Quantum mechanics versus classical probability in biological evolution

E. Baake

Zoologisches Institut, Luisenstrasse 14, D-80333 München, Germany

M. Baake and H. Wagner

Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

(Received 18 June 1997)

We reconsider the mean-field Hamiltonian of the Ising quantum chain as a mutation-selection model of biological evolution. Direct calculation of its Perron-Frobenius eigenvector reveals a fundamental difference between the quantum-mechanical and probabilistic applications, and partially corrects previous results. [S1063-651X(98)07401-7]

PACS number(s): 87.10.+e, 75.10.-b, 64.60.Cn, 05.50.+q

In two recent publications [1,2], we established an equivalence between a mutation-selection model of biological evolution, and an Ising quantum chain. The model in question describes the parallel action of mutation and selection on a population of individuals that are identified with points in binary sequence space, $\{-1,1\}^N$, where *N* is the length of the sequence. The $n = 2^N$ different sequences will be denoted as $A_i := s_1^{(i)} s_2^{(i)} \cdots s_N^{(i)}$, where $s_j^{(i)} \in \{-1,1\}$, $i=1,\ldots,n$, and $j=1,\ldots,N$. It was shown that the corresponding differential equation may be written as the linear system

$$\dot{z} = (\mathcal{H} - N\mu)z, \tag{1}$$

 $z \in (\mathbb{R}_{\geq 0})^n$, together with the normalization

$$x_i = \frac{z_i}{\sum_{j=1}^n z_j}.$$
 (2)

Here, x_i is the relative frequency of individuals with sequence A_i ($1 \le i \le n$), $\mu \ge 0$ is the mutation rate, and \mathcal{H} is the Hamiltonian of an Ising quantum chain. Although this equivalence is quite general (it holds for all "fitness landscapes," i.e., assignments of reproduction rates to all *n* sequences), our focus here is on the case where \mathcal{H} is the mean-field Hamiltonian

$$\mathcal{H} = \mu \sum_{k=1}^{N} \sigma_k^x + \frac{\gamma}{2N} \sum_{k,\ell=1}^{N} \sigma_k^z \sigma_\ell^z, \qquad (3)$$

where the canonical basis of $\bigotimes_{i=1}^{N} \mathbb{C}^2$ has been used. Equation (3) corresponds to Eq. (17) in [1] with $\alpha = 0$ and describes the permutation-invariant situation where fitness is a quadratic function (with parameter γ) of the number of sites with value + 1, and mutation occurs independently at rate μ at every site.

The problem is solved when the spectrum of \mathcal{H} is known; in particular, its Perron-Frobenius (PF) eigenvector (or ground state) \boldsymbol{v} determines the equilibrium composition of the population. A quantity suitable to characterize this equilibrium is the average surplus \boldsymbol{u} of sites with value + 1,

$$u:=\frac{\sum_{i=1}^{n}u_{i}v_{i}}{\sum_{i=1}^{n}v_{i}}, \quad u_{i}:=\frac{1}{N}\sum_{j=1}^{N}s_{j}^{(i)}, \quad (4)$$

cf. Eq. (11) of [1]. In calculating this quantity for $\widetilde{\mathcal{H}}:=\mathcal{H}-N\mu$ in the macroscopic limit [1], we implied \boldsymbol{v} to be the infinite tensor product of the Perron-Frobenius (PF) eigenvector, $\widetilde{\boldsymbol{v}} \in \mathbb{C}^2$, of the one-site Hamiltonian, normalized so that $\widetilde{v}_1+\widetilde{v}_2=1$. Further calculations have now revealed the relationship $w = (\gamma/2)u^2$ between the ground state energy per spin, w, and the average surplus, u, to hold whenever \boldsymbol{v} is a tensor product of the above type. This is so because, in this case, permutation invariance yields

$$u = \sum_{i=1}^{2^{N}} u_{i} v_{i} = \widetilde{v}_{1} - \widetilde{v}_{2}, \qquad (5)$$

$$w = \sum_{i=1}^{2^{N}} \frac{\gamma}{2} u_{i}^{2} v_{i} = \frac{\gamma}{2} (\tilde{v}_{1}^{2} - 2\tilde{v}_{1}\tilde{v}_{2} + \tilde{v}_{2}^{2}) = \frac{\gamma}{2} u^{2}.$$
 (6)

Since this contradicts our Eqs. (21) and (22) in [1] we must have used \boldsymbol{v} improperly in [1]. Calculations with the *numeri*cal PF eigenvector of \mathcal{H} correctly reproduced the rigorous result that $m = \sqrt{1-h^2}$ [Eq. (20) in [1]] and $w = (\gamma/2)$ $(1-h)^2$ [Eq. (21) in [1]] are its quantum-mechanical magnetization and ground state energy, respectively. Here, it is $h = \mu/\gamma$, and we concentrate on the regime $0 \le h \le 1$. The surplus, however, comes out as u = 1 - h, instead of Eq. (22) in [1], but in line with Eq. (6).

