dedicated to the analysis of these firing patterns applying methods from univariate time series [1]. Recently, however, multivariate recordings become readily available and there is increased interest in multivariate time series analysis, i.e. the characterization of the relationship between spike trains. For example, in the context of auditory information processing the degree of coincidence between spike trains leaving the cochlea was found to take place in the cochlear nucleus [2] and was proposed to contain relevant information [3]. However, while perfectly or strongly synchronized time series are rather easy to characterize, this is not the case for weakly correlated time series. In particular, if the rate of spike coincidences is near the level expected for a random process, other means than synchronization analysis are required to distinguish weakly correlated from uncorrelated spike trains. Here we show in an explicit example that the search for preferred intervals between spike trains may provide such additional information and suggest that sonification provides an efficient medium to detect these intervals.

2. **THE MODEL**

We use a system of two chaotically firing oscillators with linear reversible coupling. The system composed of extended FitzHugh-Nagumo (FHN) models is given by:

\[
\begin{align*}
\frac{dX_1}{dt} &= X_1(a-X_1)(X_1-1) - Y_1 + I + dZ_1 + D(X_2 - X_1) \\
\frac{dY_1}{dt} &= b(X_1 - Y_1) \\
\frac{dZ_1}{dt} &= \varepsilon - cX_1Z_1/(0.1 + Z_1) \\
\frac{dX_2}{dt} &= X_2(a-X_2)(X_2-1) - Y_2 + I + dZ_2 + D(X_1 - X_2) \\
\frac{dY_2}{dt} &= b(X_2 - Y_2) \\
\frac{dZ_2}{dt} &= \varepsilon - cX_2Z_2/(0.1 + Z_2)
\end{align*}
\]

with \(a=0.1, b=0.01, c=1.2, I=0.064, d=0.16, \) and \(\varepsilon=0.0001 \). \(D \) is the coupling constant and the only parameter varied in the present study.

3. **NUMERICAL RESULTS**

With the given set of parameters a single independent model exhibits chaotic self-excitation for \(D=0 \). This behavior is created by starting with the original FHN oscillator given by variables \(X \) and \(Y \) for \(d=0 \). As the FHN oscillator contains the harmonic oscillator it can be extended to generate a chaotic attractor in analogy with the Rössler equation [4]. To achieve this, we added a nonlinear switching variable \(Z \) and used the linear feedback controlled by parameter \(d \) to complete the three-variable autonomous chaotic system. A new property of the present system (compared to the standard type of chaos as e.g. in the Rössler equation) is that for some sets of parameters (e.g., \(I=0.062, \) other parameters as above) it is excitable: a short suprathreshold perturbation of one of its variables leads to a prominent spike (see [5] for an example and for a discussion of excitable chaos). The amplitude of this spike (for example in variable \(X \)) is large compared to the basal chaotic oscillations of the unperturbed system. After a single spike the value of
variable X returns to the basal oscillations. Adjusting bifurcation parameter I to the value given above, the model exhibits chaotic self-excitation: spikes with their characteristic nonlinear wave-form arise spontaneously from the near-harmonic basal chaotic oscillations. Fig. 1 shows a time series in this regime. Dynamically the behavior is similar to the spontaneous spiking in the complex kinetic model in [5,6] where self-exiting chaos was introduced.

The most significant deviation from a Poisson distribution with absolute refractory period stems from the sharp peaks to the left of the maximum of $P(s)$. These maxima for short inter-spike intervals can be explained by the finite autocorrelation (or equivalently, a finite positive Lyapunov characteristic exponent) found in a chaotic system. Nearby trajectories of two such systems evolve similarly for short time scales and if two consecutive spikes occur within a short period (between one third and half of the average interval) they are bound to show this autocorrelation. In a sense, the spikes amplify these intrinsic short-term autocorrelations. Thus, at short time scales the deterministic origin of the spike sequence is recognizable in the deviation of the distribution from a Poisson behavior. However, the important observation for the present context is that this deviation from Poisson-type behavior is found with both values of the coupling constant and thus the distribution, apart from the change of mean firing rate, does not offer information about whether the two units are coupled or not.

