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Quantum mechanics versus classical probability in biological evolution
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We reconsider the mean-field Hamiltonian of the Ising quantum chain as a mutation-selection model of
biological evolution. Direct calculation of its Perron-Frobenius eigenvector reveals a fundamental difference
between the quantum-mechanical and probabilistic applications, and partially corrects previous results.
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In two recent publications@1,2#, we established an equiva
lence between a mutation-selection model of biological e
lution, and an Ising quantum chain. The model in quest
describes the parallel action of mutation and selection o
population of individuals that are identified with points
binary sequence space,$21,1%N, whereN is the length of the
sequence. Then52N different sequences will be denoted
Ai :5s1

( i )s2
( i )

•••sN
( i ) , where sj

( i )P$21,1%, i 51, . . . ,n, and
j 51, . . . ,N. It was shown that the corresponding different
equation may be written as the linear system

ż5~H2Nm!z, ~1!

zP(R>0)n, together with the normalization

xi5
zi

( j 51
n zj

. ~2!

Here, xi is the relative frequency of individuals with se
quenceAi (1< i<n), m>0 is the mutation rate, andH is the
Hamiltonian of an Ising quantum chain. Although th
equivalence is quite general~it holds for all ‘‘fitness land-
scapes,’’ i.e., assignments of reproduction rates to alln se-
quences!, our focus here is on the case whereH is the mean-
field Hamiltonian

H5m(
k51

N

sk
x1

g

2N (
k,l 51

N

sk
zs l

z , ~3!

where the canonical basis of̂ i 51
N C2 has been used. Equa

tion ~3! corresponds to Eq.~17! in @1# with a50 and de-
scribes the permutation-invariant situation where fitness
quadratic function~with parameterg) of the number of sites
with value11, and mutation occurs independently at ratem
at every site.

The problem is solved when the spectrum ofH is known;
in particular, its Perron-Frobenius~PF! eigenvector ~or
ground state! v determines the equilibrium composition o
the population. A quantity suitable to characterize this eq
librium is the average surplusu of sites with value11,
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cf. Eq. ~11! of @1#. In calculating this quantity for
H̃:5H2Nm in the macroscopic limit@1#, we impliedv to
be the infinite tensor product of the Perron-Frobenius~PF!

eigenvector,ṽPC2, of the one-site Hamiltonian, normalize
so that ṽ 11 ṽ 251. Further calculations have now reveale
the relationshipw5(g/2)u2 between the ground state energ
per spin,w, and the average surplus,u, to hold wheneverv is
a tensor product of the above type. This is so because, in
case, permutation invariance yields

u5(
i 51

2N

uiv i5 ṽ 12 ṽ 2 , ~5!
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i 51
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222 ṽ 1ṽ 21 ṽ 2
2!5

g

2
u2. ~6!

Since this contradicts our Eqs.~21! and ~22! in @1# we must
have usedv improperly in@1#. Calculations with thenumeri-

cal PF eigenvector ofH̃ correctly reproduced the rigorou
result that m5A12h2 @Eq. ~20! in @1## and w5(g/2)
(12h)2 @Eq. ~21! in @1## are its quantum-mechanical mag
netization and ground state energy, respectively. Here,
h5m/g, and we concentrate on the regime 0<h<1. The
surplus, however, comes out asu512h, instead of Eq.~22!
in @1#, but in line with Eq.~6!.

Indeed, our previous calculations had tacitly assume
change in normalization~from L2 to L1) to commute with
the thermodynamic limit. In order to understand the proble
let us now investigate the finite-size equations. Since the
eigenvector must be contained in the symmetric sector,
number of variables may be reduced from 2N to N11 by
defining yi to be the~equilibrium! frequency of sequence
with i sites with value11, i.e.,yi :5($ j %v j>0 wherej runs
through all indices withNuj5 i . Of course,( i yi51. The
difference equation for the equilibrium of Eq.~1! @and,
equivalently,~1! of @1## then reads
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2h~N2 i 11!yi 2112h~ i 11!yi 1122hNyi1
1

N
~N22i !2yi

5
2

g
l̃maxyi . ~7!

Here, l̃max is the PF eigenvalue ofH̃. In the macroscopic
limit @via i /N→x and 1/N5Dx→0, so thatl̃max/N→w and
yi→ f (x)#, one finds that the first three terms of Eq.~7! van-
ish with 1/N with respect to the remaining two. The dom
nant terms may be read as an equation for a tempered d
bution, to be found by Fourier transformation~this is
rigorous by Levy’s continuity theorem@3#!. One gets

f ~x!5ad~x2h/2!1~12a!d„x2~12h/2!…. ~8!

The parametera, 0<a<1, reflects theZ2 symmetry of the
problem, and the unique symmetric solution is obtained fr
a51/2. The extremal states correspond toa50 anda51.
With a50, one calculates the surplus

u5E
0

1

~2x21! f ~x!dx5H 12h, 0<h,1

0, h>1
~9!

FIG. 1. Average surplus (u) of sites with value11 as defined in
Eq. ~4!, in the macroscopic limit. Dotted line: Fujiyama landsca
~with a j[a51); dashed line: Onsager landscape (g51); solid
line: mean-field landscape (a50, g52).
-
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in line with the prediction~6! for a pure state.
To explore the reasons for the discrepancy, let us n

change the normalizationprior to taking the thermodynamic
limit, i.e., consider basis vectors of the symmetric sector t
are unit vectors in the 2-norm, instead of the 1-norm as w
the case until now. This corresponds to the change of co
dinates

ỹ i :5S N

i D 21/2

yi , z i :5
ỹ i

i ỹ i2

, i 50, . . . ,N. ~10!

The difference equation is transformed accordingly,

2hAi ~N112 i !z i 2112hA~ i 11!~N2 i !z i 1122hNz i

1
1

N
~N22i !2z i5

2

g
l̃maxz i . ~11!

After careful regrouping of the terms according to their sc
ing, which results in a clear distinction from the previo
case~7!, one finds, for the macroscopic limit, the solution

g~x!5ad„x2~12A12h2!/2…

1~12a!d„x2~11A12h2!/2…, ~12!

which, for a50, gives the correct magnetization

m5E
0

1

~2x21!g~x!dx5A12h2. ~13!

So, the change of basis, crucial for our~probabilistic rather
than quantum-mechanical! application, does not commut
with the macroscopic limit. It also changes Fig. 2 of@1# and
Fig. 1 of @2#, the correct version of which is shown in Fig. 1

No such problem arises for the Fujiyama or Onsager la
scapes, as also treated in@1,2#. In general, however, grea
care must be exercised when converting quantu
mechanical states to classical probabilities, a problem
unknown to some of the specialists@4#.
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