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We analyze the equilibrium behavior of deterministic haploid mutation–selection models. To this end,

both the forward and the time-reversed evolution processes are considered. The stationary state of the

latter is called the ancestral distribution, which turns out as a key for the study of mutation–selection

balance. We find that the ancestral genotype frequencies determine the sensitivity of the equilibrium mean

fitness to changes in the corresponding fitness values and discuss implications for the evolution of

mutational robustness. We further show that the difference between the ancestral and the population

mean fitness, termed mutational loss, provides a measure for the sensitivity of the equilibrium mean fitness

to changes in the mutation rate. The interrelation of the loss and the mutation load is discussed. For a class

of models in which the number of mutations in an individual is taken as the trait value, and fitness is a

function of the trait, we use the ancestor formulation to derive a simple maximum principle, from which the

mean and variance of fitness and the trait may be derived; the results are exact for a number of limiting

cases, and otherwise yield approximations which are accurate for a wide range of parameters. These results

are applied to threshold phenomena caused by the interplay of selection and mutation (known as error

thresholds). They lead to a clarification of concepts, as well as criteria for the existence of error

thresholds. & 2002 Elsevier Science (USA)
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1. INTRODUCTION

A lot of research in theoretical population genetics
has been directed towards mutation–selection models in
multilocus systems and infinite populations. One is
9

usually interested in the statistical properties of the
equilibrium distribution of genotypes, like the means
and variances of fitness and trait(s). The standard
approach to determine these starts out from the
equilibrium condition for the genotype frequencies
(which takes the form of an eigenvalue equation if the
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TABLE I

Glossary of Repeatedly Used Notation

a ancestor frequencies 2.2

G; g mutational loss (24)

g mutational loss function (31)

H evolution matrix (4)

I identity matrix 2.1

i; j; k; ‘ genotype/class labels 2.1

L; l mutation load 2.4

m mutation rates 2.1

M mutation matrix 2.1

N number of mutation classes/sequence length 2.1

p population frequencies 2.1

Q generator of reversed process 2.2

R; r reproduction rates 2.1

r fitness function (27)

R reproduction matrix 2.1

s� mutational effects 2.4

s (binary) sequence 2.1

T time evolution matrix 2.1

t time 2.1

U�; u� genomic mutation rates 2.1

u� mutation functions (27)

V ; v variances 2.4

X ; x mutational distance 2.4

X mutation classes 2.1

Y ; y arbitrary trait 2.7

z relative reproductive success 2.2

g overall factor for reproduction rates 5.3

k biallelic mutation asymmetry parameter 2.1

lmax largest eigenvalue of H 2.1

m overall mutation rate 2.1, (56)

Note. Symbols are given together with the section or equation in

which they are defined. Symbols whose scope is only a single section

are not shown.
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population is haploid). On this basis, a wealth of
methods and results has been created; for a comprehen-
sive and up-to-date account, see B .uurger (2000).
In this article, we present an alternative route, which

relies on a time-reversed version of the mutation–
selection process and its stationary distribution}to be
called the ancestral distribution, as opposed to the
equilibrium distribution of the forward process. We will
apply this approach to tackle a rather general class of
models for haploids, or diploids without dominance. It
is only assumed that fitness is a function of a trait, and
genotypes with equal trait values have equivalent
mutation patterns. In fact, this is a standard assump-
tion, and is often implied without special mention. It
applies, for example, if (geno)types are identified with a
collection of loci with two alleles each (wildtype and
mutant), which mutate independently and according to
the same process, and the number of (deleterious)
mutations plays the role of the trait. The assumption
of permutation invariance (with respect to the loci) is
certainly a distortion of biological reality, but, even in
this simplified setting, general answers have previously
been considered impossible (Charlesworth, 1990), and
researchers have resorted to more specific choices of the
fitness function and the mutation model (e.g., quadratic
fitness functions and unidirectional mutation).
With the help of the ancestral distribution, we will be

able to tackle general fitness functions (with arbitrary
epistasis), as well as general mutation schemes (includ-
ing arbitrary amounts of back mutation), from the
permutation invariant class. The mutation–selection
equilibrium will be characterized through a maximum
principle which relates the equilibrium population to the
ancestral one, and may be evaluated explicitly to yield
expressions for the mean fitness and the mean trait
value, as well as the variances of these quantities. The
results are exact for a number of limiting cases, and
otherwise yield approximations which are accurate for a
wide range of parameters.
The results will then be used to settle the long-

standing issue of characterization and classification of
error threshold phenomena in this model class. An error
threshold may be generally, but vaguely, circumscribed
as a critical mutation rate beyond which mutation can
no longer be controlled by selection and leads to genetic
degeneration; for review, see Eigen et al. (1989). Some,
but by no means all, mutation–selection models display
such behavior. It turns out that a consistent definition of
an error threshold is rather subtle and must be sorted
out first. On this basis, we will classify mutation–
selection models according to their threshold behavior
(if any).
Since the article treats quite a number of topics, we
start out with a brief reader’s guide to the main results
here and give hints on what parts can be skipped at a
first reading. Let us also mention that Table I contains a
glossary of repeatedly used notation.
The scene is set in Section 2, where we will introduce

the model (the continuous-time mutation–selection
model) and establish its relationship with a multitype
branching process. Two concepts that are central to this
paper, the ancestor distribution and the mutation class
limit, are developed in this section. Section 2.2
introduces the ancestor distribution as the stationary
distribution of the time-reversed branching process and
links the algebraic properties of the model to a
probabilistic picture that also helps to shape biological
intuition. In order to allow quick progress to the results
in the remainder of the article, however, we have
summarized the main points in Section 2.3. In Section
2.4, the means and variances of the trait and of fitness
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with respect to the equilibrium population and with
respect to the ancestors are introduced. In Section 2.5,
the difference between the ancestral and the population
mean fitness, termed mutational loss, is shown to
provide a measure for the sensitivity of the equilibrium
mean fitness to changes in the mutation rate. This result
is used and expanded in some of the applications in
Sections 5 and 6, but can be skipped at first reading.
Sections 2.6 and 2.7 are mainly concerned with the
mutation class limit, along with the proper scaling of
fitness functions and mutation schemes. Like the well-
known infinite-sites limit, this limit assumes an infinite
number of types, but uses a different scaling. As a
consequence, it is valid if the total mutation rate is large
relative to typical fitness differences between types. In
this paper, the mutation class limit is used to derive
analytic expressions for means and variances of fitness
and the trait for the general case with back mutations
and a non-linear fitness function. It is also crucial for
our discussion of threshold behavior in Section 6.
Section 3 is a condensed summary of the main results

related to the maximum principle. The mean fitness at
mutation–selection balance equals the maximum of the
difference between the fitness function and the so-called
mutational loss function, where the position of the
maximum determines the mean ancestral trait. Once
these means are known, explicit expressions are avail-
able for the mean trait and the variances of fitness and
trait. The derivations are postponed to Section 4, which
may be skipped at first reading.
The following two sections are devoted to applica-

tions. Both are, to a large extent, independent of each
other and rely only on the matter introduced in Sections
2 and 3. In Section 5, we first discuss the evolutionary
significance of the mutational loss, and then turn to the
mutation load. Explicit expressions are derived for small
(back) mutation rates; but arbitrary mutation rates are
covered by the maximum principle, which may be
interpreted as a generalized version of Haldane’s
principle. Consequences for the evolution of mutational
effects and for mutational robustness are discussed.
Finally, a note is added as to the accuracy of the
expressions for the means and variances.
In Section 6, we first analyze the definitions available

for the error threshold. It will turn out that various
notions must be distinguished, which coincide only in
special cases. For each of these notions, a criterion for
the existence of an error threshold is derived from the
maximum principle. Furthermore, the phenomena are
illustrated by means of examples and discussed with
respect to their biological implications. Section 7
provides a summary and an outlook.
Appendix A describes the connection between our
mutation–selection model and a system of quantum-
statistical mechanics, which had been used previously
(e.g., Baake et al., 1997; Baake and Wagner, 2001) to
solve a more restricted model class, and which also served
as the source of concepts and methods for the current
article. However, the body of the paper does not require
any knowledge of physics and remains entirely within the
framework of population genetics and classical prob-
ability theory. Appendices B and C, finally, contain the
proofs from Sections 4 and 6, respectively.

2. MODEL SETUP

2.1. The Model

We consider the evolution of an infinite population of
haploid individuals (or diploids without dominance)
under mutation and selection. Disregarding environ-
mental effects, we take individuals to be fully described
by their genotypes, which are labeled by the elements of
f1; . . . ;Mg: Let piðtÞ be the relative frequency of type i at
time t; so that

P
i piðtÞ ¼ 1; and let pðtÞ ¼ ðp1ðtÞ; . . . ;

pM ðtÞÞT with T denoting transposition. Throughout this
article we will use the formalism for overlapping
generations, which works in continuous time, and only
comment on extensions to the analogous model for
discrete generations. The standard system of differential
equations which describes the evolution of the vector
pðtÞ is (Crow and Kimura, 1970; Hofbauer, 1985; see
also B .uurger, 2000)

’ppiðtÞ ¼ ½Ri � %RRðtÞ	piðtÞ þ
X
j

½mijpjðtÞ � mjipiðtÞ	: ð1Þ

Here, Ri is the Malthusian fitness of type i; which is
connected to the respective birth and death rates as Ri ¼
Bi � Di; and %RRðtÞ ¼

P
i RipiðtÞ designates the mean

fitness. Further, mij is the rate at which a j-individual
mutates to i; and the dot denotes the time derivative. In
this model, mutation and selection are assumed to be
independent processes which go on in parallel. However,
mutation may also be viewed as occurring during
reproduction. In this case, the mutation rate is given by
mij :¼ vijBj; where vij is the respective mutation prob-
ability during a reproduction event. Since, formally, this
leads to the same model, it need not be discussed further.
For some of the main results of this article, further

assumptions on the mutation scheme are required. To
this end, we collect genotypes into classes Xk of equal
fitness, 04k4N ; and assume mutations only to occur
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between neighboring classes. Let Rk denote the fitness of
class k and U�

k the mutation rate from class Xk to Xk�1

(i.e., the total rate for each genotype in Xk to mutate to
some genotype in class Xk�1), with the convention U�

0

¼ Uþ
N ¼ 0: Thus, we obtain a variant of the so-called

single-step mutation model:

’ppkðtÞ ¼ ½Rk � %RRðtÞ � Uþ
k � U�

k 	pkðtÞ

þ Uþ
k�1pk�1ðtÞ þ U�

kþ1pkþ1ðtÞ: ð2Þ

(Here, the convention p�1ðtÞ ¼ pNþ1ðtÞ ¼ 0 is used.) We
can, for example, think of X0 as the wildtype class with
maximum fitness and fitness only depending on the
number of mutations carried by an individual. If,
further, mutation is modeled as a continuous point
process (or if multiple mutations during reproduction
can be ignored), Eq. (1) reduces to Eq. (2), with an
appropriate choice of mutation classes. Depending on
the realization one has in mind, the Uk then describe the
total mutation rate affecting the whole genome or just
some trait or function.
In most of our examples, we will use the Hamming

graph as our genotype space. Here, genotypes are repre-
sented as binary sequences s ¼ s1s2 . . . sN 2 fþ; �gN ;
thus M ¼ 2N : The two possible values at each site, +
and �; may be understood either in a molecular context
as nucleotides (purines and pyrimidines) or, on a coarser
level, as wildtype and mutant alleles of a biallelic
multilocus model. We will assume equal mutation rates
at all sites, but allow for different rates, mð1þ kÞ and
mð1� kÞ; for mutations from + to � and for back
mutations, respectively, according to the scheme de-
picted in Fig. 1.
Clearly, the biallelic model reduces to a single-step

mutation model (with the same N ) if the fitness
landscape1 is invariant under permutation of sites. To
this end, we distinguish a reference genotype sþ ¼
þ þ � � � þ; in most cases the wildtype or master
sequence, and assume that the fitness Rs of sequence s
depends only on the Hamming distance k ¼ dHðs; sþÞ to
sþ (i.e., the number of mutations, or ‘‘�’’ signs in the
sequence). The resulting total mutation rates between
the Hamming classes Xk and Xk�1 read

Uþ
k ¼ mð1þ kÞðN � kÞ and U�

k ¼ mð1� kÞk ð3Þ

if mutation is assumed to be an independent point
process at all sites. We usually have the situation in
mind in which fitness decreases with k and will therefore
speak of Uþ

k and U
�
k as the deleterious and advantageous
1We use the notion of a fitness landscape (Kauffman and Levin,
1987) as synonymous with fitness function for the mapping from
genotypes to individual fitness values.
mutation rates. However, monotonic fitness is never
assumed, unless this is stated explicitly.
In much of the following, we will treat the general

model (1), which builds on single genotypes, and the
single-step mutation model (2), in which the units are
genotype classes, with the help of a common formalism.
To this end, note that both models can be recast into the
following general form using matrices of dimension M ;
respectively N þ 1:

’ppðtÞ ¼ ðH � %RRðtÞIÞpðtÞ: ð4Þ

Here, I is the identity. The evolution matrix H ¼ R þ M

is composed of a diagonal matrix R that holds the
Malthusian fitness values, and the mutation matrixM ¼
ðMijÞ with either off-diagonal entries reading mij; or with
U�
k on the secondary diagonals. The diagonal elements
in each case are Mii ¼ �

P
jai Mji; hence the column

sums vanish. Where the more restrictive form of the
single-step model is needed, this will be stated explicitly.
Unless we talk about unidirectional mutation (U�

k  0
for the single-step mutation model), we will always
assume thatM is irreducible (i.e., each entry is non-zero
for a suitable power of M).
Let now TðtÞ :¼ expðtHÞ; with matrix elements TijðtÞ:

Then, the solution of (4) is given by (see, e.g., B .uurger,
2000, Chapter III.1)

pðtÞ ¼
TðtÞpð0ÞP
i;j TijðtÞpjð0Þ

ð5Þ

as can easily be established by differentiating and usingP
i;j HijpjðtÞ ¼

P
i RipiðtÞ ¼ %RRðtÞ: Due to irreducibility,

the population vector converges to a unique, globally
stable equilibrium distribution p :¼ limt!1 pðtÞ with
pi > 0 for all i; which describes mutation–selection
balance. By the Perron–Frobenius theorem, p is the
(right) eigenvector corresponding to the largest eigenva-
lue, lmax; of H:

2.2. The Branching Process}Forward and
Backward in Time

Our approach will heavily rely on genealogical
relationships, which contain a more detailed informa-
tion than the time course of the relative frequencies (5)
alone. Let us, therefore, reconsider the mutation–

FIG. 1. Rates for mutations and back mutations at each site or

locus of a biallelic sequence.
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selection model as a branching process. Branching
processes have been classical tools in population
genetics to approximate the fixation rates of a single
mutant type in a finite population. This approach goes
back to Haldane (1927) (see also Crow and Kimura,
1970), and has been used in many recent applications as
well (e.g., Barton, 1995; Otto and Barton, 1997).
We pursue a different route here by considering the

process of mutation, reproduction and death as a
(continuous-time) multitype branching process, as de-
scribed previously for the quasi-species model (Deme-
trius et al., 1985; Hofbauer and Sigmund, 1988, Chapter
11.5). Let us start with a finite population of individuals,
which reproduce (at rates Bi), die (at rates Di;), or
change type (at rates Mij) independently of each other,
without any restriction on population size. Let YiðtÞ be the
random variable denoting the number of individuals of
type i at time t; and niðtÞ the corresponding realization;
collect the components into vectors Y and n; and let ei
be the ith unit vector. The transition probabilities for the
joint distribution, PrðYðtÞ ¼ nðtÞj Yð0Þ ¼ nð0ÞÞ; which we
will abbreviate as PrðnðtÞj nð0ÞÞ by abuse of notation, are
governed by the differential equation2

d
dt
PrðnðtÞj nð0ÞÞ

¼ �
X
i

Bi þ Di þ
X
jai

Mji

 !
niðtÞ

 !
PrðnðtÞj nð0ÞÞ

þ
X
i

BiðniðtÞ � 1ÞPrðnðtÞ � ei j nð0ÞÞ

þ
X
i

DiðniðtÞ þ 1ÞPrðnðtÞ þ ei j nð0ÞÞ

þ
X
i;j
iaj

MijðnjðtÞ þ 1ÞPrðnðtÞ � ei þ ej j nð0ÞÞ: ð6Þ

The connection of this stochastic process with the
deterministic model described in Section 2.1 is two-fold.
Firstly, in the limit of an infinite number of individuals
ðn :¼

P
i nið0Þ ! 1Þ; the sequence of random variables

Y ðnÞðtÞ=n converges almost surely to the solution yðtÞ of
’yy ¼ Hy with initial condition yð0Þ ¼ nð0Þ=n (Ethier and
Kurtz, 1986, Chapter 11, Theorem 2.1). That is,
Prðlimn!1 Y ðnÞðtÞ=n ¼ yðtÞÞ ¼ 1; and the superscript ðnÞ
denotes the dependence on the number of individuals.
The connection is now clear since pðtÞ :¼ yðtÞ=

P
i yiðtÞ

solves the mutation–selection equation (1).
2Note that differentiability of the transition probabilities is
guaranteed in a finite-state, continuous-time Markov chain, provided
the transition rates are finite, cf. Karlin and Taylor (1975, Chapter 4)
and Karlin and Taylor (1981, Chapter 14).
Secondly, taking expectations of Yi and marginalizing
over all other variables, one obtains the differential
equation for the conditional expectations

d
dt
EðYiðtÞj nð0ÞÞ ¼ ðBi � DiÞEðYiðtÞj nð0ÞÞ

þ
X
j

½MijEðYjðtÞj nð0ÞÞ � MjiEðYiðtÞj nð0ÞÞ	: ð7Þ

Clearly, our evolution matrix H appears as the
infinitesimal generator here, and the solution is given
by TðtÞnð0Þ; where TðtÞ :¼ expðtHÞ (see also Hofbauer
and Sigmund, 1988, Chapter 11.5). In particular, we
have EðYiðtÞj ejÞ ¼ TijðtÞ for the expected number of i-
individuals at time t; in a population started by a single
j-individual at time 0 (a ‘‘j-clone’’). In the same way,
TijðtÞ is the expected number of descendants of type i at
time t þ t in a j-clone started at an arbitrary time t; cf.
left panel of Fig. 2. (Note that due to the independence
of individuals and the Markov property, the progeny
distribution depends only on the age of the clone, and
on the founder type.) Further, the expected total size of
a j-clone of age t; irrespective of the descendants’ types,
is
P

i TijðtÞ:
Initial conditions come into play if we consider the

reproductive success of a clone relative to the whole
population. A population of independent individuals,
with initial composition pðtÞ; has an expected mean clone
size