To detect the effect of coupling it is advisable to use a measure that characterizes spike distances in distinct units (rather than in the same unit as in Fig. 2). We therefore evaluate the distribution of intervals between units. Fig. 3 shows a zoom of the probability distribution of the distances between spikes of different time series for $D=0$ and $D=0.00125$. For every spike in one unit the time interval to the next-nearest spike in the other unit was measured. The time interval $\Delta t=0$ was included and thus the height of the first bin at $s=0$ indicates the probability density of synchronized events. Clearly the number of coincidences of spikes is greater with finite D: coupling increases the probability of synchronized spiking. However, with the weak coupling chosen the synchronization is only partial. Most spikes do not coincide and visually the time series for the two cases cannot be distinguished in this respect.
preferred intervals (0.18<s<0.5). For s>0.5 the distribution approaches the distribution of a stochastic process and almost no deviations are seen for larger spike intervals between units. To conclude this analysis we can say that weak coupling induces clear signatures of determinism if short inter-unit spike distances across units are evaluated.

Problems arise when the available time series are not as long as those in the above simulations. Evaluation of short time series leads to a significant blurring of the distributions and if one calculates the variance of the P(s) values it becomes clear that one can no longer distinguish easily between the two cases by this type of analysis. Both the homogeneous distribution at D=0 and the gap at D=0.00125 are corrupted. The statistics requires a large number of events to clearly show the differences.

4. SONIFICATIONS

At this point we turn to sonification of the time series as a means to detect the cross-correlations induced by finite coupling. The ear is particularly suited to detect rhythms and rhythmical changes in acoustic signals. Since the given data are time series that show structure along the time axis it is an obvious strategy to maintain the time stamp as sonification time.

However, the chosen temporal compression has a significant influence on the perceived structure and we therefore start with examples using audification to demonstrate the useful range of compressions. With high compression factors, spikes merge similar to granular synthesis to an acoustic texture, and features like roughness or timbre changes emerge. Dominant inter spike intervals can be perceived as pitch cues. This can be heard in the audification examples (all examples are found on our website [7]) S1c, rendered for compression factor 50. At lower time compression (example S1b, factor 6, S1a, factor 2), rhythm is perceived as the main structure and rhythmical changes can be followed. With even lower compression factors the time resolution would even allow to perceive phase differences, but this can't be heard in audification but in the amplitude modulation examples described next. Here we are particularly interested in the middle compression range of rhythmical structures.

Amplitude Modulation: A fundamental sonification idea is to simply use the amplitude of variable X to modulate the intensity of a given stationary sound. Thus spikes describe the amplitude envelope. Examples for this amplitude modulation technique are available for rates 0.1, 0.2 and 1.0 as examples S2a-c on our website. It can be heard that the small-amplitude oscillations between spikes cause a clear rhythm, and this obscures perceptually the spike rhythms between time series.

Event-based Rhythms: For this reason, and, since the major information lies in the accurate time point of spikes, we first extract the exact time when the signals exceed a threshold, $X=0.65$, and schedule acoustic events at the corresponding (mapped) time. To facilitate the perception of rhythms in the two units of eq. (1), we assign them a different pitch, and also route them to different audio channels. Examples in Sound S3 present such sonifications for the uncoupled and weakly coupled system. This event-based approach allows us to use more percussive sounds than for the original spike signals which have a non-zero transient. This assists the perceptual detection of rhythm.

In addition, such an approach enables us to use acoustic features of the events to convey detailed information about local properties like inter spike time intervals, etc.

Timbre Mapping: Specifically, we use additive synthesis with energy distributed on N harmonics for the events and - as a first example - use the intra-spike distance (time until the other time series spikes) to determine N for every spike. The larger this time, the more brilliant the sound. Thus rhythmical structuring also induces timbral structures. Sound examples S4 are provided on the website for different coupling constants and compression factors.

