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Quantum mechanics versus classical probability in biological evolution
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We reconsider the mean-field Hamiltonian of the Ising quantum chain as a mutation-selection model of
biological evolution. Direct calculation of its Perron-Frobenius eigenvector reveals a fundamental difference
between the quantum-mechanical and probabilistic applications, and partially corrects previous results.
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In two recent publicationgl,2], we established an equiva- =" U, 1 N
lence between a mutation-selection model of biological evo- u:= ';— uj:= NE s}'), 4
lution, and an Ising quantum chain. The model in question j=1Yj =1

describes the parallel action of mutation and selection on a

population of individuals that are identified with points in cf. Eq. (11) of [1]. In calculating this quantity for

binary sequence spade; 1,1}V, whereN is the length of the  H:=H— Ny in the macroscopic limif1], we impliedv to

sequence. Tha= 2N different sequences will be denoted as be the infinite tensor product of the Perron-Frober(ieB)

A r=ss). s, wheres(Ve{-1,13}, i=1, -+, and  eigenvectorp e (2, of the one-site Hamiltonian, normalized

j=1,... N.ltwas shown that the corresponding differential g {ha(y;, +3,=1. Further calculations have now revealed

equation may be written as the linear system the relationshipv= (y/2)u? between the ground state energy
per spinw, and the average surplus,to hold whenevev is

z=(H—Np)z, (1)  atensor product of the above type. This is so because, in this

case, permutation invariance yields

ze (R=g)", together with the normalization

2N
, u=i21 Uiv;=01— 0o, 5
Xi :EF: 7 2
2N
Here, x; is the relative frequency of individuals with se- w=i§l %u?vsg(;i—ﬁ;ﬁ;z%—?f%):%/uz. (6)

quenceA; (1<i<n), =0 is the mutation rate, ari{ is the

Hamiltonian of an Ising quantum chain. Although this

equivalence is quite generét holds for all “fitness land-  Since this contradicts our Eq&1) and(22) in [1] we must
scapes,” i.e., assignments of reproduction rates tmae- have used improperly in[1]. Calculations with thewumeri-

quencey our focus here is on the case whétés the mean-  cal PF eigenvector of{ correctly reproduced the rigorous

field Hamiltonian result thatm=+1—hZ [Eq. (20) in [1]] and w=(y/2)
(1—h)? [Eq. (21) in [1]] are its quantum-mechanical mag-
N y N netization and ground state energy, respectively. Here, it is
H:/_Lkzl U)'&m k/El ooy, (3  h=uly, and we concentrate on the regimesb<1. The

surplus, however, comes outas 1—h, instead of Eq(22)
in [1], but in line with Eq.(6).
where the canonical basis @fiN:lCZ has been used. Equa-  Indeed, our previous calculations had tacitly assumed a
tion (3) corresponds to Eq17) in [1] with «=0 and de- change in normalizatiofrom L? to L) to commute with
scribes the permutation-invariant situation where fitness is ¢he thermodynamic limit. In order to understand the problem,
quadratic functior{with parametery) of the number of sites let us now investigate the finite-size equations. Since the PF
with value + 1, and mutation occurs independently at rate eigenvector must be contained in the symmetric sector, the
at every site. number of variables may be reduced frofl ® N+1 by
The problem is solved when the spectrunfofs known;  definingy; to be the(equilibrium) frequency of sequences
in particular, its Perron-FrobeniusPF) eigenvector (or  with i sites with valuet 1, i.e.,y; :=Xv;=0 wherej runs

ground statev determines the equilibrium composition of through all indices withNu;=i. Of course,X;y;=1. The
the population. A guantity suitable to characterize this equidifference equation for the equilibrium of Eql) [and,
librium is the average surplus of sites with value+ 1, equivalently,(1) of [1]] then reads
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FIG. 1. Average surplusu) of sites with valuet 1 as defined in

Eq. (4), in the macroscopic limit. Dotted line: Fujiyama landscape

(with @j=a=1); dashed line: Onsager landscapg=(1); solid
line: mean-field landscaperE&0, y=2).

1
2h(N—i+1)y;_;+2h(i +1)yi+1—2hNyi+N(N—2i)2yi

2.
=—NmaYi - (7)
Y

Here,XmaX is the PF eigenvalue GF. In the macroscopic

limit [viai/N—x and 1N=Ax—0, so thaf\ ,,,/N—w and
yi— f(x)], one finds that the first three terms of Ed@) van-
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in line with the prediction(6) for a pure state.

To explore the reasons for the discrepancy, let us now
change the normalizatigprior to taking the thermodynamic
limit, i.e., consider basis vectors of the symmetric sector that
are unit vectors in the 2-norm, instead of the 1-norm as was
the case until now. This corresponds to the change of coor-
dinates

_ N —1/2 "y"
yi:=(.) vi, (i=——, i=0,...N.
: Iy 2

(10

The difference equation is transformed accordingly,
2h\i(N+1-i) g1+ 2hy(i+1)(N=i) 11— 2hN¢

1 L2
+ R (N=200%6= "Nl (1D

After careful regrouping of the terms according to their scal-
ing, which results in a clear distinction from the previous
case(7), one finds, for the macroscopic limit, the solution

g(x)=as(x—(1—J1—h?/2)

ish with LN with respect to the remaining two. The domi- Which, fora=0, gives the correct magnetization
nant terms may be read as an equation for a tempered distri-

bution, to be found by Fourier transformatiofthis is
rigorous by Levy's continuity theoreff8]). One gets

f(x)=ad(x—h/2)+(1—a)s(x—(1—h/2)). (8)

The parametea, O<a<1, reflects theZ, symmetry of the

+(1—a)8(x—(1+1—h?)/2), (12)
1
m:f (2x—1)g(x)dx= J1-h2, (13
0

So, the change of basis, crucial for gprobabilistic rather
than quantum-mechanigabpplication, does not commute
with the macroscopic limit. It also changes Fig. 2[tof and

problem, and the unique symmetric solution is obtained fron]:ig_ 1 of[2], the correct version of which is shown in Fig. 1.

a=1/2. The extremal states correspondate 0 anda=1.
With a=0, one calculates the surplus

1-h, O=<h<1

0, h=1 ©

1
u= jo (2x—1)f(x)dx=[

No such problem arises for the Fujiyama or Onsager land-
scapes, as also treated [ib,2]. In general, however, great
care must be exercised when converting quantum-
mechanical states to classical probabilities, a problem not
unknown to some of the specialigi)].
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