P
i;j TijðtÞpjðtÞ at time t þ t (note that t always

means ‘‘absolute’’ time, whereas t denotes a time
increment). The expected size of a single j-clone at time
t þ t; relative to the expected mean clone size of the
whole population, then is

zjðt; tÞ :¼
X
i

TijðtÞ
X
k;‘

Tk‘ðtÞp‘ðtÞ

,
: ð8Þ

The zj express the expected relative success of a type
after evolution for a time interval t; in the sense that, if
zjðt; tÞ > 1 ð51Þ; we can expect the clone to flourish
more (less) than average (this does in general not mean
that type j is expected to increase (decrease) in
abundance relative to the initial population). Clearly,
the values of zj depend on the fitness of type j;
but also on its mutation rate and the fitness of its
(mutated) offspring. (If there is only mutation, but no
reproduction or death, one has a Markov chain and
zjðt; tÞ  1:)
We now consider lines of descent, as in the right panel

of Fig. 2. To this end, we randomly pick an individual
alive at time t þ t; and trace its ancestry back in time;
this results in an unbranched line (in contrast to the
lineage forward in time). Let ZtþtðtÞ denote the type



FIG. 2. The multitype branching process. Individuals reproduce (branching lines), die (ending lines), or mutate (lines changing type)

independently of each other; the various types are indicated by different line styles. Left: The fat lines mark the clone founded by a single individual

(bullet) at time t: Right: The fat lines mark the lines of descent defined by three individuals (bullets) at time t þ t: After coalescence of two lines, their
ancestor receives twice the ‘‘weight’’, as indicated by extra fat lines.
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found at time t4t þ t; where we will drop the index for
easier readability. We seek its probability distribution
PrðZðtÞ ¼ jÞ: Since the (relative) clone size zjðt; tÞ also
determines the expected (relative) frequency of lines
present at time t þ t that contain a j-type ancestor at
time t; we have

PrðZðtÞ ¼ jÞ ¼ zjðt; tÞpjðtÞ ¼: ajðt; tÞ: ð9Þ

The ajðt; tÞ define a probability distribution
ð
P

j ajðt; tÞ  1Þ; which will be of major importance,
and may be interpreted in two ways. Forward in time,
ajðt; tÞ is the frequency of j-individuals at time t;
weighted by their relative number of descendants after
evolution for some time t: Looking backward in time,
ajðt; tÞ is the fraction of the (p-distributed) population at
time t þ t whose ancestor at time t is of type j:We shall
therefore refer to aðt; tÞ as the ancestral distribution at
the earlier time, t:
Let us, at this point, expand a little further on this

backward picture by explicitly constructing the time-
reversed process. This is done in the usual way, by
writing the joint distribution of parent–offspring pairs
(i.e., pairs ZðtÞ and Zðt þ tÞ) in terms of forward and
backward transition probabilities. On the one hand,

PrðZðt þ tÞ ¼ i;ZðtÞ ¼ jÞ

¼ PrðZðt þ tÞ ¼ i j ZðtÞ ¼ jÞPrðZðtÞ ¼ jÞ

¼ PijðtÞajðt; tÞ: ð10Þ

Here, PijðtÞ :¼ PrðZðt þ tÞ ¼ i j ZðtÞ ¼ jÞ may be obtained
by rewriting the (conditional) expectations defining the
(forward) branching process as TijðtÞ ¼ PijðtÞ

P
k TkjðtÞ;

which gives

PijðtÞ ¼ TijðtÞ
X
k

TkjðtÞ

,
: ð11Þ
On the other hand,

PrðZðt þ tÞ ¼ i;ZðtÞ ¼ jÞ

¼ PrðZðtÞ ¼ j j Zðt þ tÞ ¼ iÞPrðZðt þ tÞ ¼ iÞ

¼ *PPjiðt; tÞpiðt þ tÞ; ð12Þ

where *PPjiðt; tÞ :¼ PrðZðtÞ ¼ j j Zðt þ tÞ ¼ iÞ is the transi-
tion probability of the time-reversed process and is
obtained from (10) and (12) as *PPjiðt; tÞ ¼ ajðt; tÞPijðtÞ �
ðpiðt þ tÞÞ�1: With Eqs. (8), (9), and (11), one therefore
obtains the elements of the backward transition matrix
*PP as

*PPjiðt; tÞ ¼ pjðtÞ
TijðtÞP

k;‘ Tk‘ðtÞp‘ðtÞ
ðpiðt þ tÞÞ�1: ð13Þ

By differentiating *PPðt; tÞ with respect to t and evaluating
it at t ¼ 0; one obtains the matrix QðtÞ governing the
corresponding backward process in continuous time. Its
elements read QjiðtÞ ¼ ðd=dtÞ *PPjiðt; tÞjt¼0 ¼ pjðtÞðHij

�dij %RRðtÞÞðpiðtÞÞ�1 � dij ’ppiðtÞ=piðtÞ:Using (4) this simplifies
to

QjiðtÞ ¼
pjðtÞHijðpiðtÞÞ�1; iaj;

�
P

kai pkðtÞHikðpiðtÞÞ�1; i ¼ j:

(
ð14Þ

Note that the backward process is, in general, state-
dependent (it does not generate a Markov chain). Note
also that time reversal works in the same way if sets of
types Xk instead of single types are considered, as long
as mutation and reproduction rates are the same within
classes. Furthermore, an analogous treatment is possible
both for mutation coupled to reproduction, as well as
for discrete generations.
As to the asymptotic behavior of our branching

process, it is well known that, for irreducible H and
t ! 1; the time-evolution matrix expðtðH � lmaxIÞÞ
becomes a projector onto the equilibrium distribution
p; with matrix elements pizj (e.g., Karlin and Taylor,
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1981, the appendix). Here, z is the Perron–Frobenius
(PF) left eigenvector of H; normalized such thatP

i zipi ¼ 1: As suggested by our notation, one also has

lim
t;t!1

zðt; tÞ ¼ z; ð15Þ

which may be seen from (8).3 We therefore term zi the
relative reproductive success of type i:
At stationarity, the matrix governing the backward

process simplifies to Qji ¼ pjðHij � dijlmaxÞp�1
i ; which

can now be interpreted as a Markov generator. Further,
the (asymptotic) ancestor distribution, given by ai ¼
zipi; turns out to be the stationary distribution of
the backward process, since

P
i Qjiai ¼

P
i pjðHij

�dijlmaxÞp�1
i zipi ¼

P
i pjziðHij � dijlmaxÞ ¼ 0: Due to

ergodicity of the backward process (Q is irreducible if
H is), a is, at the same time, the distribution of types
along each line of descent (with probability 1).

2.3. The Equilibrium Ancestor Distribution

As we saw in the last subsection, there is a simple link
between the algebraic properties of H and the probabil-
istic structure of the mutation–selection process at
equilibrium, which may be summarized as follows. The
PF right eigenvector p (with

P
i pi ¼ 1) determines the

composition of the population at mutation–selection
balance; the corresponding left eigenvector z (normal-
ized so that

P
i zipi ¼ 1) contains the asymptotic

offspring expectation (or relative reproductive success)
of the various types; and the ancestral distribution,
defined by ai ¼ pizi; gives the asymptotic distribution of
types that are met when lines of descent are followed
backward in time (cf. Fig. 2). Figure 3 shows p; a; and z
for a single-step mutation model with a linear fitness
function. One sees that z decreases exponentially.
For the single-step mutation model, we may directly

transform the eigenvalue equation Hp ¼ lmaxp into an
equation for a: To this end, we define a diagonal
transformation matrix S with non-zero elements
Skk ¼

Qk
‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U�

‘ =U
þ
‘�1

p
and obtain a symmetric matrix

by *HH :¼ SHS�1: The corresponding PF right and left
eigenvectors are given by *pp ¼ Sp and *zz ¼ S�1z: But now,
3Both z and p also admit a more stochastic interpretation. If the
population does not go to extinction, one has limt!1 Yi=ð

P
j YjðtÞÞ

¼ pi almost surely, i.e., the stochasticity is in the population size, not
in the relative frequencies (Kesten and Stigum, 1966; Hofbauer and
Sigmund, 1988, Chapter 11.5). Further, for the critical process
generated by H � lmaxI; one has limt!1 tPrðYðtÞa0 j Yð0Þ ¼ ejÞ
¼ zj=C and limt!1 ð1=tÞEðYiðtÞjYð0Þ ¼ ej;YðtÞa0Þ ¼ Cpi; where C is
a constant; this is the continuous-time analog of a result by Jagers
(1975, p. 94). Note that, in the long run, the expected offspring depend
on the founder type only through the probability of non-extinction of
its progeny.
as *HH is symmetric, we have *zz � *pp (where � means
proportional to). Hence, due to ak ¼ zkpk ¼ *zzk *ppk � *pp2k ;
one has *ppk �

ffiffiffiffiffi
ak

p
: Thus, we obtain the following

explicit form of the eigenvalue equation for *HH;
which will be crucial for the derivation of our main
results:

½Rk � Uþ
k � U�

k 	
ffiffiffiffiffi
ak

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ
k�1U

�
k

q ffiffiffiffiffiffiffiffiffi
ak�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ
k U

�
kþ1

q ffiffiffiffiffiffiffiffiffi
akþ1

p
¼ lmax

ffiffiffiffiffi
ak

p
: ð16Þ

Note that Eq. (16) relates the mean fitness of the
equilibrium population ð %RR ¼ lmaxÞ to the ancestor
frequencies ak :

2.4. Observables and Averages

In this section we define the observables, i.e.,
measurable quantities, that are used to describe the
population on its evolutionary course. Besides the usual
population mean, we shall also introduce the mean with
respect to the ancestor distribution (see Section 2.3).
We shall consider means and variances of two

observables in the following. To this end, we character-
ize each type (or class) i by its fitness value Ri and its
mutational distance Xi from the reference genotype (or
the class X0). For the biallelic model in particular,
mutational distance corresponds to the Hamming
distance to sþ: If, in addition, this is the fittest type, Xi
just gives the number of deleterious mutations. But in
general it can also be used to describe the value of any
additive trait with equal contributions of sites or loci.
Similarly, for single-step mutation, we define Xk to be
the distance from the class X0; thus Xk ¼ k for class Xk :
Again, Xk may be viewed as (the genetic contribution to)
any character with discrete values that depends linearly
on the mutation classes.
Population average: Representing an arbitrary obser-

vable as ðOiÞ; such as ðRiÞ or ðXiÞ; we will denote its
population average as

%OOðtÞ :¼
X
i

OipiðtÞ: ð17Þ

By omission of the time dependence we will indicate the
corresponding equilibrium average.
As to mean fitness, %RRðtÞ determines the mutation load,

LðtÞ :¼ Rmax � %RRðtÞ: Here, Rmax ¼ maxi Ri is the fitness of
the fittest genotype, in line with the usual convention
(see, e.g., Ewens, 1979; B .uurger, 2000). It is well known
that the equilibrium value %RR :¼ limt!1 %RRðtÞ is given by
the largest eigenvalue, lmax; of the evolution matrix H:
For the variance of fitness, VRðtÞ ¼

P
i ðRi � %RRðtÞÞ2 �

piðtÞ; we differentiate %RRðtÞ according to (1), i.e.,



FIG. 3. Equilibrium values of population frequencies pk (dotted line), ancestor frequencies ak (dashed line), and relative reproductive success zk
(solid line) for the biallelic model with additive fitness Rk ¼ gðN � kÞ (where g is the loss in reproduction rate due to a single mutation), point
mutation rate m ¼ 0:2g; mutation asymmetry parameter k ¼ 1

2
; and sequence length N ¼ 100: The logarithmic right axis refers to zk only.
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ðd=dtÞ %RRðtÞ ¼
P

i Ri ’ppiðtÞ ¼ VRðtÞ þ
P

i;j RiMijpjðtÞ; and
hence

VRðtÞ ¼
d
dt

%RRðtÞ �
X
i;j

RiMijpjðtÞ

¼
d
dt

%RRðtÞ þ
X
j

X
i

ðRj � RiÞMij

 !
pjðtÞ: ð18Þ

The interpretation of this completely general formula is
as follows: In the absence of mutation, Eq. (18) just
reproduces Fisher’s fundamental theorem, i.e., the
variance in fitness equals the change in mean fitness,
as long as there is no dominance (see, e.g., Ewens, 1979).
If mutation is present, however, a second component
emerges, which is given by the population mean of the
mutational effects on fitness, weighted by the corre-
sponding rates. It may be understood as the rate of
change in mean fitness due to mutation alone. At
mutation–selection balance, this second term is ob-
viously the only contribution to variance in fitness.
For the single-step mutation model in particular, we

can define deleterious and advantageous mutational
effects separately as sþ

k ¼ Rk � Rkþ1 and s�
k ¼ Rk�1 �

Rk ; respectively. For decreasing fitness values (which is
the usual case, but not strictly presupposed here) these
are positive. This way we obtain

VR ¼ sþUþ � s�U� ¼ sþ Uþ � s�U�

þ Covðsþ;UþÞ � Covðs�;U�Þ ð19Þ

for the equilibrium variance, a result we will rely on in
the following.
Just as for the fitness distribution, we define the
population mean, %XXðtÞ ¼

PN
i¼0 XipiðtÞ; and variance,

VX ðtÞ ¼
P

i ðXi � %XXðtÞÞ2piðtÞ; of the mutational distance.
Ancestral average: We will also need the ancestral

average of our observables, that is, the average with
respect to the ancestral distribution defined in Eq. (9):
#OOðt; tÞ :¼

P
i Oiaiðt; tÞ ¼

P
i ziðt; tÞOipiðtÞ: In the follow-

ing, we will only be concerned with the ancestral
distribution in equilibrium, i.e., with both t and t going
to infinity. We obtain the ancestral average of any
observable ðOiÞ in this limit as

#OO :¼
X
i

Oiai ¼
X
i

ziOipi: ð20Þ

These averages may be read forward in time
(corresponding to a weighting of the current population
with expected offspring numbers), and backward in time
(corresponding to an averaging w.r.t. the distribution of
the ancestors). A third interpretation is available if the
mutation matrix is irreducible, which entails that the
equilibrium backward process defined by Q is ergodic.
Then, with probability 1, the equilibrium ancestral
average also coincides with the average of the obser-
vable over a lineage backwards in time. Note that the
information so obtained is not contained in the
population average, which is merely a ‘‘time-slice’’
average. The ancestral mean adds a time component
to the averaging procedure, which provides extra
information on the evolutionary dynamics. In Appendix
A, we shall show that our ancestral averaging coincides
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with the way observables are evaluated in a system of
quantum statistical mechanics.

2.5. Linear Response and Mutational Loss

We now come to another interpretation of the
equilibrium ancestor frequencies introduced in Section
2.2. Consider the derivative of the equilibrium mean
fitness with respect to the ith fitness value in a general
system of parallel mutation and selection (1):

@ %RR

@Ri
¼

@

@Ri

X
j;k

zjHjkpk

" #

¼ ai þ %RR
@

@Ri

X
j

zjpj

" #
¼ ai; ð21Þ

where we made use of the normalization conditionP
j zjpj ¼

P
j aj  1: The ancestor frequency ai there-

fore measures the linear response (or sensitivity) of the
equilibrium mean fitness to changes in the ith fitness
value.4 A similar calculation for the response to changes
in the mutation rates results in

@ %RR

@Mij
¼ ðzi � zjÞpj: ð22Þ

Using (21) and (22), we can express the equilibrium
mean fitness as follows:

%RR ¼ #RR þ
X
i;j

ziMijpj ¼
X
i

Ri
@ %RR

@Ri
þ
X
i;j

Mij
@ %RR

@Mij
: ð23Þ

Let us give a variational interpretation for the
ancestor mean fitness as well. To this end, we define
the mutational loss G of the system as the difference
between ancestor and population mean fitness in
equilibrium. Assume now that we change all mutation
rates Mij by variations in a common factor m: From (23)
and (21) we then find that the mutational loss relates to
the linear response of the equilibrium mean fitness to
changes in the mutation rates as

G :¼ #RR � %RR ¼ �m
@ %RR

@m
: ð24Þ

Actually, this relation holds for arbitrary (clonal)
mutation–selection systems, in particular also if muta-
tion and reproduction are coupled (in which case the
mutation rates are replaced by mutation probabilities).
Equations (21) and (24) may also be used to

determine the change in mean fitness if H changes to
H þ DH; to linear order in DH: (Small changes in the
4 If mutation is coupled to reproduction, the linear response to
variations in the death rate Di is given by �ai:
fitness values, or mutation rates, may be due to
environmental changes, or changes in the genetic back-
ground.) Clearly, H þ DH has %RR þ D %RR as the largest
eigenvalue, with D %RR ’

P
i DRið@ %RR=@RiÞ þ

P
i;j DMij �

ð@ %RR=@MijÞ to linear order in DRi and DMij: If only
fitness values are affected, (21) yields

D %RR ’
X
i

DRiai; ð25Þ

where the ai belong to the original system. If only the
mutation rates change by variations in a common factor
m; (24) leads to

D %RR ’ �
Dm
m
G: ð26Þ

We will come to further interpretation and discussion of
the mutational loss and the response relations in Section
5.1.

2.6. Fitness Functions and Mutation Models

For many of the results and all of our examples, we
will restrict our treatment to the case of the single-step
mutation model as described by Eq. (2). Although most
of our results do not depend on this particular choice we
will, for simplicity, concentrate on this scheme here, and
only briefly discuss the possible extensions. We will start
out with a discussion of fitness functions and mutation
schemes in this context. Depending on whether the
phenotype or the genotype is considered the primary
quantity for the model, the inherent approximation
mainly concerns the mutation or the fitness part,
respectively.
If Xk ð04k4N Þ are the values of a quantitative trait

on which selection acts, fitness may be taken as an
arbitrary function of it. The essential assumption, in this
case, is that genotypes with equal trait values have
equivalent mutation patterns, with mutation in single
steps as an additional simplification. This is the original
view in which this assumption first appeared, with Xk as
the electric charge of proteins (Ohta and Kimura, 1973).
The numerous papers to follow have been reviewed by
B .uurger (1998, 2000).
If, on the other hand, Xk is the number of mutations

with respect to the wildtype (i.e., Xk ¼ k as in the
biallelic model), single-step mutation is a natural
approximation and directly emerges if mutation and
reproduction are modeled as independent processes. The
essential simplification, in this case, consists in the
choice of the genotype fitness values, which depend only
on k: This way, only the average epistatic effect is
included in the model, whereas any variance among
epistatically interacting mutations is disregarded.
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Fitness functions of this kind, although undoubtedly
lacking much of the biological complexity, have been
used as standard landscapes throughout population
genetics literature. While the principal reason for this
seems to lie in the large simplifications due to permuta-
tion invariance, they already take full account of the
limited information on fitness provided by mutation
accumulation experiments (e.g., Crow and Simmons
(1983), but see also the discussion by Phillips et al.,
2000). Further, they include a broad range of examples
with vastly diverging properties, ranging from simple
additive fitness over quadratic}or otherwise polynomial
or exponential}landscapes with smoothly varying
fitness values (e.g. Charlesworth, 1990) to truncation
selection (e.g., Kondrashov, 1988) and Eigen’s sharply
peaked landscape (Eigen et al., 1989).
For a consistent treatment of our model in the

mutation class limit N ! 1 (to be defined in the next
subsection), it will be advantageous to think of the
fitness values and mutation rates as being determined
by the mutational distance per class (or site),
xk :¼ Xk=N 2 ½0; 1	:

Rk ¼ Nrk ¼ NrðxkÞ; U�
k ¼ Nu�

k ¼ Nu�ðxkÞ: ð27Þ

Here, rk and u
�
k are also introduced as fitness and total

mutation rates per class. They can now be thought of as
being defined, without loss of generality, by three
functions r and u� on the compact interval [0,1]. We
will refer to r as the fitness function, and to uþ and u� as
the (deleterious and advantageous) mutation functions of
the model. Both uþ and u� are assumed to be
continuous and positive, with boundary conditions
u�ð0Þ ¼ uþð1Þ ¼ 0; and r to have at most finitely many
discontinuities, being either left or right continuous at
each discontinuity in ]0,1[. This should include all
biologically relevant examples. For the biallelic model,
the mutation functions are simple linear functions of x:

uþðxÞ ¼ mð1þ kÞð1� xÞ; u�ðxÞ ¼ mð1� kÞx: ð28Þ

Note that the classical stepwise mutation model (Ohta
and Kimura, 1973) is not covered by this framework,
since its genotype space Z is inherently non-compact.

