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1 Introduction

The ability of the adaptive immune system to discriminate safely between foreign and self molecules
is a fundamental ingredient to everyday survival of higher vertebrates (such as ourselves). Unlike
innate immune responses, which happen in all kinds of organisms, responses of the adaptive
immune system are highly speci�c to the target which induced their activation. Until now it is
not quite clear how this process of recognition and activation works. The main problem here is
to explain and understand a system which is obviously able to recognise one (or a few) type(s)
of foreign molecules against an enormous variety of self molecules, although there is no a priori
di�erence between "self" and "foreign" on the molecular level: There is no such thing as a "self"-
marker on self molecules to enable an easy discrimination. (This is obvious, because such a marker
could easily be forged by foreign intruders). A classi�cation of molecules into self and foreign is
even unique for every individual. This is most obvious if we think of organ transplantation, where,
although it is human, the immune system tries to attack the donor organ because it recognizes it
as foreign.

A novel approach to this problem of statistical recognition (of one particular foreign signal
against a large, �uctuating self background) was established by van den Berg, Rand and Burroughs
[26] (henceforth referred to as BRB) and further developed by Zint, Baake and den Hollander [28].
In contrast to many existing deterministic models, they formulate an explicit stochastic model.
It describes (random) encounters between two crucial types of white blood cells (see Fig. 2):
the antigen-presenting cells (APCs), which display a mixture of self and foreign antigens at their
surface (a sample of the molecules around in the body), and the T cells, which "scan" the APCs
by means of certain receptors and �nally "decide" whether or not to react, i.e. to start an immune
response.

Each T cell is characterised by a speci�c type of T cell receptor (TCR), which is displayed in
many identical copies on the surface of the particular T cell. A large number (estimated at 107 in
[1]) of di�erent receptors, and hence di�erent T cell types, are present in an individual. However,
the number of potential antigen types is still vastly larger (roughly 1013; see [16]). Thus, speci�c
recognition is impossible; this is known as Mason's paradox. The task is further complicated by
the fact that every APC displays on the order of thousand(s) of di�erent "self" antigen types, in
various copy numbers, together with, possibly, one (or a small number of) foreign types.

The probability that a T cell reacts to an encounter with a randomly chosen APC has to be
very small in order to avoid autoimmune reactions. Some questions may therefore be answered
analytically with the help of large deviation theory; others require simulation, but its use has been
limited due to the low probabilities involved, at least with the straightforward simulation methods
applied so far [26, 28]. Here we present an e�cient method of rare event simulation. The article is
organized as follows. Sec. 2 recapitulate the biological model; Sec. 3 the simulation method; and
Sec. 4 presents some results obtained by applying this method to the T cell model. More details,
as well as further results, may be found in [14].
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Figure 1: Caricature of a T cell and an APC. The APC takes up proteins from its enviroment,
breaks them down and presents a random selection of the resulting fragments as antigens on its
surface via so-called MHC molecules, which serve as "anchors". The T cell can bind to these
peptide-MHC complexes via its receptors.

2 The T cell model

In this Section, we brie�y motivate and introduce the model of T cell recognition as �rst proposed
by BRB in 2001 [26] and further developed by Zint, Baake and den Hollander [28].

APC 2

T−cell 2T−cell 2

APC 1

T−cell 1 APC 3

T−cell 3

Figure 2: Caricature of T cells and APCs (from [28]). Note that every T cell has many copies of
one particular receptor type, but di�erent T cells have di�erent receptor types. In contrast, every
APC carries a mixture of antigen types, which may appear in various copy numbers.

When T cells and APCs meet, the T cell receptors bind to the various antigens presented by
the APC [5]. For every single receptor-antigen pair, there is an association-dissociation reaction,
the rate constant for which depend on the "match" of the molecular structures of receptor and
antigen. Assuming that association is much faster than dissociation and that there is an abundance
of receptors (so that the antigens are mostly in the bound state), one can describe the reaction in
terms of the dissociation rates only.