Non-stationary Time Series: Finally, as an important application for the analysis of experimental time series, we sonify the dynamics of the system with temporal variation of the coupling constant. This introduces non-stationarity to the spike pattern. Since the ear is particularly sensitive to changes of rhythmical patterns, we expect this strategy to yield insight (better: in-sound) into the resulting qualitative changes of behavior. Examples S5 and S6 illustrates this behavior. It can be perceived directly when the coupling changes (after one third from beginning). This should be compared to the statistics, where at least 10000 interspike intervals are required before details of the correlations can be significantly shown. If correlations are evaluated from the complete time series where a change of parameter took place, the details are blurred due to this non-stationarity.

Sound Examples:

http://www.techfak.uni-bielefeld.de/~thermann/projects/index.html

S1: Audifications of time series from eq. (1) with $D=0$. Compression rates a) 2, b) 6, and c) 50.

S2: Amplitude modulation of time series from eq. (1) with $D=0$. Rates are a) 0.1, b) 0.2, and c) 1.

S3: Event-based rhythm with temporal compression 1 for a) $D=0$, and b) $D=0.00125$; and compression 5 for c) $D=0$, and d) $D=0.00125$.

S4: Timbre mapping at three different speeds (20, 60, and 240 sec) for $D=0$ (S4a-c), and D=0.00125 (S4d-f).

S5: Time series with time dependent coupling protocol: First third: $D=0$, second third: linear rise from D=0 to D=0.005, last third: D=0.005. a) Event-based rhythm sonification; b) as in a) but with additional timbre modulation; c) as in a) but with pitch deviation instead of timbre changes.

S6: Time series with time dependent coupling protocol: First third: $D=0$, second third: linear rise from D=0 to $D=D_{\text{final}}$, last third: $D=D_{\text{final}}$, $D_{\text{final}}=0.00125$ for S6a,b; and $D_{\text{final}}=0.005$ for S6d,e. Speed: 20 sec for S6a,c; and 30 sec for S6b,d.
5. DISCUSSION

Irregular spike sequences may appear to be random in univariate time series analysis and yet be correlated to some extent. The presence or absence of cross-correlation is not necessarily reflected in univariate methods of analysis and requires the application of bi- or multivariate methods. Methods based on bi-spectra and two-point cross-correlations have been developed for this purpose but we have focused on inter-spike intervals to highlight the usefulness of sonification in this context.

Topologically the extended FHN model in eq. (1) is related to other 3-variable FHN-type of equations like the Hindmarsh-Rose model [8]. The important feature at the given parameters was that spikes are simple (i.e., do not show the typical bursting pattern) and that their next neighbor interval distribution resembles a Poisson process independently of the value of the coupling constant D. This makes eq. (1) an ideal deterministic process where cross-correlations can be induced without affecting autocorrelations.

Two effects are found if coupling is introduced between two units. First, the number of spike coincidences increases. And second, there appear pronounced preferred short intervals of neighboring spikes in different units. If a good statistics is available both features can be quantified by means of the distribution as in Fig. 3. If such a statistics is not available, rhythmic sonification in a bivariate setting can be employed to search for the preferred intervals and other characteristic changes of the rhythmic pattern due to the coupling.

The important first step for a successful sonification of irregular rhythms is the choice of time scale. There is a clear optimum for the perception of temporal relationships as evidenced in our audifications and event-based sonifications. The optimum is in agreement with empirical findings on rhythm perception [9] but we have to take into account that our model in transitions between the degree of cross-correlation, for example, when searching for precursors of epileptic seizures.

For the special case of electric activity in the range from 1 to 12 Hertz (the delta, theta and alpha bands) the rhythmic representation can even be done in real-time as the intervals fall into the range of human rhythm perception [13].

6. ACKNOWLEDGEMENTS

This work was supported by CONACyT, Mexico (project no. 40885-F).

7. REFERENCES