2.7. Three Limiting Cases

Our primary aim in the following sections is to
establish simple relations for the equilibrium means and
variances of mutational distance and fitness that lend
themselves to biological interpretation. Whereas these
relations are approximations in the general case, they
rest on three limiting cases as pillars, for which they hold
as exact identities. All three are biologically meaningful
by themselves, two of them are well studied, and we will
show that the formulas reduce to well-known results
there.
The first case is the limit of vanishing back mutations,

defined by U�
k  0 in our model. The second one is a

limit of linearity, in which fitness and mutation rates
depend linearly on some trait Yk ¼ Nyk ¼ NyðxkÞ with
Y0 ¼ 0 and YN ¼ N ; such as

rðxÞ ¼ r0 � ayðxÞ; uþðxÞ ¼ bþð1� yðxÞÞ;

u�ðxÞ ¼ b�yðxÞ: ð29Þ

Note that, if Yk is proportional to the mutational
distance Xk ¼ k; the fitness function is linear whereas the
mutation functions u� reproduce the mutation scheme
of the biallelic model if b� ¼ mð1� kÞ: This limit can be
understood as the limit of vanishing epistasis, in which
the system is known as the Fujiyama model in the
sequence space literature (cf. Kauffman, 1993).
The third case is the limit of an infinite number of

mutation classes, N ! 1; which we will call mutation
class limit for short. In the case of the biallelic multilocus
model, this limit has been used and discussed in a recent
publication (Baake and Wagner, 2001). It addresses the
situation of weak or almost neutral mutations, where
the average mutational effect (over the mutation
classes) is small compared to the mean total mutation
rate, U � s: The limit further assumes that differences in
mutation rate between neighboring (pairs of) classes are
small compared to the mean rate itself. In this case,
genetic change by mutation proceeds in many steps of
small average effect and the model is a genuine multiclass
model in the sense that typically a large number of
classes are relevant in mutation–selection equilibrium.
Note that only the average mutational effect must be
small; this includes the possibility of single steps with
much larger effect (such as in truncation selection).
Technically, the limit N ! 1 is performed such that

the mutational effects s� and the fitness values and
mutation rates per class, r and u�; remain constant. If
fitness values and mutation rates are defined by the three
functions r and u� as described above (27), increasing N
simply leads to finer ‘‘sampling’’ of the functions.
With this kind of scaling, the means and variances per

class of the observables defined in Section 2.4 approach
well-defined limits, which then serve as approximations
for the original model with finite N :We will denote them
by the corresponding lower case letters, i.e., #rr :¼ #RR=N ;
vX :¼ VX=N ; etc.; an additional subscript will indicate
the limit value, e.g., %xx1 :¼ limN!1 %xx: Note that it is, in
general, the variance per class of a given quantity that is
meaningful in this limit, not the variance of the quantity
per class (e.g., VarðX=N Þ), which tends to zero
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(cf. Section 4.4). The described limit is the biological
analog of the thermodynamic limit in statistical physics.
We will further discuss this issue for physically inter-
ested readers in Appendix A.
Let us finally compare the mutation class limit with

the more familiar infinite-sites limit, which, when applied
to the biallelic model, also leads to a stepwise mutation
model with an infinite number of classes (as found, e.g.,
in B .uurger, 2000). Both limits, however, approximate an
original situation with a large, but finite number of types
in quite different ways. In the infinite-sites limit, the
original model is extrapolated to an infinite one by
adding new states at the boundaries, where the popula-
tion distribution is (assumed to be) small. In contrast,
the present approach arrives at the limit by interpolation
of the types of the finite model. Mathematically, this
leads to a non-compact state space (such as Z) in the
infinite-sites limit, whereas the state space in the
mutation class limit is a compact interval (bounded by
the extreme types of the original model). To approx-
imate biological observables of the finite model in the
limit, the approaches use a different scaling. In the
infinite-sites case, the range of Malthusian fitness
parameters R usually diverges (depending on how the
extrapolation is done), while the total (‘‘genomic’’)
mutation rate U is kept constant. In the mutation class
limit, both R and U diverge with N ; but the ratio U=R is
kept constant. These differences in scaling result in
different ranges of validity of the two limits. The
mutation class limit assumes U � s; it is accurate if
the total mutation rate is large or fitness differences are
small, and allows a sizable fraction of sites to be
mutated ( %xx ¼ %XX=N may approach a non-zero limit).
In this article, we are mainly interested in this
regime, in particular in Section 6, where we discuss
error thresholds. Infinite-sites models, on the other
hand, typically assume U � s: Then back mutations can
be neglected, and the bulk of the population is
concentrated on just a few classes with a finite number
of mutations.

3. RESULTS FOR OBSERVABLE MEANS
AND VARIANCES

In this section, we want to give a short summary of
our main findings for the single-step mutation model.
Derivations and a more extended discussion are post-
poned to Sections 4 and 5.
A key result of this article is the following estimate of
the equilibrium mean fitness, which states a maximum
principle and holds as an exact identity in the three
limiting cases described in the preceding section:

%rr ’ %rr1 ¼ sup
x2½0;1	

ðrðxÞ � gðxÞÞ: ð30Þ

Here, the function g is defined as twice the difference
between the arithmetic and geometric mean of the
mutation functions

gðxÞ ¼ uþðxÞ þ u�ðxÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþðxÞu�ðxÞ

p
: ð31Þ

For reasons that will become clear in Section 5.1, we will
call it mutational loss function. For the biallelic model, it
reads explicitly

gðxÞ ¼ mð1þ k � 2kx � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k2Þxð1� xÞ

p
Þ: ð32Þ

In general, %rr1 describes the equilibrium mean fitness %rr to
leading order in 1=N and to next to leading order in u�:
The approximation is indeed rather accurate already for
moderately large N and/or weak back mutation rates, cf.
Section 5.3 and the examples in Section 6.
The maximum principle (30) is closely linked to the

ancestor distribution. In particular, if the maximum is
attained at a unique value, this is precisely the ancestor
mean #xx1:

%rr1 ¼ rð #xx1Þ � gð #xx1Þ ¼ #rr1 � gð #xx1Þ; ð33Þ

where the relation rð #xx1Þ ¼ #rr1 can be proved for all
three limiting cases. A corresponding relation for the
population mean %xx1;

%rr1 ¼ rð %xx1Þ; ð34Þ

holds in the mutation class limit and the linear case, if
this equation has a unique solution (e.g., for strictly
monotonic r).
The variances per site of fitness and of distance from

wildtype are then given by

vR;1 ¼ �r0ð %xx1Þðuþð %xx1Þ � u�ð %xx1ÞÞ and

vX ;1 ¼
vR;1

ðr0ð %xx1ÞÞ2
; ð35Þ

provided r is differentiable, in which case �r0ð %xx1Þ is the
population mean of the mutational effects. For the
biallelic model this is explicitly

vR;1 ¼ �r0ð %xx1Þmð1þ k � 2 %xx1Þ and

vX ;1 ¼ �
mð1þ k � 2 %xx1Þ

r0ð %xx1Þ
: ð36Þ

If r has a jump discontinuity at xjump from rþ to r� and
we have rþ4%rr14r�; then %xx1 ¼ xjump and vR;1 diverges.
In this case, Vr;1 ¼ limN!1 VR=N2 is finite (cf. the



FIG. 4. Graphical constructions for the observable means follow-

ing the results in Section 3. Upper part: %rr1 is the maximal distance

rðxÞ � gðxÞ; cf. (30). This is attained at x ¼ #xx1; cf. (33),

where r0ð #xx1Þ ¼ g0ð #xx1Þ: Lower part: %xx1 is the solution of %rr1 ¼ rð %xx1Þ;
cf. (34).
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example of truncation selection in Fig. 13 and the one
in Fig. 11):

Vr;1 ¼ ðrþ � %rr1Þð%rr1 � r�Þ: ð37Þ

The results presented here lead to simple graphical
constructions of the means as shown in Fig. 4. This
allows for an intuitive overview over the dependence of
these quantities on (the shape of) the fitness function
and mutation rates, without the need for explicit
calculations.

4. DERIVATIONS

We now come to the proofs and some first inter-
pretation of the results presented in the previous section.
Our starting point is the mutation–selection equilibrium
of the single-step model (2) for finite N ; i.e., the
eigenvalue equation

½rðxkÞ � uþðxkÞ � u�ðxkÞ	pk þ uþðxk�1Þpk�1

þ u�ðxkþ1Þpkþ1 ¼ %rrpk : ð38Þ

For most of our calculations, we will use the equivalent
equation for the ancestor distribution, cf. (16),

½rðxkÞ � uþðxkÞ � u�ðxkÞ	
ffiffiffiffiffi
ak

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþðxk�1Þu�ðxkÞ

p ffiffiffiffiffiffiffiffiffi
ak�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþðxkÞu�ðxkþ1Þ

p ffiffiffiffiffiffiffiffiffi
akþ1

p
¼ %rr

ffiffiffiffiffi
ak

p
; ð39Þ

which is the eigenvalue equation for the largest
eigenvalue of the symmetric matrix *HH: For the latter,
Rayleigh’s principle is applicable, which is a general
maximum principle involving the full ðN þ 1Þ-dimen-
sional space: %rr ¼ supy

P
k;‘ yk *HHk‘y‘=

P
k y

2
k ; with non-

zero y: In the following subsections we will show, for
each of the three limiting cases (cf. Section 2.7)
separately, how it boils down to the simple scalar
maximum principle (30) and relation (33), and give a
biological interpretation. We will then come to the
derivation of the other identities.

4.1. Unidirectional Mutation

We start with the limit of unidirectional mutation,
since exclusion of back mutations leads to a consider-
ably simpler situation, and we can show how our
findings connect to well-known results. To be specific,
we assume u�

k  0 and uþ
k > 0 for k5N : All results then

follow fairly directly from the equilibrium condition
(38).
Owing to u�

k  0; the equilibrium distribution p in
general depends on initial conditions. But uþ

k > 0 implies
that for any such p; there exists a particular label #kk;
04 #kk4N ; which divides all classes of genotypes into two
parts according to

pk ¼ 0; k5 #kk; pk > 0; k5 #kk: ð40Þ

Equivalently, we obtain for the corresponding left
eigenvector z:

zk ¼ 0; k > #kk; zk > 0; k4 #kk: ð41Þ

Since ak ¼ pkzk ; this shows that the only non-zero
element of the ancestral distribution is a #kk ¼ 1; and that #kk
is the equilibrium ancestor mean #XX of the mutational
distance from the reference class X0: In line with
this, the mutational distance of every line of ancestors
in equilibrium dynamics converges to #kk (with prob-
ability 1). For the classes with non-vanishing frequency,
the fitness and total mutation rate are thus related
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according to

#rr � %rr ¼ rð #xxÞ � %rr ¼ uþð #xxÞ;

rðxkÞ � %rr5uþðxkÞ; k > #kk; ð42Þ

the first part of which corresponds to (33).
Although the equilibrium distribution is not unique,

(42) implies that the one with maximal mean fitness
(which is the only stable one and is automatically
obtained in the limit of vanishing back mutations, u� ! 0;
or by starting with a population with p0ðt ¼ 0Þ > 0) is
characterized by

%rr ¼ rð #xxÞ � uþð #xxÞ ¼ max
k

ðrðxkÞ � uþðxkÞÞ ð43Þ

for arbitrary choices of rðxkÞ and uþðxkÞ: Obviously, (43)
is the discrete version of the maximum principle given in
Eq. (30).
If the sequence rðxkÞ or the sequence uþðxkÞ is

monotonically decreasing (as in the biallelic model), #kk
is also the fittest class present in the equilibrium
population:

#rr ¼ rð #xxÞ ¼ max
k

frðxkÞjpka0g: ð44Þ

If additionally #kk coincides with the class of maximal
fitness, i.e., #rr ¼ rmax; then (42) is a special case of
Haldane’s principle, which relates the mutation load l to
the deleterious mutation rate of the fittest class (Kimura
and Maruyama, 1966; B .uurger, 1998):

l ¼ rmax � %rr ¼ uþð #xxÞ: ð45Þ

In derivations of (variants of) Eq. (45), it is often tacitly
assumed that the equilibrium frequency of the fittest
class is non-zero. This, however, is in general not the
case and must be made explicit here since we are also
interested in the change of the equilibrium distribution
with varying mutation rates. This can lead to a shift in #kk
and hence in #rr:

4.2. The Linear Case

If fitness values and mutation rates depend linearly on
some trait Y ; as described in (29), the maximum
principle holds as an exact identity. This may be derived
from (39) by a short direct calculation, which we present
in Appendix B.1.
For an interpretation of this result, first consider a

trait proportional to the mutational distance X from the
reference class, in which case the system coincides with
the Fujiyama model. Since this is a model without
epistasis, the means and variances are easily obtained
(O’Brien, 1985; Baake and Wagner, 2001). In particular,
they are independent of the number of classes. What is
more, our derivation shows that they only rely on a
linear dependence of fitness and mutation functions on
some trait, as well as the boundary conditions for the
mutation functions. This means that they remain
unchanged if mutation classes are permuted, or even
subjoined or removed.

4.3. Mutation Class Limit

Since the proof of the maximum principle (30) and
relation (33) in the limit N ! 1 is somewhat technical
we will just give a sketch here and defer the details to
Appendix B.2. The main idea is to look at the system
locally, i.e., at some interval of mutation classes
in (38) and (39). This will provide us with upper
and lower bounds for the mean fitness of a system with
finite N (denoted by %rrN ). In the limit N ! 1; they can
then be shown to converge to the same value %rr1 ¼
limN!1 %rrN :
For a lower bound, let us consider submatrices of the

evolution matrix H that, for any class Xk ; consist of the
rows (and columns) corresponding to Xk�m through
Xkþn: Each of them describes the evolution process on a
certain interval of mutation classes at whose boundaries
there is mutational flow out, but none in. Thus, each
largest eigenvalue, %rrk;m;n; corresponding to the local
growth rate, is a lower bound for %rrN : In order to
estimate %rrk;m;n; it is advantageous to use the formulation
in ancestor form}with the same local growth rates as
largest eigenvalues of the corresponding symmetric
submatrices of *HH: Here, lower bounds can be found
due to Rayleigh’s principle, and follow from evaluating
the corresponding quadratic form for the vector
ð1; 1; . . . ; 1ÞT:

%rrN5%rrk;m;n5
1

n þ m þ 1

Xkþn

‘¼k�m

ðr‘ � gN ;‘Þ

"

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
k�m�1u

�
k�m

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
kþnu

�
kþnþ1

q #
; ð46Þ

where gN ;‘ ¼ uþ
‘ þ u�

‘ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
‘�1u

�
‘

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
‘ u

�
‘þ1

q
:

For an upper bound, consider a local maximum of the
ancestor distribution, i.e., a kþ such that akþ5akþ �1

(with the convention aNþ1 ¼ a�1 ¼ 0 such a maximum
always exists). Evaluating (39) for this kþ then yields the
inequality

%rrN4rkþ � gN ;kþ4 sup
k

ðrk � gN ;kÞ: ð47Þ

Let now rk ¼ rðxkÞ and u�
k ¼ u�ðxkÞ be given by

continuous functions as described in Eq. (27), and
analogously gN ;k ¼ gN ðxkÞ: (The more general case with
a finite number of steps in r is treated in Appendix B.2.)
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For an increasing number of mutation classes, fitness
values and mutation rates of neighboring classes will
then become more and more similar on the scale of the
total range of values. More generally, we can use that
xk � xk�i ¼ �i=N ! 0 for any finite i as N ! 1:
Defining, for each x 2 ½0; 1	; an appropriate sequence
ðkN Þ ¼ ðkN ðxÞÞ; such that xkN ! x; we therefore obtain
rðxkN�iÞ � gN ðxkN�iÞ ! rðxÞ � gðxÞ; with gðxÞ as defined in
Eq. (31). Evaluating %rrkN ;m;n for increasing submatrix
dimension n þ m ! 1 in that limit, we have limnþm!1

limN!1 %rrkN ;m;n ¼ rðxÞ � gðxÞ for each x: Combining this
with the upper bound (47), in which supk ðrk � gN ;kÞ4
supx2½0;1	 ðrðxÞ � gN ðxÞÞ ! supx2½0;1	 ðrðxÞ � gðxÞÞ due to
the uniform convergence gN ! g (see Appendix B.2),
gives

sup
x2½0;1	

ðrðxÞ � gðxÞÞ4%rr14 sup
x2½0;1	

ðrðxÞ � gðxÞÞ; ð48Þ

which implies the maximum principle (30). As shown at
the end of Appendix B.2, the ancestral distribution is
sharply peaked around those x at which rðxÞ � gðxÞ is
maximal. Thus, whenever the supremum is unique
(which is the generic case), Eq. (33) follows.