Every time a receptor unbinds from an antigen, it sends a signal to the T cell, provided the
association has lasted for at least one time unit (i.e., we rescale time so that the unit of time is this
minimal association time required). If τ is the inverse dissociation rate (i.e. the mean duration of
a binding) of a given receptor-antigen pair, the rate of such stimuli induced by the interaction of
this individual antigen with the receptors in its vicinity is then given by

w(τ) =
1
τ

exp(−1
τ

) (1)

(i.e., the dissociation rate times the probability that the association has lasted long enough). As
shown in Fig. 2, w(τ) �rst increases and then decreases with τ with a maximum at τ = 1, which



re�ects the fact that, for τ < 1, the bindings tend not to last long enough, whereas for τ > 1, they
tend to last so long that only few stimuli are expected per time unit.
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Figure 3: The function w (left) and the densities v and vϑ of W = w(T ) and Wϑ, with tilting
parameter ϑ = 46 (right). The densities have poles at 0 and w(1) = 0.3679, but the latter is
invisible because, in fact, it supports practically no probability mass.

The T cell sums up the signals induced by the various antigens on the APC, and if the total
stimulation rate reaches a certain threshold value, the cell initiates an immune response. This
model relies on several hypothesis, which are known as kinetic proofreading [17, 18, 15, 11], serial
triggering [25, 24, 22, 3, 23, 9], counting of stimulated TCRs [27, 20], and the optimal dwell-time
hypthoses [12, 10].

Due to the huge amount of di�erent receptor and antigen types, it is impossible (and unnec-
essary) to prescribe the binding durations for all pairs of receptor and antigen types individually.
Therefore, BRB chose a probabilistic approach to describe the meeting of APCs and T cells. A
randomly chosen T cell (that is, a randomly chosen type of receptor) encounters a randomly chosen
APC (that is, a random mixture of antigens). The mean binding time that governs the binding
of this random receptor to the jth type of antigen is taken to be a random variable denoted by
Tj . The Tj are independent and identically distributed (i.i.d.) and are assumed to follow the
Exp(1/τ̄) distribution, i.e., the exponential distribution with mean τ̄ , where τ̄ is a free parameter.
Note that there are two exponential distributions (and two levels of averaging) involved here: The
duration of an individual binding between a type-j antigen and a random receptor is Exp(1/Tj)
distributed. But Tj , the mean duration of such a binding (where the receptor is chosen once and
the times are averaged over repeated bindings with a j antigen) is itself an exponential random
variable, with realisation τj and mean τ̄ when random receptors are considered (that is, τ̄ is the
mean binding time of a j-antigens (and, due to the i.i.d. assumption, of any antigen) averaged
over all encounters with the various receptor types). The exponential distribution of the individ-
ual binding time is an immediate consequence of the (�rst-order) unbinding kinetics (compare the
discussion of Eq. (1)). In contrast, the corresponding assumption for the Tj is made for simplicity;
the concept is compatible with various other distributions as well, see [26] and [28]. The i.i.d.
assumption, however, is crucial, since it implies, in particular, that there is no di�erence between
self and foreign antigens here; i.e., no a priori distinction is built into the model.

The total stimulation a T cell receives is the sum over all stimulus rates Wj = w(Tj) that
emerge from antigens of the j'th type. It is further assumed that there is at most one type of
foreign antigen in z(f) copies on an APC, whose signal must be discriminated against the signals of
a huge amount of self antigens. The self antigens are here divided into two distinct classes, c and
v, that are present in di�erent copy numbers z(c) and z(v). An APC displays mc and mv di�erent
types of class c and v. The indices c and v stand for "constitutive" and for "variable", respectively;
but for the purpose of this article, only the abundancies are relevant, in particular, z(c) > z(v) and
mc < mv. Over the whole APC the total number of antigens is then mcz