Indeed, our previous calculations had tacitly assumed a change in normalization (from L^2 to L^1) to commute with the thermodynamic limit. In order to understand the problem, let us now investigate the finite-size equations. Since the PF eigenvector must be contained in the symmetric sector, the number of variables may be reduced from 2^N to N+1 by defining y_i to be the (equilibrium) frequency of sequences with *i* sites with value +1, i.e., $y_i := \sum_{\{j\}} v_j \ge 0$ where *j* runs through all indices with $Nu_j = i$. Of course, $\sum_i y_i = 1$. The difference equation for the equilibrium of Eq. (1) [and, equivalently, (1) of [1]] then reads

© 1998 The American Physical Society

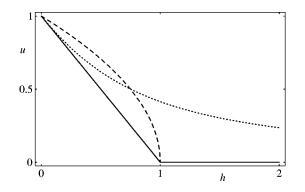


FIG. 1. Average surplus (*u*) of sites with value + 1 as defined in Eq. (4), in the macroscopic limit. Dotted line: Fujiyama landscape (with $\alpha_j \equiv \alpha = 1$); dashed line: Onsager landscape ($\gamma = 1$); solid line: mean-field landscape ($\alpha = 0, \gamma = 2$).

$$2h(N-i+1)y_{i-1}+2h(i+1)y_{i+1}-2hNy_i+\frac{1}{N}(N-2i)^2y_i$$
$$=\frac{2}{\gamma}\tilde{\lambda}_{\max}y_i.$$
(7)

Here, $\tilde{\lambda}_{\text{max}}$ is the PF eigenvalue of $\tilde{\mathcal{H}}$. In the macroscopic limit [via $i/N \rightarrow x$ and $1/N = \Delta x \rightarrow 0$, so that $\tilde{\lambda}_{\text{max}}/N \rightarrow w$ and $y_i \rightarrow f(x)$], one finds that the first three terms of Eq. (7) vanish with 1/N with respect to the remaining two. The dominant terms may be read as an equation for a tempered distribution, to be found by Fourier transformation (this is rigorous by Levy's continuity theorem [3]). One gets

$$f(x) = a\,\delta(x - h/2) + (1 - a)\,\delta(x - (1 - h/2)). \tag{8}$$

The parameter a, $0 \le a \le 1$, reflects the \mathbb{Z}_2 symmetry of the problem, and the unique symmetric solution is obtained from a=1/2. The extremal states correspond to a=0 and a=1. With a=0, one calculates the surplus

$$u = \int_0^1 (2x - 1)f(x)dx = \begin{cases} 1 - h, & 0 \le h < 1\\ 0, & h \ge 1 \end{cases}$$
(9)

in line with the prediction (6) for a pure state.

To explore the reasons for the discrepancy, let us now change the normalization *prior* to taking the thermodynamic limit, i.e., consider basis vectors of the symmetric sector that are unit vectors in the 2-norm, instead of the 1-norm as was the case until now. This corresponds to the change of coordinates

$$\widetilde{\mathbf{y}}_i := \binom{N}{i}^{-1/2} \mathbf{y}_i, \quad \zeta_i := \frac{\widetilde{\mathbf{y}}_i}{\|\widetilde{\mathbf{y}}\|_2}, \quad i = 0, \dots, N.$$
(10)

The difference equation is transformed accordingly,

$$2h\sqrt{i(N+1-i)}\zeta_{i-1} + 2h\sqrt{(i+1)(N-i)}\zeta_{i+1} - 2hN\zeta_{i} + \frac{1}{N}(N-2i)^{2}\zeta_{i} = \frac{2}{\gamma}\widetilde{\lambda}_{\max}\zeta_{i}.$$
 (11)

After careful regrouping of the terms according to their scaling, which results in a clear distinction from the previous case (7), one finds, for the macroscopic limit, the solution

$$g(x) = a \,\delta(x - (1 - \sqrt{1 - h^2})/2) + (1 - a) \,\delta(x - (1 + \sqrt{1 - h^2})/2), \qquad (12)$$

which, for a = 0, gives the correct magnetization

$$m = \int_0^1 (2x - 1)g(x)dx = \sqrt{1 - h^2}.$$
 (13)

So, the change of basis, crucial for our (probabilistic rather than quantum-mechanical) application, does not commute with the macroscopic limit. It also changes Fig. 2 of [1] and Fig. 1 of [2], the correct version of which is shown in Fig. 1.

No such problem arises for the Fujiyama or Onsager landscapes, as also treated in [1,2]. In general, however, great care must be exercised when converting quantummechanical states to classical probabilities, a problem not unknown to some of the specialists [4].

- E. Baake, M. Baake, and H. Wagner, Phys. Rev. Lett. 78, 559 (1997).
- [2] H. Wagner and E. Baake, in *Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras*, edited by H.-D. Doebner, P. Nattermann, and W. Scherer (World Scien-

tific, Singapore, 1997), Vol. II, p. 821.

- [3] H. Bauer, Probability Theory (de Gruyter, Berlin, 1996).
- [4] R. Bürger, J. Math. Biol. 24, 341 (1986); B. Kümmerer (personal communication).