4.4. Mean Mutational Distance and the
Variances

In this subsection, we derive and discuss the results
for the mean mutational distance and the variances,
which hold in the linear case and for N ! 1:
If fitness is linear in an arbitrary trait yk ¼ yðxkÞ; the

relation %rr ¼ rð %yyÞ is immediate. For the variance for-
mulas, we must additionally assume that fitness is linear
in the mutational distance, rðxÞ ¼ rmax � ax; or, equiva-
lently, that all mutational effects are equal. Thus, the
covariances in the general formula (19) vanish, and vR ¼
að %uuþ � %uu�Þ: Due to linearity, this also determines the
variance in mutational distance as vX ¼ ð %uuþ � %uu�Þ=a:
These relations do not require that u�ðxÞ are linear in x;
they reduce to (35) if this is the case.
In the mutation class limit, let us first assume r to be

continuously differentiable on ½0; 1	 with derivative r0:
Expressing vR;1 as the limit variance for increasing
system size N ; and using (19) for the variance of each
finite system, vR;N ; we obtain

vR;1 ¼ lim
N!1

XN
k¼0

rk � rkþ1

N�1 uþ
k �

rk�1 � rk
N�1 u�

k

 �
pk

¼ � r0ðuþ � u�Þ1: ð49Þ

Here, we made use of the fact that the mutational effects
converge to the corresponding values of �r0; i.e., the
negative slope of the fitness function.
Since r0 is bounded, (49) in particular shows that vR;1
is finite, and hence

Vr;1 ¼ lim
N!1

XN
k¼0

r2kpk �
XN
k¼0

rkpk

 !224 35
¼ lim

N!1
N�1vR;N ¼ 0: ð50Þ

For increasing N ; the distribution of fitness values per
class therefore concentrates around %rr: In the limit, if r is
invertible at %rr1; this fixes the mean mutational distance
at %xx1 ¼ r�1ð%rr1Þ; cf. (34), which approximates the mean
distance %xxN ¼ %XXN=N of a finite system to leading order
in N�1:
With this, we have vR;1 ¼ �r0ð %xx1Þðuþð %xx1Þ � u�ð %xx1ÞÞ;

cf. (35), which approximates vR;N ¼ VR;N=N : Note that
the leading order term w.r.t. N�1 is proportional to
�r0ð %xx1Þ; which is the population mean of the mutational
effects in the limit: s�

N ! sþ
1 ¼ s�

1 ¼ �r0ð %xx1Þ: (The local
curvature of r only gives rise to higher-order correc-
tions.) Obviously, the leading order depends only on the
effective deleterious mutation rate, uþð %xx1Þ � u�ð %xx1Þ; if
this does not vanish. Otherwise, the dominant term is of
higher order in N�1:
The variance in x can be obtained via the linear

approximation rðxÞ ’ rð %xx1Þ þ r0ð %xx1Þðx � %xx1Þ as vX ;1 ¼
vR;1=ðr0ð %xx1ÞÞ2; cf. (35). In contrast to vR; vX
decreases with increasing mutational effects at %xx:
Interestingly,

ffiffiffiffiffiffiffiffiffiffiffiffi
vR=vX

p
can serve as an estimate

for the mean mutational effect (at least in our
simple setup)}a quantity which is difficult to
determine experimentally. For our numerical examples
in Sections 5.3 and 6, this works reasonably well (not
shown).
Comparing the results with those for the linear case

above, we see that, given %rr; the infinite mutation class
limit can be interpreted as a local linear approximation.
This does not mean, however, that non-linearities
(i.e., epistasis) are ignored. They enter indirectly through
the mean fitness as determined by the maximum
principle.
For fitness functions with kinks, the derivation

is analogous, as long as the left- and right-hand
sided limits of r0; and thus the mutational effects
in the limit N ! 1; remain bounded. If r0 diverges
at %xx1; or if there is even a jump in the fitness function,
vR diverges according to the above relation. In
the latter case, Vr;1 is finite and determined by the
fraction of the population below and above the jump,
which yields (37).
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5. INTERLUDE: APPLICATIONS AND
DISCUSSION

5.1. Mutational Loss

A central role in this article is played by the
mutational loss G; which was defined in Eq. (24) as the
difference between the ancestor and population mean
fitness in equilibrium. Let us now add some further
interpretation to this quantity. Recapitulating relations
(22)–(24), we obtain for g :¼ G=N in the framework of
the general mutation–selection model (1):

g ¼ #rr � %rr ¼ �
1

N

X
i;j

ziMijpj

¼
1

N

X
i;j

Mijðzj � ziÞpj ¼ �m
@%rr

@m
: ð51Þ

It is instructive to compare g with the mutation load
l ¼ rmax � %rr: Both quantities describe the effect of
mutation on the equilibrium mean fitness. But whereas
the mutation load compares the biological system with a
fictitious system free of mutations, the loss is essentially
a response quantity: In analogy with (26), we have d%rr ’
�ðdm=mÞg: Since mutation rates are usually not switched
on or off in nature, but may be subject to gradual
change, the mutational loss seems to be the quantity of
more direct relevance for questions connected with the
evolution of mutation rates.
From the above, we see that the loss can be

understood as the linear component of the load. In
particular, loss and load will coincide if the latter is
linear in m: This holds for unidirectional mutation as
long as the wildtype has non-vanishing equilibrium
frequency (and, more generally, below a wildtype
threshold, see Section 6.2.2), where rmax ¼ #rr: In general,
however, non-linear terms in m will also contribute to the
load and we find l > g:
The genetic load concept has often been criticized,

since the reference genotype (usually the one with
maximum fitness) is often extremely unlikely to be
found in the population at all. This argument is made
precise by Ewens (1979, Chapter 9.2) and Gillespie
(1991, Chapter 6.2) for the substitution and the
segregation load in finite populations. An analogous
point may be made against the mutation load, even in
infinite populations: The equilibrium frequency of the
fittest class is often close to zero (or may even vanish for
unidirectional mutation). Therefore, measurements of
rmax in real populations are difficult, if not impossible,
and the evolutionary significance of the reference type
seems questionable.
This problem is circumvented in the definition of the

mutational loss. As a response quantity, g is well defined
as long as it is meaningful to think of a system as in
equilibrium. Measurements of g could make use of
marker techniques in (bacterial or viral) clones in order
to determine clone sizes (and thus z) and ancestor
frequencies, or determine directly the response of %rr to
changes in mutation rates, e.g., by comparing strains
with different mutation repair efficiencies.
Up to this point, we have entirely concentrated on the

mutational loss as a response quantity. There is,
however, a second line of interpretation, which clarifies
the role of g in the equilibrium dynamics and also sheds
some light on the maximum principle. If an individual
mutates from j to i; its offspring expectation changes by
zj � zi; where the sign determines whether a loss ðþÞ or
gain ð�Þ is implied. Since the mutational flow from j to i
in equilibrium is Mijpj; the entire system loses offspring
at rate

P
i;j ðzj � ziÞMijpj; which is the same as G

(compare with Eq. (23) or (51)).
The mutational loss does not include any information

about the destination of the ‘‘lost’’ offspring. This,
however, may easily be found by recalling that,
asymptotically, every ancestor of type i leaves zipj
descendants of type j in the equilibrium population.
Further, piðzi � 1Þ ¼ ai � pi is the excess offspring
produced by an i-individual. We thus come to a picture
of a constant flow of mutants from the ancestor to the
equilibrium population.
Let us now turn to the mutational loss function gðxÞ:

Recall that, in the derivation of the maximum principle
in the mutation class limit, we obtained rðxÞ � gðxÞ as the
leading eigenvalue of a local open subsystem around x; if
%rr1 is the death rate due to population regulation in the
entire system, rðxÞ � %rr1 � gðxÞ is the net growth rate of
the subsystem at x: Hence, gðxÞ must describe the rate of
mutational loss due to the flow out of the local system.
This can be made more precise within the framework of
large-deviation theory, which will be presented in a
future publication. If rðxÞ � gðxÞ has a unique maximum,
in which case the ancestor distribution has a single peak,
the maximum principle (30) along with %rr ! %rr1 and #rr !
rð #xx1Þ as N ! 1 implies that the mutational loss g ¼
G=N converges to gð #xx1Þ: Thus, gð #xxÞ can be taken as an
approximation to the actual mutational loss g in this
case.
Let us finally add a remark concerning the influence

of epistasis on the mutational loss (in the sense of a
response quantity) in the single-step model. Following
the suggestion of Phillips et al. (2000), we speak of
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negative (positive) epistasis w.r.t. some class k if Rkþ1 �
Rk5ð>ÞRk � Rk�1: This entails synergistic (antagonistic)
interaction of deleterious mutations. This way, negative
and positive epistasis are connected to concavity and
convexity of the fitness function, and thus to its second
derivative (if well-defined) being negative, respectively,
positive.
Let us now keep the mutation rates fixed and compare

fitness functions with different degrees of epistasis. Let g
be a decreasing loss function, and r and rs two
decreasing fitness functions which are either convex or
concave, and only differ in an open subinterval of ½0; 1	
that includes #xx (the ancestral mean trait under r).
Assume that rs � r is a concave function in our
subinterval. Then rs describes more negative, or less
positive, epistasis than r: Under the above assumption,
rs � r has a unique maximum whose position we denote
by x0: As is most easily seen from the graphical
representation of the maximum principle (Fig. 4), one
then finds #xxs > #xx whenever x0 > #xx (and vice versa), where
#xxs is the ancestral mean trait under the modified fitness
function. Since gðxÞ is decreasing, it follows that
gð #xxsÞ5gð #xxÞ if x0 > #xx: If #xx is small (as may be considered
typical of realistic examples), increased negative epis-
tasis will reduce the loss. The opposite may be said of
decreased negative or increased positive epistasis, in line
with the fact that the loss is maximal for the sharply
peaked landscape, which displays extreme positive
epistasis.

5.2. Haldane’s Principle and Evolution of
Mutational Effects

As we have seen in the discussion of the unidirectional
case, the maximum principle reduces to a well-known
form of the Haldane–Muller principle in that limit.
Using the concept of the ancestor distribution, we will
now re-analyze this principle in the broader context of
models with back mutations. We will also discuss
consequences for the evolution of mutational effects
and mutational robustness.
For models without back mutations to the fittest geno-

type with non-zero equilibrium frequency, Haldane’s
principle says that the difference in fitness between this
type, #ii; and the population mean is equal to the total
mutation rate for #ii: For our general model this reads
L ¼ Rmax � R#ii þ

P
ja#iiMj#ii; whereMj#ii is the mutation rate

from the fittest type (or class) #ii to some other type (or
class) ja#ii: Note in particular that the load is indepen-
dent of the mutant fitness values if the wildtype itself has
non-zero frequency in equilibrium, i.e., #ii ¼ 0: We will
assume R0 ¼ Rmax for simplicity in this section.
If back mutations to the fittest class are present, but
mutation rates, denoted by u; are small compared to the
fitness advantage, u � s; the relation for the load is
modified by a correction term of order u2=s (B .uurger and
Hofbauer, 1994). In the following, we will reproduce this
result in our setting by deriving an explicit expression of
the correction term for the single-step model. We will
also show that this leading order contribution of the
back mutations is exactly contained in the estimate of %rr
as derived from the maximum principle.
Let us assume, for notational simplicity, that the

wildtype is also the fittest type present in the equilibrium
population, and remains so if back mutations are
switched off. Suppose that the back mutation rates u�

k
are small compared to the fitness effects, but not
necessarily the deleterious mutation rates uþ

k : We then
obtain, to linear order in u�

1 ;

l ’ uþ
0 �

@%rr

@u�
1

����
u�
1

¼0

u�
1 ¼ uþ

0 �
p1
p0

����
u�
1

¼0
u�
1 ; ð52Þ

where we have used Eq. (22) for the derivative of %rr with
respect to the mutation rates, and z0 ¼ 1=p0; z1 ¼ 0 for
u�
1 ¼ 0: Calculating p1=p0 from the equilibrium condi-
tion for the mutation–selection equation, we find

l ¼ uþ
0 �

uþ
0 u

�
1

sþ
0 � uþ

0 þ uþ
1

þ Oð½u�	2Þ: ð53Þ

This is in accordance with the result of B .uurger and
Hofbauer (1994) if also uþ

0 ; u
þ
1 � sþ

0 :
On the other hand, starting with a linear interpolation

of the fitness and mutation functions of the form
rðxÞ ¼ r0 þ Nxðr1 � r0Þ; uþðxÞ ¼ uþ

0 þ Nxðuþ
1 � uþ

0 Þ; and
u�ðxÞ ¼ Nxu�

1 for 04x41=N ; we find the load by using
%rr from the maximum principle. To linear order in u�; a
lengthy but elementary calculation yields that rðxÞ � gðxÞ
is maximized at Nx ¼ uþ

0 u
�
1 =ðsþ

0 � uþ
0 þ uþ

1 Þ2; and we
again obtain Eq. (53) for the load. We can therefore
conclude that the maximum principle, when applied to
finite N ; still gives results that are correct to linear order
in the back mutation rates (cf. Section 5.3).
In the preceding paragraphs, back mutations have

merely played the role of a small perturbation of the
system with unidirectional mutation. Our main interest
in this article, however, lies in the case of sufficiently
large mutation rates}or sufficiently small fitness effects
of mutations (as in a nearly neutral landscape) such that
the equilibrium distribution is no longer dominated by
one or a few wildtype states, but is dispersed over many
classes. This is exactly the situation in which one would
assume back mutations to become important, with
effects beyond a second-order correction term. At the
same time, this is the domain of validity of the mutation
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class limit, in which the maximum principle is also exact.
We then obtain

l ¼ rmax � rð #xxÞ þ gð #xxÞ ½4gð0Þ ¼ uþð0Þ	 ð54Þ

as an estimate for the mutation load. Clearly, the load is
no longer independent of the fitness function as soon as
the ancestral mean fitness #rr ¼ rð #xxÞ differs from the
wildtype fitness. Note, however, that the only quantity
that matters is the deviation of the ancestor mean fitness
from the wildtype fitness.
It is instructive to compare the load for different

fitness functions. Let rs and r be fitness functions with
rð0Þ ¼ rsð0Þ ¼ rmax; and rsðxÞ5rðxÞ for all x 2 ½0; 1	: By
the maximum principle, the load with rs cannot be larger
than that with r: If rsðxÞ > rðxÞ at x ¼ #xx; the ancestral
genotype under r; the load with rs is strictly smaller than
with r: In this sense, higher mutant fitness tends to
decrease the mutation load (and vice versa).
Let us now extend these thoughts to the evolution of

mutational effects. To this end, we consider a general
mutation–selection model (i.e., not restricted to permu-
tation invariant fitness or single step). Assume there is
an additional modifier locus, which is tightly linked to
the other loci and changes the fitness of one or several of
the original types or classes. (In the biallelic model, this
may, for example, happen through epistatic interactions
outside our permutation invariant fitness scheme.)
Let now a modifier be introduced into the equilibrium

population at low frequency at time t ¼ 0 (by mutation
or migration), and consider its fate for t ! 1: If there is
no further mutation at the modifier locus, the modifier
will asymptotically fix (or get lost) in terms of relative
frequencies, pðtÞ ¼ yðtÞ=ð

P
i yiðtÞÞ; if the modified system

has a larger (smaller) leading eigenvalue than the
original one, in which case we write d%rr > 0 ðd%rr50Þ: If
d%rr ¼ 0; the modifier will equilibrate at an intermediate
frequency, the exact value of which depends on the
initial conditions.
The above argument is analogous to the clonal

competition mechanism as described for mutation rate
modifiers in asexual populations (for review, see
Sniegowski et al., 2000). It requires slight modification
if mutation at the original loci is unidirectional. Here,
the fate of the modifier also depends on the genetic
background it is introduced into at t ¼ 0: If the fitness
modifications are so small that the fittest type present
remains the same in equilibria with and without
modifier, the modifier will always get lost if it does not
already occur in individuals of that type at t ¼ 0: This
follows since all other types asymptotically expect no
offspring.
Note that the competition mechanism just described
works within the population, the separation of geno-
types with and without modifier being due to tight
linkage of the modifier to the primary loci. In particular,
no group selection is implied.
What consequences, now, does this have for the

possibility of mutational effects to evolve? Again, the
answer involves the ancestor distribution. We have seen
in (25) that changing the fitness values ri to ri þ di will
change the equilibrium mean fitness by

d%rr ’
X
i

diai ð55Þ

to first order in the di: From this, we now obtain the
following intuitive picture: In order for a modification to
prevail in an equilibrium population, it has to invade the
ancestors; otherwise, it will be ‘‘washed away’’.
Let us discuss this in some more detail. According to

our above discussion, the fate of the modifier is entirely
determined by d%rr if we have back mutations. Now, the
right-hand side of Eq. (55) may be interpreted as the
selection coefficient of the modifier with respect to the
ancestor distribution}assuming that the modifier is
statistically independent of the other loci. In order to
understand why this quantity governs the leading order
of d%rr; consider infinitesimally small fitness changes di; in
which case Eq. (55) becomes exact. Here, mutation will
indeed drive the modifier distribution towards statistical
independence in an initial period of time. In order to
eventually spread to fixation, the modifier now has to
compete successfully against those types whose descen-
dents make up the equilibrium population at an even
later time. These, however, follow the ancestor distribu-
tion. In this sense, d%rr may be understood as measuring
the modifier’s growth within the ancestor population. In
the same vein, the vector of the ancestor frequencies can
be seen as the gradient of the mean fitness, pointing into
the direction of the indirect (i.e., second order) selection
pressure exerted on the fitness values ri:
This long-term picture is in sharp contrast to the

initial growth of the modifier in the population, which is
determined by its selection coefficient with respect to the
equilibrium population and of course depends on the
distribution of the modifier over the types at t ¼ 0: If d%rr
is positive (negative), the modifier will asymptotically fix
(vanish) even if its initial selection coefficient is negative
(positive). Note, however, that this process may be very
slow if d%rr is small.
If there is no back mutation to the fittest class (or

type) #ii present, this is the absorbing state of the
backward process, in which all lineages end, and the
ancestor distribution is entirely concentrated there ða#ii ¼
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1; aj ¼ 0; ja#ii Þ: So Eq. (55) leads back to the prediction
of Haldane’s principle that the mean fitness is indepen-
dent of the mutant fitness values in this case. In order to
‘‘invade the ancestors’’, a modifier must be introduced
into the fittest type in the first place, and increase its
fitness.
Assume now that the wildtype fitness is kept fixed but

mutational effects at the wildtype are modified by
variations of the mutant fitness values. Such modifiers
are canalizing (or modifiers for mutational robustness) if
they increase the mutant fitnesses, and decanalizing
(modifiers for antirobustness) if they decrease the
mutant fitnesses (cf. Wagner et al., 1997). It is now
clear from Eq. (55) that only an increase of mutant
fitness values may lead to an evolutionary advantage.
Independent of the fitness landscape or of mutation
patterns, we thus never find a potential for the evolution
of antirobustness in mutation–selection models; how-
ever, mutational robustness may, indeed, evolve. Here,
modifiers increasing the fitness of mutant classes with
large ancestor frequencies will be under particularly
large (positive) selection pressure. If modifiers have
deleterious side effects, these may even be the only ones
that persist and go to fixation.5

Let us, for further analysis, consider two limiting
cases of the mutation scheme now. If mutation is
unidirectional, neither modifications for robustness nor
for antirobustness will change the mean fitness (at least
under the usual assumption that the wildtype is present
in the original equilibrium). We may conclude that there
is no selection pressure on the mutant fitness values at
all in this simple setting, and hence no potential for these
to evolve either.6 On the other hand, if the mutation
matrix is symmetric, Mij ¼ Mji; the ancestor frequencies
are proportional to the square of the population
frequencies, ai � p2i : Thus, the landscape is evolvable
exactly in those regions in which the equilibrium
frequency of the population distribution is high.
Note that we may come to different results here

depending on whether genotype classes or single
genotypes are the relevant entities. If mutation between
genotypes is symmetric (as in our biallelic model with
k ¼ 0), modifiers of single genotypes will be particularly
5Note, however, that no predictions are made here concerning
invadability of modifier mutations, or fixation probabilities, if random
drift becomes a weighty factor.
6For very large, but finite populations (where Muller’s ratchet does

not operate but there is drift among classes of equal fitness) the fixation
probability of clones with and without the modifier is ultimately
determined only by the initial sizes of the respective wildtype classes
(Gabriel and B .uurger, 2000). Any modifier which enters the wildtype
class at low frequency will therefore get lost from this class and,
consequently, from the population with high probability.
important if the corresponding equilibrium frequency is
high. For modifiers of whole genotype classes, however,
the asymmetric mutation scheme with respect to the
classes is relevant, and the maximum of the ancestor
distribution will in general deviate from the maximum of
the population distribution.
In order to see what happens between these limiting

cases, let us restrict our discussion again to the single-
step mutation model. Here, the ancestor distribution
becomes sharply concentrated around #xx with an
increasing number of mutation classes (cf. Appendix
B.2). Similar to the case of unidirectional mutation, only
a very minor part of the fitness function will thus
experience appreciable selection pressure. Note that this
part need neither extend to the types which contain the
bulk of the equilibrium distribution (concentrated
around %rr5#rr), nor the largest fitness values at rmax > #rr:
If robustness modifiers have deleterious side effects, only
those which lead to buffering in the ancestor region will
prevail at all. Therefore, if robustness evolves by the
mechanism described, the strongly differential selection
pressure might lead to the emergence of synergistic
epistasis at the same time. This is illustrated in Fig. 5,
where modification of the fitness function leads to a
flattening near its ‘‘summit’’ at x5 #xx relative to the
‘‘slope’’ at x > #xx: The example also shows that an
increase in fitness around #rr may compensate for a
deleterious side effect of the modifier mutation which
decreases the wildtype fitness.