(c) + mvz(v) =: M if no



foreign antigen is present. If z(f) foreign molecules are also present, the self molecules are assumed
to be proportionally displaced (via the factor q := (M − z(f))/M), so that the total number of
antigens remains unchanged at

z(f) + mcqz
(c) + mvqz(v) = M. (2)

The total stimulation rate in a random encounter of T cell and APC can then be described as a
function of z(f):

G(z(f)) :=

 mc∑
j=1

qz(c)Wj

 +

mc+mv∑
j=mc+1

qz(v)Wj

 + z(f)Wmc+mv+1, (3)

i.e., a weighted sum of i.i.d. random variables.
In line with [26, 28], we numerically specify the model parameters as follows: τ̄ = 0.04; mc = 50,

mv = 1500, z(c) = 500, z(v) = 50, M = 105.
The relevant quantity for us is now the probability

P
(
G(z(f)) ≥ gact

)
(4)

that the activation rate reaches or surpasses a threshold gact. To achieve a good foreign-self
discrimination, there must be a large di�erence in probability between the activation rate in the
case with self antigens only (z(f) = 0), and the activation rate with the foreign antigen present,
i.e.,

P
(
G(z(f)) ≥ gact

)
� P

(
G(0) ≥ gact

)
(5)

for realistic values of z(f). Note that both events must be rare events�otherwise, the immune
system would ��re� all the time. Thus gact must be much larger than E(G(z(f))) (which, due
to (2) and the identical distribution of the Wj , is independent of z(f)). Evaluating these small
probabilities is a challenge. So far, two routes have been used: analytic (asymptotic) theory based
on large deviations (LD) and straightforward simulation (so-called simple sampling). Both have
their shortcomings: The LD approach is only exact in the limit of in�nitely many antigen types;
the simulation strategy, on the other hand, is so time-consuming that it becomes simply impossible
to obtain sample sizes large enough for a detailed analysis, in particular for large values of gact.
Therefore, an importance sampling approach is required.

3 Rare event simulation

Consider the problem of estimating the probability P(A) of a (rare) event A under a probability
measure P . As is well-known, the essential idea behind importance sampling is to �nd a sampling
distribution Q instead of the original P which is taylored to the problem so that the variance of
the importance sampling estimate

(P̂Q(A))N :=
1
N

N∑
i=1

1{T (i) ∈ A}dP

dQ
(T (i)) (6)

(where the {T (i)}1≤i≤N are i.i.d. random variables with distribution P , 1{.} denotes the indicator
function and N is the sample size) is reduced compared to the variance of the simple sampling
estimate (obtained from (6) by setting Q = P ). Finding a good sampling distribution is highly
dependent on the speci�c structure of the problem at hand. Apart from some general purpose
methods, many ad hoc strategies (see [4]) and solutions which are tailored to speci�c problems,
there exists the more systematic technique of large deviation simulation as introduce by Sadowski
and Bucklew [21]. It is suitable for problems that can be embedded into a sequence of problems
characterised by a sequence of random variables {Sn} with probability measures {Pn} for which a
so-called large deviation principle is valid [7, 6]. Van den Berg et al. and Zint et al. showed that



this applies to the BRB model [26, 28]. We therefore use this theory following ideas mainly from
Bucklew [4] and Dieker and Mandjes [8]. For the theoretical background (and the proofs) we refer
to [14].

In large deviation simulation the usual way to construct a sampling distribution Pϑ
n is via

so-called tilting of the original distribution Pn, such that the event we want to estimate becomes a
typical event. That is, if Pn is a probability measure on R, Pϑ

n is obtained from Pn via exponential
reweighting,

dPϑ
n

dPn
(x) =

enϑx

EPn(enϑSn)
, (7)

where
dP ϑ

n

dPn
denotes the Radon-Nikodym derivative and ϑ is chosen so that

EP ϑ
n
(Sn) = a (8)

if we want to estimate the probability of the rare event {Sn ∈ A}, A := [a,∞), a > E(Sn).
To apply this to the BRB model, we consider n = m := mc + mv + mf , where mf = 0