5.3. Accuracy of the Approximation

In this subsection we wish to illustrate the accuracy of
the analytical expressions for means and variances given
in Section 3. To pay respect to the invariance of the
equilibrium distributions under scaling of both repro-
duction and mutation rates with the same factor, we
introduce g as an overall constant for the reproduction
rates. It should be chosen to represent roughly the
average effect of a single mutation on the reproduction
rate in a mutant genotype (with the maximum number
of mutations considered) as compared to the wildtype.
This does not exclude the possibility that effects of single
mutations may be quite large. In the figures, both
reproduction and mutation rates are given in units of
this constant, i.e., as r=g; respectively m=g:
Figure 6 displays an example of a biallelic model that

deviates from all three exact limiting cases described in
Section 2.7, and, for comparison, three modifications
that are closer to one of the exact limits each. All
numerical values, also in the rest of this article and in
Figs. 3 and 5, are virtually exact and, if not noted



FIG. 5. Comparison of population frequencies pk (near k ¼ 40) and ancestor frequencies ak (near k ¼ 15) for the biallelic model with m ¼ 0:365g
(where g is the loss in reproduction rate due to a single mutation as in Fig. 3), k ¼ 1

2
; and N ¼ 100: The right axis refers to the fitness functions used:

additive fitness rðxÞ=g ¼ 1� x (solid lines), and a modified version (dashed lines) that is favored with respect to the additive one. The modified fitness
is increased in regions of high ancestor frequencies. In this particular example, it is slightly decreased at the wildtype and unchanged in other regions

of vanishing ancestor frequencies, but note that the success of a modification is independent of the fitness values there.
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otherwise, obtained by the power method (Wilkinson
(1965, Chapter 9) also known as von Mises iteration)
with the evolution matrix H: For continuous fitness
functions, the approximate expressions for the obser-
vable means agree with the exact ones up to corrections
of order N�1 (as indicated by numerical comparison, not
shown) or of order ðu�Þ2 (cf. Section 5.2). For fitness
functions with jumps, the error seems to be at most of
order N�1=2 (cf. Fig. 13); for a jump at x ¼ 0 such as in
the sharply peaked landscape; however, the corrections
to %rr appear to be still of order N�1 for the biallelic model
(cf. Fig. 7).
Further examples, exhibiting more conspicuous fea-

tures, are shown in Section 6. For most of them, one will
also find good agreement of numerical and analytical
values for the means for sequences of length N ¼ 100;
for the variances, however, one sometimes needs longer
ones, like N ¼ 1000: In the biallelic model, we generally
find stronger deviations for higher mutation rates, as in
this regime back mutations become more and more
important, whereas for small mutation rates, deviations
are of linear order in m:

6. MORE APPLICATIONS: THRESHOLD
PHENOMENA

In this section, we will take a closer look at how the
equilibrium behavior of a mutation–selection system
changes if the mutation rates are allowed to vary relative
to the corresponding mutational effects. In order to
keep the overall shapes of the fitness and mutation
functions constant, we vary all mutation rates by a
common scalar factor m50: Concentrating on the
single-step mutation model in this section, we choose m
as the mean mutation rate over all classes,

m ¼ ð2N Þ�1
XN
k¼0

ðuþ
k þ u�

k Þ ð56Þ

(recall that u�
0 ¼ uþ

N ¼ 0). This is consistent with the
definition of m as the mean point mutation rate for the
biallelic model, cf. Eq. (28) and Fig. 1. By slight abuse
of notation, we define the shape of the mutational loss
function as gð1; xÞ ¼ m�1gðxÞ (which does not depend
on m), and introduce m as a variable parameter via
gðm; xÞ ¼ mgð1; xÞ:

6.1. Mutation Thresholds

Consider a population in mutation–selection balance.
Usually, if mutation rates change slightly, the popula-
tion will move on to a new equilibrium with the
observables, like means and variances of traits and
fitness, close to the old ones. At certain critical mutation
rates, however, threshold phenomena may occur,
associated with much larger effects on traits or fitness.
The prototype of this kind of behavior is the so-called
error threshold, first observed in a model of prebiotic
evolution many years ago (Eigen, 1971) and discussed in



FIG. 6. The top row refers to a biallelic model that deviates from all three exact limiting cases described in Section 2.7 in having a strongly non-

additive fitness function r=g (left, solid line), symmetric site mutation ðk ¼ 0Þ; and small sequence length ðN ¼ 20Þ: The mean values of the
observables (middle) and corresponding variances (right) are shown as a function of the mutation rate m=g; both for the model itself (symbols) and
according to the expressions given in Section 3 (lines, sometimes hidden by symbols). Even here, we find reasonable agreement. Deviations, however,

are visible for larger mutation rates. As can be seen from the last two rows, going towards any of the three exact limits, i.e., increasing the number of

mutation classes (left, N ¼ 100), going to more asymmetric mutation (middle, k ¼ 0:8), or using a different fitness function with less curvature (right,
r=g: top left, dashed line) these deviations vanish quickly. In the case of increasingly asymmetric mutation, however, this is not true for the variances,
since the approximation becomes only exact here in either of the other two limits (cf. Section 4.4).

FIG. 7. The error threshold of the sharply peaked landscape (left) with rð0Þ ¼ g (bullet) and rðxÞ ¼ 0 for x > 0 (line), for the biallelic model with
symmetric mutation ðk ¼ 0Þ: The observable means are shown in the middle, the variances on the right. Symbols correspond to N ¼ 100; lines to the
expressions in Section 3. The ancestral fitness #rrðmÞ (not shown) jumps from g to 0 at m ¼ g: Note that Vr follows the scaling described by (49) and is
given by (37) for N ! 1:
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7This follows from the Perron–Frobenius theorem and the fact that
the PF eigenvalue and eigenvector depend analytically on the matrix
entries. Since the PF eigenvalue is real and unique under the above
conditions, it never crosses with the second largest eigenvalue as a
function of any model parameter, such as mutation rates.
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numerous variants ever since (for review, see Eigen et al.,
1989; Baake and Gabriel, 2000).
In the following, we will discuss and classify ‘‘error

threshold like’’ behavior in our model class. We shall,
however, avoid the term error threshold as the collective
name for all threshold effects that may be observed, but
rather, and more generally, speak of mutation thresholds.
This is because the definition of the error threshold is
closely linked to the model in which it had been
observed originally, namely the quasi-species model
with the sharply peaked fitness landscape. While many
effects of the original error threshold will turn out to
generalize easily to the much larger class of models
considered here, the criterion of the loss of the wildtype,
which has frequently been taken as the defining property
of the error threshold, seems to be applicable only in
special cases.
We want to be as general as possible as far as the

fitness model and mutation schemes are concerned, but
specific about the responsible evolutionary forces. Error
thresholds have also been described as driven by the
joint action of mutation and segregation (Higgs, 1994)
or recombination (Boerlijst et al., 1996). We will not
consider these phenomena.
Let us now define the notion mutation threshold.

Ideally, a characterization should give a precise math-
ematical definition in the modeling framework which, at
the same time, captures biologically significant behavior.
As may be seen from the varying and sometimes
incompatible definitions that have previously been
suggested for the error threshold (see, e.g., the discus-
sion in Baake and Gabriel, 2000), this can be a complex
problem. Let us therefore start with a verbal description:

A mutation threshold for a particular trait or fitness is the
pronounced change of the equilibrium distribution of the
trait or fitness values within a narrow range of mutation
rates. Here, the threshold phenomenon is purely due to the
interplay of mutation and selection.

Note that we only consider effects on distributions, not
on absolute numbers. This demarcates mutation thresh-
olds from mutational meltdown effects (cf. Gabriel et al.,
1993).
In order to come to a stringent mathematical

definition, a two-fold limit must be considered for any
general mutation–selection model (1). These are the
infinite population limit, which we assumed right from
the beginning, and the limit of an infinite number of
mutation classes.
Application of the infinite population limit is a direct

consequence of the last condition in the verbal definition
above. As mutation thresholds result from mutation and
selection alone, they must persist in the absence of
genetic drift. Hence, unlike drift effects (like Muller’s
ratchet), these phenomena cannot be avoided by
increasing population size. For the purposes of analysis
and classification, therefore, deterministic models pro-
vide the right framework. Of course, aspects of thresh-
olds should also persist in (large) finite populations, if
the phenomena are biologically relevant. For some
models this has been confirmed in numerical studies
(Nowak and Schuster, 1989; Bonhoeffer and Stadler,
1993): While certain properties of the threshold (such as
the critical mutation rate) may be altered by finite
population size, the threshold effect as such is not
eliminated by drift.
The infinite mutation class limit, on the other hand, is

needed to give the vague notion of a ‘‘pronounced
change’’ a more precise meaning in mathematical terms.
Our intention is to specify this notion as a discontinuous
change of a biological observable (or, at least, of one of
its derivatives) as a function of m: In any finite system
with back mutations, however, this clearly conflicts with
the fact that the population frequencies are analytic
functions of the mutation rates.7 The same problem also
arises for the definition of phase transitions in physics.
Phase transitions, therefore, are defined as non-analyti-
city points of the free energy in the thermodynamic limit
(i.e., for infinitely large systems). Since the infinite
mutation class limit is just the counterpart of the
thermodynamic limit in our models (cf. Appendix A),
we take this concept of theoretical physics as our
guideline and characterize different types of mutation
thresholds by discontinuities or kinks in the equilibrium
mean and/or variance of some trait or of fitness as a
function of m in the limit N ! 1: (Therefore, we will
omit the subscript 1 throughout this section.)
Let us add a few comments concerning this strategy:

1. Firstly, and most importantly, the proposed proce-
dure is in accordance with the original definition of
the error threshold: In the quasi-species model, a kink
in the wildtype frequency (and thus the mean fitness)
as a function of the total mutation rate was first
established by an approximate formula for finite
sequence length by Eigen (1971), which was later
found to be exact in the limit N ! 1 (Swetina and
Schuster, 1982). The finite system is thus effectively
approximated by an infinite one. In order to capture



FIG. 8. Graphical construction of the fitness threshold, following

Fig. 4. At the critical mutation rate mc; the maximum of rðxÞ � gðxÞ is
not unique. Thus, with m being increased across mc; the mean of the
ancestor distribution jumps from a position of relatively high fitness

and high mutational loss, #xx; to lower fitness genotypes with less
mutational loss at #xx0: The figure also shows how the population mean
fitness is constructed at the threshold.

Hermisson et al.30
the behavior of the finite system in the limit, the total
mutation rate and the selective advantage of the
wildtype must scale with the number of classes N
(thus leaving the mean mutational effect per class
constant; cf. Franz and Peliti, 1997). The equivalence
of this phenomenon with a magnetic phase transition
has first been established by Leuth.aausser (1987), and
was later used by Tarazona (1992) and many others.

2. Whereas we have introduced the mutation class limit
mainly as an approximation for real systems with a
finite number of classes, its use in the present context
rather has a conceptual reason. Analogous to phase
transitions in physics, the threshold should be
considered as a property of the limit that manifests
itself (as a ‘‘pronounced change’’) in finite systems as
well (cf. the numerical examples in Figs. 7, 9, and
11–15).

3. Discontinuities in the biological observables can also
arise in finite systems if the evolution matrix H is
reducible (as for unidirectional mutation). Then
mutation thresholds can be directly defined for finite
N : This has previously been done by Wiehe (1997)
and will be discussed in Section 6.3 below.

6.2. Description of Threshold Types

Following the lines of the above reasoning, we now
come to a description of different types of mutation
thresholds. In our list we will not include any
discontinuous change that might occur, but rather
concentrate on pronounced changes of potential evolu-
tionary significance. To this end, we will take the
original error threshold of the sharply peaked landscape
as our reference and analyze four of its characteristic
properties, namely (cf. Fig. 7):

* A kink in the population mean fitness,

* the loss of the wildtype from the population,

* complete mutational degradation, and

* a jump in the population mean of the mutational
distance (or some additive trait).

For these threshold effects, we will check whether and
how they extend to the permutation-invariant class of
mutation–selection models. We will discuss their origin,
analyze how they are related, and formulate criteria for
the fitness function to exhibit each threshold effect, or
type of threshold, separately.

6.2.1. Fitness Thresholds. As we will see below, the
kink in the population mean fitness is, in many respects,
the most fundamental aspect to classify mutation
thresholds. We therefore discuss it first.
Phenomenon: The most pronounced change that may

happen to the fitness distribution at some critical
mutation rate mc is characterized by a kink in the mean
fitness %rr as a function of m (i.e., a jump in its derivative).
We will refer to this phenomenon as a mutation
threshold in fitness, or fitness threshold for short. Using
Eq. (51) and the maximum principle, we see that an
alternative definition can be given in terms of the
ancestor distribution. Here, a fitness threshold is defined
by a jump in the mutational loss (as a function of m),
g ¼ gð #xxÞ ¼ �m@%rr=@m; corresponding to jumps in #xx and
the ancestor mean fitness #rr ¼ rð #xxÞ: As a consequence of
the kink in %rr; the mean mutational distance %xx; and the
variances vR and vX ; will typically show a kink as well.
Interpretation and graphical representation: The origin

of a fitness threshold is easily understood from the
maximum principle. For a generic choice of m; the
function rðxÞ � gðm; xÞ is maximized for a unique x ¼ #xx:
For some fitness functions, however, there are particular
values of m that lead to multiple solutions. It is precisely
this phenomenon of two distinct ancestor distributions
becoming degenerate with respect to the maximum
principle which marks the threshold. This may be
illustrated graphically as shown in Fig. 8.
Let us add a remark concerning the transferability of

these notions to the original ‘‘biological’’ model with
fixed, finite N : In defining fitness thresholds in the
mutation class limit, we have tacitly assumed that the



FIG. 9. Means (middle) and variances (right) for a biallelic model with asymmetric mutation ðk ¼ 0:4), and a fitness function r=g (left) that
displays strong positive epistasis near x ¼ 0:15: One therefore observes a fitness threshold ðmc=g ’ 0:562Þ: Symbols correspond to N ¼ 100; dashed
lines to N ¼ 500; and solid lines to the expressions in Section 3.

8 In physics, this kind of behavior corresponds to the important class
of continuous phase transitions, cf. Appendix A. In the biological
models, however, these non-generic limiting cases do not seem to
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fitness function r reasonably interpolates the discrete
fitness values of the original model. In order to avoid
‘‘pseudo-thresholds’’ driven by purely local features of
the fitness function on a scale smaller than 1=N ; the
effects should be stable under different interpolations.
Note that one way to assure this is to apply the
maximum principle only to the discrete point set fxkg ¼
fk=Ng and ask for a jump in #xx over more than one
mutation class. In any case, the example in Fig. 9 and
those in Figs. 11–15 show that the threshold effects are
usually clearly visible also for finite N :
Criterion: To derive a criterion for the existence of a

fitness threshold for a given fitness function r; we use the
following argument. According to the above definition,
a fitness threshold is signaled by a jump in #xx: Thus, in
any fitness landscape without a threshold, #xxðmÞ
varies continuously from the wildtype position
xmin :¼ limm!0 #xxðmÞ to the position of the mutation
equilibrium, xmax :¼ limm!1 #xxðmÞ; where gðxmaxÞ ¼ 0 (for
the biallelic model, xmax ¼ ð1þ kÞ=2Þ: Therefore, at
each x in the half-open interval ½xmin; xmax½ the maximum
in (30) is attained for some finite m: If r and u� are
twice continuously differentiable in the closed interval
½xmin; xmax	; then g is twice continuously differentiable in
	xmin; xmax½ and we arrive at the following sufficient
condition for the non-existence of a fitness threshold:

8x 2	 xmin; xmax½ 9m > 0:

r0ðxÞ ¼ g0ðm; xÞ and r00ðxÞ5g00ðm; xÞ: ð57Þ

Expressing m ¼ mðxÞ through the derivatives of r and g;
we can state an existence condition in the following
general form, cf. Appendix C.1.

There is a fitness threshold in the mutation–selection
equilibrium at some critical mutation rate mc if and only if

sup
x2½xmin ;xmax	

r00ðxÞ �
r0ðxÞg00ðxÞ
g0ðxÞ

� �
50: ð58Þ
For the biallelic model, this reads

sup
x2½xmin ; xmax	

r00ðxÞ �
�r0ðxÞ

2xð1� xÞð1� 2x þ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ=ð1� k2Þ

p
Þ

 !
50:

ð59Þ

In the special case that the supremum in (58) is zero, but
is assumed only in a single point x0; there is actually no
jump in #xx: Here, we obtain limiting cases of a threshold,
in the sense that a jump in #xx may be obtained by
arbitrarily small changes in the slope or curvature of r or
g: Typically, this limiting behavior is indicated by an
infinite derivative of the function #xxðmÞ at #xx ¼ x0 (cf.
Appendix C.1).8

Discontinuities in the fitness function or its derivatives
can formally be included in (58) by considering left- and
right-hand sided limits separately. For a kink in r; we
formally set r00 ¼ 1 or r00 ¼ �1; respectively, if r0

increases or decreases at this point (which makes (58)
true in the former, but not in the latter case). Finally, a
jump in r always results in a fitness threshold.
Note that the criteria presented here do not indicate

whether there are one or multiple thresholds for a given
combination of r and u�: Neither do they provide direct
information about the value of %rr at the threshold, or
about mc: In fact, (58) and (59) are independent of the
scalar factor m; but only depend on the shapes of the
mutation and fitness function. Answers to these ques-
tions, however, are easily derived from the maximum
principle for any specific r and u�; and may also be
justify a category of their own.



FIG. 10. The figure shows, as a solid line, the minimum exponent

q; parametrizing epistasis of the fitness function rðxÞ ¼ ðxmax � xÞq; that
is needed to obtain a fitness threshold in the biallelic model as a

function of the asymmetry parameter k of the site mutations rate. The
exponent varies continuously from quadratic (for symmetric site

mutation, k ¼ 0) to linear (for unidirectional mutation, k ¼ 1Þ: For
q > 2 (dashed line), the fitness threshold is also a degradation threshold
(see Section 6.2.3). For this combination of fitness and mutation

functions, a wildtype threshold only occurs for unidirectional mutation

ðk ¼ 1Þ:
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obtained from the graphical construction, cf. the
discussion in the preceding paragraph.
Discussion: Under what conditions should we expect a

fitness threshold to exist in a mutation–selection system?
The above criterion (58) compares r00; which measures
the epistasis of the fitness function, with g00 weighted by
a factor r0=g0: Under the reasonable assumption that the
rate of back mutations u� increases with the distance to
the wildtype, whereas the rate of deleterious mutations
uþ decreases, we have g050 and r0=g0 > 0 for decreasing
fitness functions. Typically, if the curvature of uþ and u�

is not too large, we also find g00 > 0: The criterion then
shows that a finite minimum strength of positive
epistasis ðr00 > 0; cf. the end of Section 5.1) is required
for a fitness threshold. For the biallelic model with
rðxÞ ¼ ðxmax � xÞq; this is shown in Fig. 10. Vanishing
curvature or even concavity of the mutational loss
function, g0040; on the other hand, may even lead to
thresholds for fitness functions with negative epistasis.
As will become apparent in Appendix A, the fitness

threshold as defined above is the biological counterpart
of a first-order phase transition in physics. Since #xx;
which translates into the magnetization, plays the role of
the order parameter, the phase transition is generically
first order, and continuous only in the limiting case
mentioned above. Note that positive epistasis with
quadratic exponent q ¼ 2 in a biallelic model with
symmetric site mutation ðk ¼ 0Þ; as has been discussed
by Baake and Wagner (2001), is just such a limiting case.
The physical analogy shows that a fitness threshold is
indeed a true collective phenomenon on the level of the
sites or loci. The essential self-enhancing effect simply is
that in regions of positive epistasis the selection pressure
decreases with any new deleterious mutation.

6.2.2. Wildtype Thresholds. The loss of the wildtype
is the classic criterion for the original error threshold as
defined by Eigen (1971): For the sharply peaked
landscape, the frequency p0 of the wildtype (or master
sequence) remains finite for small mutation rates even
for N ! 1; but vanishes above the critical mutation
rate. The same effect may be observed for any fitness
function with a jump at the wildtype position xmin:

9 Note
that this does not depend on whether we assume the
wildtype class to contain only a single or a large number
of genotypes (the latter case has sometimes been called
the phenotypic error threshold, cf. Huynen et al., 1996).
9As the mean fitness varies continuously, the wildtype frequency in
the limit decreases linearly with the mutation rate, until the mean
fitness reaches the lower value at the jump. For larger mutation rates,
the wildtype frequency in the limit is zero due to the sharpness of the
population distribution for N ! 1 (cf. Section 4.4).
If r is continuous at xmin; however, the population
distribution spreads over a large number of mutation
classes with similar fitness for any finite mutation rate.
While for finite N the frequency in any class remains
positive for arbitrary m (as long as there are back
mutations), the frequency of any single mutation class
(including the wildtype class) vanishes for N ! 1:
According to the original definition, error thresholds
therefore depend on strongly decanalized wildtypes in
the sense that deleterious mutations with small muta-
tional effects are virtually absent. While such a model
was found to be adequate in certain cases, such as the
evolution of coliphage Qb and certain viruses (cf. Eigen
and Biebricher, 1988), and could be favored by
pleiotropy (Waxman and Peck, 1998), slightly deleter-
ious mutations are generally assumed to occur in most
biologically relevant situations (Kimura, 1983, Chapter
8.7; Ohta, 1998).
Still, one may ask for some related phenomenon that

goes together with the loss of the wildtype in all models
in which this effect is observed,10 but defines a threshold
also in a broader model class. The fitness threshold as
defined above does not meet this requirement, since
10 I.e., basically for fitness functions with a jump at the wildtype, and
for certain models with unidirectional mutation, see the discussion in
Section 6.3.
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fitness functions with a jump at the wildtype may well
have multiple fitness thresholds, but only lose their
wildtype once. Instead, we will give a definition which is
based on the ancestor distribution.
Phenomenon: We define the wildtype threshold as the

largest mutation rate m�
c > 0 below which the ancestral

mean fitness coincides with the fitness of the wildtype:

#rrðmÞ ¼ #rrð0Þ ¼ rmax; m5m�
c : ð60Þ

The threshold may equivalently be defined as the largest
m�
c below which #xxðmÞ ¼ xmin: As a consequence, the
population mean fitness %rr responds linearly to an
increase of the wildtype fitness if m5m�

c ; but becomes
independent of (sufficiently small) changes in the wild-
type fitness above the threshold.
Note that for unidirectional mutation, the ancestral

average #xx (in general) also denotes the fittest class with
non-vanishing equilibrium frequency for any finite N ; cf.
Eq. (44). In this special case, the wildtype thus indeed
vanishes from the population at m�

c : Threshold criteria
in models with special unidirectional mutation schemes
have been derived previously, see the discussion below in
Section 6.3.
Criterion: For a wildtype threshold to occur,

rðxÞ � gðm; xÞ must be maximized at x ¼ xmin for some
m > 0: Assuming r and g to be continuously differenti-
able for x > xmin; we arrive at the criterion

lim
x& xmin

gð1; xÞ � gð1; xminÞ
rðxÞ � rðxminÞ

¼ lim
x& xmin

g0ð1; xÞ
r0ðxÞ

51; ð61Þ

see Appendix C.2 for a proof. Fitness functions with a
jump at the wildtype position lead to a threshold for any
continuous g:
Discussion: Note first that a wildtype threshold will

always lead to non-analytic behavior of #xxðmÞ and %rrðmÞ in
m�
c and is therefore closely related to a fitness threshold.
FIG. 11. Means (middle) and variances (right) for a model with sym

rðxÞ ¼ 3
4
gð1� xÞ2 with an additional single peak of height g at x ¼ 0 (left). D

also a fitness threshold. Lines correspond to the expressions in Section 3.

Eq. (36), but scales differently and is given by (37) for N ! 1 (see the

combination of both relations, where (37) and (36) dominate for small and

fitness threshold at this point.
In general, however, it need not show up as a prominent
feature with a jump in means or variances as functions
of the mutation rate. If we have a fitness threshold with
a jump in #xxðmÞ at #xx ¼ xmin; however, this will also be a
wildtype threshold. In a system with a series of
thresholds, the wildtype threshold (if it exists) is always
the one with the smallest mc:
The existence of a wildtype threshold, and also the

‘‘loss of the wildtype’’ where applicable, depends on the
strength of the deleterious mutational effect at the
wildtype, measured by r0ðxminÞ: The degree to which the
wildtype requires a fitness advantage to avoid the
threshold depends on the mutational loss function. If g
has a finite derivative at xmin; we always obtain a
threshold if the mutational effects do not tend to zero.
In many important situations, like the biallelic model
and xmin ¼ 0; however, a wildtype threshold requires
fitness functions with a rather sharp peak, like
rðxÞ � �xp with p41=2 or the one used in the example
in Fig. 11. Note that this result depends on back
mutations, which make the slope of g diverge at x ¼ 0:
For u�  0; however, the situation changes drastically,
and we obtain a threshold if only r0ð0Þ50; as described
above.
Since gð0Þ ¼ uþð0Þ; we see from Eqs. (30) and (33) that

%rr and %xx (but not necessarily the variances) are unaffected
by back mutations for mutation rates below the wild-
type threshold. Further, the mutation load coincides
with the mutational loss, l ¼ rmax � %rr ¼ #rr � %rr ¼ uþð0Þ;
and therefore provides a meaningful measure for
changes in %rr if the mutation rate is varied. In this sense
m�
c may be seen as a point up to which back mutations
can be safely ignored.

6.2.3. Degradation Thresholds. Phenomenon: A far
reaching effect of the error threshold is that selection
metric mutation ðk ¼ 0Þ; N ¼ 100 (symbols), and the fitness function

ue to the latter, one finds a wildtype threshold ðm�
c =g ’ 0:641Þ; which is

For 14%rr=g53
4
; i.e., 04m=g51

4
; the variance in fitness no longer follows

discussion in Section 4.4). For finite N ; we can approximate vR by a
large m; respectively. Note that %rr is analytic at m=g ¼ 1

4
; we thus have no
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altogether ceases to operate. We define a degradation
threshold as the smallest mutation rate mþ

c above which
the population mean fitness is insensitive to any further
increase of the mutation rate:

@%rr

@m
¼ �gð1; #xxðmÞÞ ¼ 0; m > mþ

c : ð62Þ

This is equivalent to the condition #xxðmÞ ¼ xmax for m >
mþ
c : Also, the other means and variances then coincide
with their values in mutation equilibrium, and the
population is degenerate.
Criterion: Selection ceases to operate according to the

above definition if and only if rðxÞ � gðm; xÞ is maximal at
x ¼ xmax (where gðm; xmaxÞ ¼ 0Þ for any finite m > mþ

c :
Since g is continuous and strictly positive for x5xmax
and m > 0; it is sufficient to compare the asymptotic
behavior of r and g in the neighborhood of xmax; cf.
Appendix C.3:

lim
x%xmax

rðxÞ � rðxmaxÞ
gð1; xÞ

¼ lim
x%xmax

r0ðxÞ
g0ð1; xÞ

51: ð63Þ

Discussion: The degradation threshold is related to the
fitness threshold in an analogous way as the wildtype
threshold above. In particular, we always find non-
analytic behavior of #xxðmÞ and %rrðmÞ at mþ

c ; but not
necessarily a jump or a kink. However, a fitness
threshold with a jump of #xxðmÞ onto xmax is necessarily a
degradation threshold. If there is a series of thresholds
connected with a system fulfilling (63), the degradation
threshold obviously is the last one as m increases.
Criterion (63) implies an important necessary condi-

tion for a degradation threshold, namely rðxmaxÞ > �1;
i.e., genotypes should not be lethal at this point. This
parallels a well-known sufficient condition for the
existence of a normalizable limit distribution for
arbitrary mutation rates in models with non-compact
state space (Moran, 1977; B .uurger, 2000, p. 128). From a
biological point of view, a finite value of rðxmaxÞ means
FIG. 12. Means (middle) and variances (right) for a model with asym

rðxÞ ¼ gðxmax � xÞq=ðxmaxÞq with xmax ¼ ð1þ kÞ=2 ¼ 0:9 and q ¼ 2:2 (left). A
fitness threshold, cf. Fig. 10. As #rr behaves just like rð #xxÞ with a similar acc
that not the whole genome, but only the part relevant
for a specific function or phenotypic property is included
in the model, and the genetic background is under
sufficiently strong selection to be stable under the
mutation rates considered and guarantees survival of
the population. We may then obtain mutational
degradation w.r.t. the function under consideration if
this function is less robust under mutation than the
background and fitness thus levels out at a finite value.
Essentially, this is the threshold criterion previously
given by Wagner and Krall (1993) in their treatment of
single-step models with unidirectional mutation (see the
discussion in Section 6.3).
For the more general model with back mutations, we

see that rðxÞ must approach the fitness level at rðxmaxÞ
sufficiently fast in order to fulfill (63). For the biallelic
model, it is easy to show that we need positive epistasis
with at least a quadratic exponent, i.e. r � rðxmaxÞ þ
aðxmax � xÞ2: Clearly, we always obtain mutational
degradation if rðxÞ ¼ rðxmaxÞ already for x5xmax; corre-
sponding to the reasonable assumption that a minimum
of non-random coding region is needed for the gene or
function considered to show a fitness effect at all. An
example for a degradation threshold is given in Fig. 12.
Note finally that we obtain a degradation threshold

that at the same time is a wildtype threshold (and a
fitness threshold with a jump of #xx from xmin to xmax) if
and only if

sup
x2½xmin ;xmax	

rðxÞ � rðxmaxÞ � gðxÞ
rðxminÞ � rðxmaxÞ

gðxminÞ

� �
40 ð64Þ

as is most easily seen with the help of the graphical
representation, cf. Fig. 8. Clearly, Eq. (64) is fulfilled
for the sharply peaked landscape used in Fig. 7, but also
for truncation selection, see Fig. 13.

6.2.4. Trait Thresholds. Phenomenon: As stated
above, there is usually a kink in the population mean
metric mutation ðk ¼ 0:8Þ; N ¼ 100 (symbols), and the fitness function

s q > 2; one finds a degradation threshold ðmþ
c =g ’ 0:606Þ; which is also a

uracy of the approximation, it is not shown here.



FIG. 13. Means (middle) and variances (right) for a model with symmetric mutation ðk ¼ 0Þ and truncation selection, i.e., rðxÞ ¼ g for x41
8
and

rðxÞ ¼ 0 otherwise (left). As in the sharply peaked landscape, cf. Fig. 7, one finds a combined fitness, wildtype, degradation, and trait threshold

ðmc=g ’ 2:94Þ: Also, the variance in fitness follows a different kind of scaling as described by (49) and is given by (37) for N ! 1: Symbols
correspond to N ¼ 100; dashed lines to N ¼ 1000; and solid lines to the expressions in Section 3. As #rr behaves just like rð #xxÞ with similar accuracy, it is
not shown here. Note that the deviations of the approximate expressions are somewhat stronger (of order N�1=2) for fitness functions with jumps, cf.

Section 5.3.
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of the mutational distance %xxðmÞ (or some other trait) at a
fitness threshold. The most pronounced change in the
equilibrium distribution of x; however, is a jump of %xx at
some mutation rate mxc; referred to as a trait threshold.
Since a discontinuous change in %xx is usually accom-
panied by a jump in the local mutation rates u�ð %xxÞ as
well as r0ð %xxÞ; it typically also leads to jumps in vX and vR:
The mean fitness, however, is not at all affected at such
points (if they do not coincide with a fitness threshold as
defined above).
Criterion: Since the equilibrium mean fitness %rrðmÞ as a

function of the mutation rate is always continuous, we
easily conclude from %rr ¼ rð %xxÞ that a jump in %xx occurs if
and only if the fitness function is not strictly decreasing
from xmin to xmax:
Discussion: Obviously, any fitness landscape with a

trait threshold also fulfills (58) and thus also has a fitness
threshold, but not vice versa. We have mc5mxc (i.e., the
jump in %xx in general precedes the fitness transition with
the jump in #xx); see the example in Fig. 14. This shows,
in particular, that with varying mutation rate there may
be large changes in the phenotype that may be
accompanied by changes in the fitness variance, but
have virtually no effect on mean fitness. Trait and fitness
thresholds should, therefore, be clearly distinguished. In
contrast to the fitness threshold or a phase transition in
physics, the trait threshold is not driven by collective
(self-enhancing) action, but simply mirrors a local
feature of the fitness function.

6.3. Unidirectional Mutation

In this section, we briefly discuss how the definitions
of mutation thresholds specialize for unidirectional
mutation (k ¼ 1 for the biallelic model). An example is
given in Fig. 15. We shall also take the chance to make
contact with previous results on threshold criteria by
Wagner and Krall (1993) and by Wiehe (1997), where
related models were studied.
For the above definition of thresholds, the maximum

principle in the mutation class limit has played a central
role. Since, for vanishing back mutations, it reduces to
Haldane’s principle and is also exact for finite N ; many
of the notions above can be formulated directly,
avoiding the limit. As has been described in Section
4.1, the ancestral mean of the mutational distance (or
trait) agrees with the minimal x in the equilibrium
population. Since this minimum can only assume
discrete values for finite N ; jumps in #xx will necessarily
occur for some m: For a system with a large number of
mutation classes (which we consider here), this should,
however, not be regarded relevant. In line with the
above reasoning on the applicability of the fitness
threshold definition for finite systems and previous
definitions of the error threshold for unidirectional
mutation, it seems reasonable to restrict the term
threshold to the first and the last jump, i.e., the loss of
the wildtype (Wagner and Krall, 1993; Wiehe, 1997) and
the point of complete mutational degradation (Wiehe,
1997), and to jumps of #xx over more than one class.
Threshold criteria are easily found as analogs of the

above relations (note that g reduces to uþ if back
mutations vanish). As condition for the existence of a
fitness threshold with a jump over more than one class,
for example, we obtain for monotonic uþ

k :

max
k

sþ
k

sþ
kþ1

�
uþ
k � uþ

kþ1

uþ
kþ1 � uþ

kþ2

� �
50: ð65Þ



FIG. 15. Means (middle) and variances (right) for a model with unidirectional mutation ðk ¼ 1Þ; N ¼ 20 (symbols), and the fitness function r=g
shown on the left. The means %rr and #xx were calculated via the discrete maximum principle (43). For %xx and the variances the population distribution

was calculated explicitly using the recursion following from (2) for U�
k  0; solid lines refer to the expressions from Section 3. One observes both a

wildtype and a degradation threshold. As #rr is exactly rð #xxÞ; it is not shown here.

FIG. 14. Means (middle) and variances (right) for a model with asymmetric mutation ðk ¼ 0:5Þ and a fitness function r=g (left) with an ambiguity
for rðxÞ=g ¼ 0:5: Thus, one finds a trait threshold ðmxc=g ’ 0:372Þ which precedes a fitness threshold ðmc=g ’ 0:408Þ; cf. Section 6.2.4. Symbols
correspond to N ¼ 100; dashed lines to N ¼ 500; and solid lines to the expressions in Section 3. As #rr behaves just like rð #xxÞ with similar accuracy, it is
not shown here.
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We always find a wildtype threshold with loss of the
fittest class if the total range of fitness values is finite. If
there are lethal genotypes ðrk ¼ �1Þ; we obtain
no such threshold if (and only if) the mutation rate at
all non-lethal types is larger or equal to the mutation
rate at the wildtype. For the special case of a constant
mutation rate ðuþ

k ¼ const; k5N ; uþ
N ¼ 0Þ; this repro-

duces the criterion by Wagner and Krall (1993).
A degradation threshold is found if and only if there
are no lethals.
For the special case of the biallelic model with

linearly decreasing mutation rates, Eq. (65) reduces to
maxk sþ

k =s
þ
kþ151 and we obtain a threshold for any

degree of positive epistasis, but also for linear parts of
the fitness function (with any three fitness values on a
straight line). For fitness functions of the form r�
ðxÞ ¼ r0ð1� xÞa; finally, we can confirm the result by
Wiehe (1997) that wildtype and degradation thresholds
coincide if and only if a40 (no or negative epistasis).
Note that the result by Wiehe (1997) was derived for a
different mutation scheme (with mutations coupled to
reproduction).
6.4. Variation of Fitness Values and Sequence
Lengths

Up to this point, we have discussed mutation thresh-
olds as effects that may occur as the mutation rate
varies, while the fitness function and the number of
mutation classes are kept fixed (note that the mutation
class limit is always understood as an approximation to
a given finite system). Here are two alternative points of
view.
Firstly, we can consider threshold effects as the fitness

values vary, while the mutation rates remain constant.
As already mentioned in the discussion of Haldane’s
principle (Section 5.2), mean fitness is largely indepen-
dent of local variations in the fitness function, but only
depends on the shape of r in regions with substantial
weight in the ancestral distribution. For most values of
the mutation rate, this has a unique peak, and therefore
only the neighborhood of the mean ancestral mutational
distance, #xx; matters. At fitness thresholds, however, we
find, in general, two peaks at which variations in r can
change the mean fitness.



11Note that the fitness effect of mutational repair is always an
indirect one caused by an increase in the copying accuracy in parts of
the sequence that are directly related to fitness.
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Secondly, in line with the original work of Eigen
(1971), we can increase sequence length while leaving the
mutation rate per site fixed, thus altering the total
mutation rate. The question of interest then is: Given a
certain (fixed) fitness advantage of some function, and
fixed mutation rates per site in a molecular model, how
long can the coding region for the function become and
still be maintained intact by selection? In this case, with
u�=g � N (where g denotes the range of fitness values
under consideration), we obtain thresholds which are
inversely related to sequence length, mc � 1=N ; in all
situations above. Note that this is in accordance with the
original findings for the sharply peaked landscape (cf.
Eigen and Biebricher, 1988), but at variance with results
by Wiehe (1997). The latter are artificial effects caused
by the use of a different scaling of the fitness functions,
in which g is not kept fixed, but increases with N in just
those cases where conflicting results have been found.

6.5. Implications of Mutation Thresholds

At mutation thresholds, mutation–selection balance is
unstable with respect to small changes in the model
parameters. There is no real lower limit on the mutation
rates at which these phenomena may happen, but for
fitness and degradation thresholds mutation rates must
be comparable to the average mutational effect g to
obtain effects of significant magnitude (cf. our examples
in Figs. 9 and 11–15). In this case, the average effect of
the mutations considered will be very slightly deleterious
(or almost neutral) for realistic values of the mutation
rate. The model then pays respect to the rationale that
these mutations are the relevant ones for the discontin-
uous behavior. Since they may be numerous (cf., e.g.,
Kondrashov, 1995), their collective effect may never-
theless be quite large. Mutations with much stronger
effects, on the other hand, will only occur at very low
frequency in the population and contribute smooth
changes to the system observables if the mutation rate is
varied. They may therefore be excluded from these
considerations.
An important consequence of the original error

threshold of the sharply peaked landscape (and, more
generally, of any degradation threshold in our typol-
ogy), which has been stressed in particular by Eigen
(1971) as well as by Maynard Smith and Szathm!aary
(1995, Chapter 4.3), is its potential importance for the
evolution of mutation rates. Since the total mutation
rate increases with the sequence length (see the previous
subsection), site mutation rates must evolve below the
threshold value to allow functions to prevail that need a
certain minimum length of the coding region as their
genetic basis. This might have been a severe problem for
early replicators since the mutational repair mechanisms
required to reduce the mutation rate depend on enzymes
with relatively large coding regions. Since we find
degradation thresholds for a rather broad class of
fitness functions, this is also a plausible hypothesis with
respect to our more general model class.11

A closer look at the effect of thresholds on the
mutational loss reveals yet another mechanism by which
degradation thresholds, and fitness thresholds as well,
may be important for the evolution of mutation rates,
even if mutational repair itself is not the function
endangered. Assume that the mutation rate may be
reduced by modifications of the replication accuracy.
Recall further that the mutational loss g ¼ #rr � %rr
provides a measure for the indirect fitness advantage
d%rr gained by the decrease of m: Therefore, a system
beyond a degradation threshold (where g ¼ 0) will never
experience any selection pressure for decreasing muta-
tion rates, and thus cannot evolve in this direction. But
even a fitness threshold (with a jump in g; but g > 0 for
m > mc) may have a similar effect. This is because
modifiers for reduced mutation usually have deleterious
physiological side effects, dubbed the ‘‘cost of fidelity’’
(see Sniegowski et al., 2000, for a recent review). Clearly,
for the modifier to prevail, the indirect fitness advantage
d%rr gained by the decrease of m must be at least as high.
Therefore, a jump in g separates two different evolu-
tionary regimes: for m5mc; much larger costs can be
counteracted than for m > mc:
In a second line of interpretation, the critical mutation

rate of an error threshold has often been argued to
provide a strict upper limit that must be avoided in all
real organisms. Certain kinds of viruses are perceived as
thriving just below that value as to maximize their
adaptability in a changing environment (Eigen and
Biebricher, 1988). While it is certainly true that wildtype
sequences or certain functions can get lost at threshold
points, it is, however, much more difficult to argue why
evolution should care about them. After all, g drops at
the threshold, thus making a further increase in
adaptability less costly. Further, the equilibrium mean
fitness changes continuously with the mutation rate in
arbitrary deterministic mutation–selection systems, even
at threshold points. Mutation thresholds, therefore,
cannot be seen as strict limits constraining the evolution
of mutation rates. This may be different if further
evolutionary forces are relevant, most importantly drift.
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Indeed, numerical studies show that the mean fitness
(averaged over time) may drop discontinuously at
critical mutation rates in a finite population (Nowak
and Schuster, 1989). A jump in the mean fitness has also
been found for sexually reproducing populations with
dominance (Higgs, 1994). This, however, is outside our
model class and, according to our definition, no longer a
property of a mutation threshold but essentially a drift
(or segregation) phenomenon.
Let us finally turn to yet another effect that has

previously been described as characteristic of the error
threshold (e.g., Bonhoeffer and Stadler, 1993). Assume
that mutation classes increase in size with the distance
from the wildtype (as in the case for the biallelic model
for k up to N=2), which is reflected by asymmetric
mutation rates between neighboring classes. Then, a jump
in %xx; as at the critical mutation rate mxc of a trait threshold,
entails a delocalization effect. It should be stressed,
however, that this effect has no direct consequences for
the evolution of mutation rates, which are entirely
connected to the population mean fitness and thus only
to fitness, wildtype, and degradation thresholds.

7. SUMMARY AND OUTLOOK

The findings of this article, and the future directions
they might lead to, fall into three parts, which we would
like to discuss in turn.
Ancestors: As a crucial concept for the study of

(asexual) mutation–selection models, we have identified
the ancestor distribution of genotypes, or genotype
classes, which, in mutation–selection balance, is the
equilibrium distribution of the time-reversed evolution
process. The ancestor frequency of the ith genotype (or
class) is given as ai ¼ zipi; where zi; the relative
reproductive success, and pi; the equilibrium frequency,
are the ith entries of the left and right leading (PF)
eigenvectors of the evolution matrix. In the biology–
physics analogy laid down in Appendix A, the ancestor
distribution corresponds to the distribution of the bulk
magnetization in spin models. Biologically, measure-
ments of ancestor frequencies in real population should
in principle be possible by marker techniques. In the
equilibrium dynamics, the ancestors permanently feed
the swarm of mutants that is observed at any instant of
time. Significant evolutionary change is indicated by
modification of this ancestor population. We have
shown this in a couple of instances.
If the fitness values Ri are subject to change, the

ai measure the sensitivity of the equilibrium mean fitness
%RR to these changes. The net total change in %RR is given (to
linear order) by Eq. (25). If the fitness changes are due to
a modifier mutation, Eq. (55) can be read as the
selection coefficient of this modification with respect to
the ancestors. Such a modifier will asymptotically fix if
and only if it increases the fitness of the ancestors. The
vector of ancestor frequencies can therefore be seen as
the gradient which points into the direction of the
effective selection pressure on the fitness function and
determines the course of evolution}given that the
appropriate modifier mutations are available.
Since the ai are non-negative, selection will always

favor an increase of fitness values. In the case of
modifiers that change the mutant fitness values, we thus
find a tendency for the evolution of robustness, or
canalization, in systems with back mutations, whereas
antirobustness, or decanalization, cannot result in this
simple setup. As the selection pressure is strongly
differential, one can even speculate that this mechanism
is a cause for negative (synergistic) epistasis (as in the
example in Fig. 3), which is considered a rather general
phenomenon by many (Crow and Simmons, 1983;
Phillips et al., 2000, and references therein). As always
with indirect selection, however, selective forces are
weak and probably of relevance only in large popula-
tions and for rather high mutation rates. In the limiting
case of unidirectional mutation, the ancestor distribu-
tion is concentrated at the wildtype (if present in the
equilibrium population). Then, only modifiers that
increase the wildtype fitness will go to fixation, whereas
modifications of mutant fitness values have no effect on
the equilibrium mean fitness}in line with the predic-
tions of the Haldane–Muller principle.
We have defined the mutational loss G as the

difference between ancestor and population mean
fitness, which equals the long-term loss in progeny that
the equilibrium system suffers due to mutation. Eq. (24)
shows that the loss determines the change in the
equilibrium mean fitness if the mutation rate is subject
to change. Again, it is thus the ancestor distribution that
provides the link between external variations of model
parameters and the equilibrium response. We always
have G4L; with L the mutation load, and equality only
in systems without back mutation to the fittest type.
Measurements of the mutational loss should be possible
by fitness measurements in mutator strains or by direct
determination of the ancestor fitness distribution using
genetic markers.
The ancestor concept, as introduced in this article, is

independent of modeling assumptions on fitness land-
scapes and mutation schemes. We have derived a few
basic results that hold for this general case, and extend
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the Haldane–Muller principle. Under additional as-
sumptions much stronger results may be obtained, as we
have seen for the single-step mutation model. We expect
that, of the many successful approximation methods
that are routinely applied to the population distribution,
some could also be applicable for the ancestor distribu-
tion and yield further interesting results. However, in
order to apply this approach to more general situations,
namely including genetic drift, the concept will have to
be extended. The question is whether it is possible to
characterize the distribution of genotypes on a single
lineage backward in time, and to relate this to the
mutation–selection–drift equilibrium.
The maximum principle: The reformulation of the

equilibrium condition in terms of ancestor variables
leads to a maximum principle for the equilibrium mean
fitness, which we have exploited for the single-step
mutation model. In this model, fitness is an arbitrary
function of the number of mutations (or some other
additive trait). Mutation proceeds stepwise on the
mutation classes, but mutation rates (as well as back
mutation rates) may vary from class to class. Here, the
maximum principle may be recast into a particularly
simple form, which yields the mean fitness as the
maximum of the difference between the fitness function
and the mutational loss function (see Eqs. (30) and (31)).
The position of the maximum determines the mean
ancestral genotype and the corresponding value of the
mutational loss function yields the mutational loss G
(Eq. (33)). The simplicity of the maximum principle
results from the fact that maximization is over one single
scalar variable only, and may be performed explicitly, or
with the help of a simple graphical construction
(Fig. 4). A different maximum principle has been
suggested previously for mutation–selection models
(Demetrius, 1983). It relies on general variational
principles in the framework of ergodic theory, in which
maximization is over all possible genealogies, and
therefore not constructive.
Our maximum principle is exact in three independent

limiting cases, namely unidirectional mutation, models
with a linear dependence of both mutation rates and
fitness on an underlying trait (including multilocus
wildtype-mutant models without epistasis), and in the
limit of an infinite number of mutation classes. For
small back mutation rates, u� � ðuþ þ sÞ; the resulting
estimate for the equilibrium mean fitness is exact to
linear order in u�: In general, the maximum principle
holds as an approximation that leads to quantitatively
reasonable results for a wide range of parameters and
quickly becomes accurate if one of the exact limits is
approached.
Starting from the mean fitness, we have explicitly
calculated the fitness variance and the mean and
variance of the trait. All formulas are collected in
Section 3. The fitness variance is both proportional to
the mean mutational effect and the mean difference of
deleterious and back mutation rates; the trait variance
has the same dependence on the mutation rates, but is
inversely proportional to the mean mutational effect
(Eq. (35)). These formulas give the amount of genetic
variability that is maintained by the balance between
mutation and selection.
Extensions of the maximum principle to a larger

model class is possible in various ways. Following the
lines of this paper, it is relatively straightforward to
include double or multiple mutations in the theory.
Poisson-distributed mutations (which emerge naturally
in the biallelic model if mutation is coupled to
reproduction) can also be treated. A necessary
ingredient is that the evolution matrix can still be
symmetrized by transformation to the ancestor
frequencies.
The models discussed here all assume fitness to

depend only on the distance to a reference class (the
Hamming distance to the reference type in the biallelic
case). Especially in a molecular context, this is, of
course, a severe oversimplification. But also in classical
population genetics, the importance of variance of
additive and epistatic effects has often been highlighted
(see, e.g., B .uurger and Gimelfarb, 1999; Phillips et al.,
2000). Progress in this direction can be made by
applying methods of inhomogeneous mean-field theory
from statistical physics to the biallelic model. Here, it is
possible to derive a simple maximum principle for
models in which groups of sites or loci have different
weights assigned that scale their respective direct and
epistatic fitness effects (H.W., unpublished results). With
similar techniques, fitness landscapes with more than
one trait, such as the multiple quantitative trait model
(Taylor and Higgs, 2000), can also be treated. Here, the
equilibrium mean fitness is derived from a maximum
principle over an n-dimensional space, if n is the number
of traits. Finally, multilocus models with more than two
alleles per locus (or states per site) may be considered. In
the molecular context, an explicit treatment of the four-
letter case with Kimura 3ST mutation scheme (cf.
Swofford et al., 1995) has already been given by
Hermisson et al. (2001).
Mutation thresholds: Inspired by the definition of

phase transitions in statistical physics, we have used the
concept of the mutation class limit to define threshold
behavior in mutation–selection models as the discontin-
uous change of statistical observables (such as the mean
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fitness or the mean number of mutations) with the
mutation rate m: Four different types of thresholds have
been singled out, which all coincide in Eigen’s original
error threshold for the model with the sharply peaked
landscape, but should be distinguished for general
fitness functions. With the help of the maximum
principle, criteria have been given to characterize the
fitness functions and mutation schemes that lead to each
type of threshold.
Fitness thresholds are characterized by a kink in the

population mean fitness and a jump in the mutational
loss G: They precisely occur at mutation rates for
which the equilibrium ancestor distribution that
solves the maximum principle is non-unique in the
mutation class limit. The evolutionary significance of a
fitness threshold lies in its potential impact on the
evolution of mutation rates. Since the mutational loss
jumps and may take much smaller values for m exceeding
the critical mutation rate, the gain in mean fitness by
reduction of m may be very small until the threshold is
reached. If this gain in fitness must (over)compensate
costs connected with mutational repair, evolution for
lower mutation rates might be slowed down in the
presence of a threshold. For the existence of fitness
thresholds, positive (antagonistic) epistasis is required for
many mutation schemes. Small convex parts of the fitness
function, however, may already be sufficient. Fitness
thresholds are collective phenomena and correspond to
phase transitions in physics.
Whereas the loss of the wildtype from the population

is not a well-defined notion for most of the models
treated here, we consider the ancestor mean in the
mutation class limit instead. A wildtype threshold is then
characterized by a critical mutation rate m�

c > 0 below
which the ancestor mean fitness coincides with the
wildtype fitness, and the ancestor distribution is
concentrated at the wildtype. Below a wildtype thresh-
old, the system behaves, in many respects, as a system
with unidirectional mutation. For the biallelic model,
wildtype thresholds occur only for fitness functions with
very sharp peaks at the wildtype position.
A degradation threshold is characterized by

the fact that selection altogether ceases to operate and
the mean fitness does not change any further for
mutation rates exceeding a critical value mþ

c : A necessary
condition for a degradation threshold is that the fitness
function does not diverge to minus infinity. This is
reminiscent of a threshold criterion derived for a model
with unidirectional mutation by Wagner and Krall
(1993). Degradation thresholds have similar implica-
tions for the evolution of mutation rates as fitness
thresholds.
A trait threshold, finally, is characterized by a jump in
the trait or mean number of mutations %XX : In the
sequence space picture, a trait threshold is connected
with (partial) delocalization of the equilibrium popula-
tion in genotype space. It is important to note that a
trait threshold is not a collective phenomenon but is
simply caused by non-monotonic parts of the fitness
function. The delocalization effect is not connected with
any significant change in the mean fitness (unless the
trait threshold goes together with a fitness threshold),
and thus has no direct impact on the selection pressure
on the mutation rate.
The types of thresholds found here should

also be observable in mutation–selection models
with more general fitness landscapes and mutation
schemes. Explicit threshold criteria can be obtained
at least in some cases, such as the four-state model
treated by Hermisson et al. (2001) (J.H., unpublished
result).

APPENDIX A: THE CONNECTION
TO PHYSICS

For a number of models from statistical physics, a
relation to mutation–selection models has been demon-
strated, see Baake and Gabriel (2000) for an overview.
In the present investigation, too, concepts and techni-
ques from theoretical physics have served as a guideline
for the analysis. Most importantly, the maximum
principle (30) derives from the physical principle by
which a system seeks to minimize its free energy. In our
definitions of mutation thresholds, we also exploited the
correspondence between thresholds and physical phase
transitions, which has been first pointed out by
Leuth.aausser (1987).
Whereas such correspondences can be very fruitful,

they require a detour through the physical world, which
remains unsatisfactory from the biological point of view.
Therefore, our intention in the body of the article has
been to develop and discuss concepts entirely within the
biological framework. Nevertheless, for readers with a
physical background, as well as for biologists who are
familiar with the interface to statistical mechanics, we
will briefly sketch the relationship between both
approaches. This may, on the one hand, facilitate
further transfer of methods; on the other hand,
limitations of certain ‘‘imported’’ concepts in the
biological context become obvious. Last but not least,
it is exactly this connection which resolves a few issues
that had remained enigmatic so far.
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Concentrating on the biallelic model with types s in
this appendix, we can rely on a connection to a model of
quantum statistical mechanics that was previously
established by Baake et al. (1997) (see also Wagner
et al., 1998). More precisely, the evolution operator of
the biallelic model with symmetric mutation was shown
to be exactly equivalent to the Hamilton operator of an
Ising quantum chain (up to a minus sign). Generalizing
this slightly to include asymmetric mutation rates, and
assuming a suitable ordering of genotypes, we may
represent the quantum chain Hamiltonian as

H ¼ m
X
n

ðsxn � IÞ � k
X
n

ðisyn þ sznÞ

" #
þ
X
I

ZI
Y
n2I

szn ¼ M þ R: ð66Þ

Here,

san :¼ I � � � � � I|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n�1 copies

�sa � I � � � � � I|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N�n copies

ð67Þ

where a equals x; y or z; and sx;y;z are Pauli’s matrices,
i.e.,

sx :¼
0 1

1 0

 !
; sy :¼

0 �i

i 0

 !
and

sz :¼
1 0

0 �1

 !
: ð68Þ

The last sum in (66) runs over all index sets I �
f1; . . . ;Ng; and ZI are the interaction coefficients of the
spins within the chain, or with a longitudinal field. The
collection of the ZI determines the fitness function.
Further, there are transversal fields in x and y directions
that account for mutation. Note that the Hamiltonian is
non-Hermitian for asymmetric mutation.
This equivalence was used by Wagner et al. (1998) and

Baake and Wagner (2001) to solve the model for a
couple of fitness functions and symmetric mutation ðk ¼
0Þ with the help of methods from quantum statistical
mechanics. In the current investigation, we have chosen
an equivalent formulation, which remains entirely with-
in classical probability, to analyze more general muta-
tion and fitness schemes. In order to briefly sketch the
connection between the approaches, we first symmetrize
H by means of a similarity transform, i.e., *HH ¼ SHS�1

with S :¼
QN

n¼1 ðcoshðy=2ÞI þ sinhðy=2ÞsznÞ and y ¼
artanhðkÞ: (Note that this transformation relies on the
sequence space representation of H (66), in contrast to
the symmetrization in Section 2.2, which starts out from
a mutation class representation.)
The central concept now required is the quantum
mechanical expectation hOi of an operator O; defined
by

hOiðtÞ :¼ trðOqðtÞÞ; ð69Þ

where qðtÞ is the so-called density operator

qðtÞ :¼ expðt *HHÞ=trðexpðt *HHÞÞ ð70Þ

and t corresponds to the inverse temperature. For the
choice O :¼ ð1=N Þ

PN
n¼1 s

z
n; one obtains the quantum

mechanical magnetization, which is the crucial order
parameter for the quantum chain.
We will concentrate on the limit t ! 1 (the ground

state), where qðtÞ becomes identical with the time
evolution operator of the critical branching process we
have met in Section 2.2. That is, q ¼ limt!1 qðtÞ ¼
limt!1 expðtð *HH � lmaxIÞÞ ¼ *pp*ppT=h*pp; *ppi; where h�; �i de-
notes the scalar product and T means transposition. In
this limit, the quantum mechanical expectation of any
diagonal operator O (defined by the elements Oss)
therefore turns out to coincide with the corresponding
ancestral average (cf. Section 2.4):

hOi ¼ trðOqÞ ¼
h*pp;O*ppi

h*pp; *ppi
¼
X
s

Oss

*pp2sP
s0 *pp2s0

¼
X
s

Ossas ¼ #OO; ð71Þ

where we have used that as ¼ *pp2s=
P

s0 *pp
2
s0 ; for symmetric

*HH; in line with Section 2.2. In particular, the
quantum mechanical magnetization (given by Oss ¼
ðN � 2dHðs; sþÞ=N ÞÞ; which has, so far, appeared as a
crucial but technical quantity unrelated to any biological
observable, now emerges as the mean ancestral genotype
#xx (up to a factor and an additive constant). In contrast,
the classical magnetization

P
sOssps; which we had

termed surplus previously, translates into the population
average %xx: Let us note in passing that the change in
normalization performed in Baake et al. (1998, Eqs. (7),
(11)) and Baake and Wagner (2001, Eqs. (55), (56)) to
formulate Rayleigh’s principle for the PF eigenvalue
(i.e., lmax ¼ suphx; *HHxi where the supremum is taken
over all x with hx; xi ¼ jjxjj2 ¼ 1Þ is equivalent to our
ancestral transformation in (16). This way, we may take
advantage of L2 theory although the original problem is
inherently in the realm of L1: Finally, the expectation of
the non-diagonal operator M is hMi ¼

P
s;s0 *pps *MMs;s0 *pps0 ¼P

s;s0 zsMs;s0ps0 (with *MM :¼ SMS�1Þ; which we have
identified with the loss G in offspring due to mutation
(cf. Section 5).
The concept of ancestral distributions is very general

and does not rely on our special dynamical system. It
also applies to discrete dynamical systems, as long as
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they are linear (or may be transformed to a linear
system) and admit a unique stable stationary state. This
is true if a system is defined by an iteration matrix T for
which the Perron–Frobenius theorem holds (hints in this
direction may be found in Demetrius, 1983). In
particular, this applies to a discrete-time version of the
quasi-species model defined by Tss0 ¼ vss0ws0 ; where vss0 is
the mutation probability from s0 to s; and ws0 is
Wrightian fitness of s0: As observed by Leuth.aausser
(1986, 1987) and reviewed by Baake and Wagner (2001,
Appendix II), this model is equivalent to a classical two-
dimensional Ising model with row transfer matrix T;
whereas the rows correspond to genotypes, and the
columns to generations. Hence, every 2D configuration
corresponds to one line of descent, conditional on non-
extinction at present.
Here, considerable confusion has arisen in the

literature as to the distinction and meaning of surface
and bulk magnetizations (Leuth.aausser, 1987; Tarazona,
1992; Franz and Peliti, 1997). Surface quantities
correspond to the last row (in the time direction) of a
configuration with open boundary conditions, i.e., the
current population; therefore, surface averages are
population averages. In contrast, bulk quantities are
averages over the entire 2D configuration. In the limit of
an infinite number of rows, they become identical with
averages over a single row ‘‘in the middle’’ of the
configuration (i.e., at infinite distance from both the first
and the last row), as given by limn!1 trðTnOTnÞ=trðT2nÞ:
Therefore, the bulk average is, again, the ancestral
average (also compare with (69) and (71)).
Everything we have said so far holds for arbitrary,

finite N : Clearly, the infinite mutation class limit N ! 1
is the thermodynamic limit of the statistical mechanics
system with its extensive scaling of energy and magnetic
field terms. Technical aspects related to this scaling in
the biological system are covered by Baake and Wagner
(2001). While the thermodynamic limit may be taken as
a matter of course in most classical situations in solid-
state physics, the adequacy of the corresponding limit as
an approximation in biological applications must be
thoroughly considered. In particular, the mutation class
limit should be clearly distinguished from the infinite-
sites limit, which is widely used in theoretical population
genetics; see the discussion in Section 2.7, and Baake
and Wagner (2001).
Clearly, the fitness thresholds described in Section 6

correspond to the phase transitions of the physical
system, in the sense of a non-analytic point of the free
energy of the classical Ising system or the ground state
energy of the quantum chain (the mean fitness in the
biological model). Most importantly, the idea to use the
thermodynamic limit for the mathematical definition of
the concept is taken from physics. As we have pointed
out (Section 6.1), this is in accordance with the original
definition of the error threshold for the sharply peaked
landscape. It should be noted, however, that the fitness
functions of the biological system typically lack the
symmetries inherent in physics. As a consequence, the
usual classification of phase transitions in physics
according to orders of the non-analyticity as well as
the consideration of critical exponents does not seem to
be particularly meaningful in the biological context.
Fitness thresholds are typically first order and exhibit a
jump in the ancestral mean #xx; which parallels the
physical magnetization. Note at this point that neither
the population mean %xx (as suggested by Tarazona, 1992;
Franz and Peliti, 1997) nor the mean fitness itself (as
implicitly in Higgs, 1994) should be mistaken as an
order parameter, in the sense that jumps in these
quantities do not characterize first-order phase transi-
tions.

APPENDIX B: PROOFS FROM
SECTION 4

B.1. The Additive Case

Let us prove here that, if fitness and mutation rates
depend linearly on some trait yk ¼ yðxkÞ as described in
(29), the system (39) reduces to just two equations, one
corresponding to the necessary extremum condition
following from (30), the other being the defining
Eq. (33) for the ancestral mean #yy (for yðxÞ ¼ xÞ: For
the sake of simplicity, we write xk instead of yk here.
Taking the difference of two arbitrary equations of the
linear system (39), say for k and ‘; divided by

ffiffiffiffiffi
ak

p
andffiffiffiffiffi

a‘
p

; respectively, we get

ðbþ � b� � aÞðxk � x‘Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
bþb�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkð1� xk�1Þ

p ffiffiffiffiffiffiffiffiffi
ak�1

ak

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x‘ð1� x‘�1Þ

p ffiffiffiffiffiffiffiffiffi
a‘�1

a‘

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkþ1ð1� xkÞ

p ffiffiffiffiffiffiffiffiffi
akþ1

ak

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x‘þ1ð1� x‘Þ

p ffiffiffiffiffiffiffiffiffi
a‘þ1

a‘

r �
¼ 0: ð72Þ

With the ansatz

ak�1

ak
¼ C

xk
1� xk�1

,
akþ1

ak
¼ C�1 1� xk

xkþ1
ð73Þ
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Equation (72) can be divided by ðxk � x‘Þ and
becomes independent of k and ‘: Note that (73) also
takes care of the boundary conditions a�1 ¼ aNþ1 ¼ 0 if
x0 ¼ 0 and xN ¼ 1: Summing both sides of ð1� xk�1Þ �
ak�1 ¼ Cxkak over k; we obtain C ¼ ð1� #xxÞ= #xx and thus
from (72)

bþ � b� � a þ
ffiffiffiffiffiffiffiffiffiffiffiffi
bþb�

q
1� 2 #xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#xxð1� #xx

p
Þ

¼ 0; ð74Þ

which is exactly the extremum condition r0ð #xxÞ ¼ g0ð #xxÞ
following from (30). Together with the negative second
derivative this implies the maximum principle.
On the other hand, we can use (73) to eliminate ak�1

from (39). After multiplication by
ffiffiffiffiffi
ak

p
this reads

r0 � axk � %rr � bþð1� xkÞ � b�xk þ
ffiffiffiffiffiffiffiffiffiffiffiffi
bþb�

q�
xk

ffiffiffiffiffiffiffiffiffiffiffi
1� #xx

#xx

r
þ ð1� xkÞ

ffiffiffiffiffiffiffiffiffiffiffi
#xx

1� #xx

r !#
ak ¼ 0 ð75Þ

and we obtain, by summation over k;

%rr ¼ r0 � a #xx � bþð1� #xxÞ � b� #xx þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþb� #xxð1� #xxÞ

q
¼ rð #xxÞ � gð #xxÞ; ð76Þ

which corresponds to (33). Since fitness is assumed
linear in the trait, the mean values with respect to the
population distribution are also related via %rr ¼ rð %xxÞ:

B.2. The Case N ! 1

Let u� : ½0; 1	 ! R50 be continuous and positive, but
fulfill uþð1Þ ¼ u�ð0Þ ¼ 0: Let r : ½0; 1	 ! R have at most
finitely many discontinuities, being either left or right
continuous at each discontinuity in 	0; 1½: Then, with the
scaling described at the end of Section 2.6, the maximum
principle (30) holds in the limit N ! 1:
For a proof, we follow the arguments and notation

introduced in Section 4.3. First note that the lower
bound for %rrN in (46) is itself greater than or equal to

rk;m;n :¼ inf
y2Ik;m;n

ðrðyÞ � gðyÞÞ � sup
y2Ik;m;n

jgðyÞ � gN ðyÞj

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
k�m�1u

�
k�m

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ
kþnu

�
kþnþ1

q
m þ n þ 1

; ð77Þ

where Ik;m;n ¼ ½ðk � mÞ=N ; ðk þ nÞ=N 	 and the rules for
inf/sup have been applied. We will now construct a
sequence rN ðxÞ :¼ rkN ðxÞ;mN ðxÞ;nN ðxÞ for each x 2 ½0; 1	; using
suitable sequences for the indices, such that

rN ðxÞ ! rðxÞ � gðxÞ: ð78Þ

Since, by definition, limN!1 %rrN ¼ %rr1; Eqs. (46), (77),
and (78) will then establish %rr15supx2½0;1	ðrðxÞ � gðxÞÞ;
from which, together with the upper bound in (48), the
claim will follow.
Note first that, for x ¼ 0 or x ¼ 1; rN ðxÞ ¼ rxN ;0;0 ¼

rðxÞ � gðxÞ holds for arbitrary N : Now, fix x 2	0; 1½: If r is
continuous in ½x � d; x	 for a suitable d > 0; let
kN ðxÞ :¼ b xN c; mN ðxÞ ¼ bd

ffiffiffiffi
N

p
c; and nN ðxÞ  0: Otherwise

r is continuous in ½x; x þ d	 for some d > 0; and we define
kN ðxÞ :¼ dxN e; mN ðxÞ  0; and nN ðxÞ ¼ bd

ffiffiffiffi
N

p
c: With these

choices, the last term in (77) vanishes for N ! 1 since
mN ðxÞ þ nN ðxÞ ! 1; and the enumerator is bounded.
So does the supremum term because of the uniform con-
vergence gN ! g: supy2IkN ;mN ;nN

jgðxÞ � gN ðxÞj4supy2½0;1	 j
gðxÞ � gN ðxÞj ! 0: The latter follows from the uniform
continuity of

ffiffiffiffiffiffi
u�

p
since, in

jgðxÞ � gN ðxÞj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ x �

1

N

� �s
�

ffiffiffiffiffiffiffiffiffiffiffi
uþðxÞ

p ! ffiffiffiffiffiffiffiffiffiffiffi
u�ðxÞ

p�����
þ

ffiffiffiffiffiffiffiffiffiffiffi
uþðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� x þ

1

N

� �s
�

ffiffiffiffiffiffiffiffiffiffiffi
u�ðxÞ

p !�����; ð79Þ

the terms in parentheses vanish uniformly in x as
N ! 1 and

ffiffiffiffiffiffiffiffiffiffiffiffi
u�ðxÞ

p
is bounded. Finally, the infimum

term in (77), and thus rN ðxÞ; converges to rðxÞ � gðxÞ
since xkN ðxÞ ! x; r is continuous in all IN U x; and
jIN j ¼ ðmN ðxÞ þ nN ðxÞÞ=N ! 0: This was to be shown.
Now, let us prove that the ancestor distribution is

concentrated around those x for which rðxÞ � gðxÞ is
maximal, from which Eq. (33) follows if the maximum is
unique. Multiplying the evolution equation in ancestor
form (39) by

ffiffiffiffiffi
ak

p
; we obtain, after summation over k:

%rrN ¼
XN
k¼0

½ðrðxkÞ � uþðxkÞ � u�ðxkÞÞak

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþðxk�1Þu�ðxkÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
akak�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþðxkÞu�ðxkþ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
akþ1ak

p
	: ð80Þ

Using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akak�1

p
41
2
ðak þ ak�1Þ; we get

%rrN4
XN
k¼0

½rðxkÞ � gN ðxkÞ	ak ¼ #rrN � ðcgNgN ÞN ð81Þ

with gN ðxkÞ as defined in Section 4.3. Since %rrN ! %rr and
gN ðxÞ ! gðxÞ uniformly in x 2 ½0; 1	; we can find for any
given e > 0 some Ne; such that for all N > Ne:XN

k¼0

½rðxkÞ � gðxkÞ	ak > %rr � e2: ð82Þ

We now divide this sum into two parts,
P

k :¼
P

k> þP
k4 : The first part,

P
k> ; collects all k with

rðxkÞ � gðxkÞ > %rr � e; the second part contains the rest.
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We then obtain

%rr � e25
XN
k¼0

½rðxkÞ � gðxkÞ	ak

4 %rr
X
k>

ak þ ð%rr � eÞ
X
k4

ak ¼ %rr � e
X
k4

ak ð83Þ

and thus
P

k4 ak5e:We conclude that for N sufficiently
large, the ancestor distribution is concentrated in those
mutation classes for which rðxÞ � gðxÞ is arbitrarily close
to its maximum, %rr:

APPENDIX C: PROOFS FROM
SECTION 6

C.1. Proof of (58)

We first prove that the negation of (58),

r00ðxÞ �
r0ðxÞg00ðxÞ
g0ðxÞ

50 8x 2 ½xmin; xmax	 ð84Þ

implies (57) and is therefore a sufficient condition for the
absence of a fitness threshold. We start by showing that
both r and g are strictly decreasing in 	xmin; xmax½: To see
this, suppose there exists an x > xmin with r0ðxÞ ¼ 0; and
let xr be the smallest such x: Then either g0ð1; xrÞ ¼ 0 and
limx!xr ðr00ðxÞ � r0ðxÞg00 ðxÞ

g0ðxÞ Þ ¼ r00ðxrÞ � r00ðxrÞ ¼ 0 in contra-
diction to (84), or g0ð1; xrÞa0; in which case we obtain
r00ðxrÞ50 in contradiction to r0ðxÞ50 for x 2	xmin; xr½: On
the other hand, imagine g0ðxÞ ¼ 0 for some x 2	xmin; xmax½;
and let xg be the largest such x: Then, since g0ðxÞ50
for x 2	xg; xmax½; we have g00ðxgÞ40 and thus
limx!xg g

00ðxÞ=g0ðxÞ ¼ þ1 for the right-sided limit,
which again contradicts (84) since r0ðxgÞ50: Therefore,
mðxÞ :¼ r0ðxÞ=g0ð1; xÞ is well defined everywhere in 	xmin;
xmax½; it guarantees r0ðxÞ ¼ g0ðmðxÞ; xÞ; and (84) yields
r00ðxÞ5g00ðmðxÞ; xÞ; which completes the first part of the
proof.
We now prove that (58) implies a threshold. Assume

first that the supremum in (58) is larger than zero. Due
to the continuity of r; g; and their derivatives, we then
find an x0 in 	xmin; xmax½ with r00ðx0Þ � r0ðx0Þg00ðx0Þ=
g0ðx0Þ > 0: This, however, implies r00ðx0Þ � g00ðx0Þ > 0
whenever r0ðx0Þ � g0ðx0Þ ¼ 0: Therefore, the maximum
of rðxÞ � gðxÞ is never attained at x0 and we must have a
jump in #xxðmÞ: If the supremum in (58) is exactly zero, we
argue as follows. For the absence of a threshold, we
need a continuous function #xxðmÞ whose inverse, by the
maximum principle, is mð #xxÞ ¼ r0ð #xxÞ=g0ð1; #xxÞ > 0 for
#xx 2	xmin; xmax½: For the derivative of mð #xxÞ; we find
m0ð #xxÞ ¼ ½r00ð #xxÞ � r0ð #xxÞg00ð #xxÞ=g0ð #xxÞ	=g0ð1; #xxÞ; which must be
non-negative in the absence of a threshold. Consider
now those #xx at which the supremum in (58) is
attained. For g0ð1; #xxÞa0; we have m0ð #xxÞ ¼ 0: Since
#xx0ðmÞ ¼ 1=m0ð #xxÞ; #xxðmÞ has a diverging derivative at these
points, and a jump if the supremum is attained
(and thus m0ð #xxÞ ¼ 0Þ on a whole interval. Finally, we
also obtain a jump if the supremum is attained on an
interval where also g0ð1; xÞ ¼ 0 as then the whole interval
is degenerate as a maximum. We exclude the special case
that g0ð1; xÞ ¼ 0 at an isolated x to avoid lengthy
technicalities.

C.2. Proof of (61)

Note first that existence of a wildtype threshold
obviously implies a lower bound of 1=m�

c on the left-
hand side of (61). Assume, on the other hand, that there
are sequences xi in ½xmin; xmax	 and mi > 0 with mi ! 0 and
rðxiÞ � migð1; xiÞ > rðxminÞ � migð1; xminÞ for all i: Let then
xj ! x1 be a convergent subsequence. Since r and g are
assumed to be continuous, we have rðx1Þ5rðxminÞ and
hence x1 ¼ xmin; since rðxminÞ is the unique maximum of
r in ½xmin; xmax	: Thus, we find

gð1; xjÞ � gð1; xminÞ
rðxjÞ � rðxminÞ

>
1

mj
! 1; ð85Þ

contradicting (61) and proving the criterion.

C.3. Proof of (63)

The proof is analogous to the case of the wildtype
threshold. On the one hand, existence of the threshold
implies the criterion with a bound mþ

c : On the other
hand, if we have sequences xi in ½xmin; xmax	 and mi with
rðxiÞ � migð1; xiÞ > rðxmaxÞ for mi ! 1; we can again
choose a convergent subsequence xj ! x1: Since gð1; xÞ
is continuous and xmax is the only zero of g in ½xmin; xmax	;
we have x1 ¼ xmax: As in the wildtype case above, this
contradicts (63) and proves the criterion.
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