or mf = 1 depending on whether foreign antigen is absent or present, and identify Sm with
G(z(f))/m and a with gact/m. Tilting Sm with mϑ then corresponds to tilting G(z(f)) with
ϑ. This, in turn, is equivalent to tilting every summand in (3) with ϑ (since these summands
are independent). The only di�culty lies in sampling from the tilted W -distribution: No direct
method (via transformation) is available, and the numerical calculation of the distribution poses
di�culties due to the singularities at the boundaries of the support (see Fig. 2 (right)). We
therefore propose to do the tilting at the level of the Tj , rather than the Wj = w(Tj), via the
following simple result.

Fact 1 Let X be a real-valued random variable with probability measure F , and let Y := h(X),
where h : R → R is an F -measurable function. Y then has measure V := F ◦ h−1, where h−1(y)
denotes the preimage of y. Assume now that EF (eϑh(X)) exists and let X̃ϑ be a random variable
with probability measure F̃ϑ related to F via

dF̃ϑ

dF
(x) =

eϑh(x)

EF (eϑh(X))
, (9)

and let Ỹ ϑ := h(X̃ϑ). Then the measures Ṽ ϑ (of Ỹ ϑ) and V ϑ (for the tilted version of V , the
measure of Y ϑ) are equal, with Radon-Nikodym derivative

dṼ ϑ

dV
(y) =

dV ϑ

dV
(y) =

eϑh(y)

EV (eϑh(Y ))
. (10)

This fact allows us to "pull back" the tilting from the level of W to the level of T , which is
computationally unproblematic. If f is the density of T (i.e., f(τ) = 1

τ̄ e−τ/τ̄ ) this yields three

di�erent densities f̃ϑ
α depending on the weighting factors α ∈ {qz(c) , qz(v) , z(f)}, namely,

eαϑw(τ)

Ef (eαϑw(τ))
f(τ). (11)

Note that these densities do not coincide with the "usual" tilted versions of f (tilting is with w(τ)
rather than τ). They are thus not of the form of any known standard distribution (in particular,
they are not exponential). Simulating from the tilted distribution requires numerical integration
(which is well-behaved since f is numerically well-behaved). The resulting distribution functions
F̃ϑ

α are discretized and tabulated, followed by "looking up" the solution T̃ ϑ of F̃ϑ
α (T̃ ϑ) = U for

U ∼ Uni[0,1] (the uniform distribution on the unit interval), to �nally yield αWϑ = αw(T̃ ϑ).
To circumvent the speed limiting step of searching through the table we apply the so-called alias
method for discrete random number generation (see [14, 19, 13]).

Now with everything at hand we formulate the algorithm to simulate realisations of G(z(f)).
(For notational convenience, we will not distinguish between random variables and their realisa-
tions here).



Algorithm 1

compute ϑ numerically so that (8) is satis�ed; see [14] for the explicit procedure
calculate the tilted densities f̃ϑ

α , α ∈ {qz(c), qz(v), z(f)}, via (11)
for i=1 till sample size N do

for every summand j of (3) generate a sample (T̃ ϑ
j )(i) according to its density f̃ϑ

α(j) with the

help of the alias method (here, the upper index (i) is added to re�ect sample i, and α(j) is
the weighting factor of the sum to which j belongs)
calculate

(
G(z(f))

)(i) =

 mc∑
j=1

qz(c)w
(
(T̃ ϑ

j )(i)
) +

mc+mv∑
j=mc+1

qz(v)w
(
(T̃ ϑ

j )(i)
) + z(f)w

(
(T̃ ϑ

mc+mv+1)
(i)

)
calculate the indicator function times the reweigthing factor (i.e., the i-th summand in Eq. (6))
if (G(z(f)))(i) ≥ gact then

R(i) =
m∏

j=1

fα(j)((T̃ ϑ
j )(i))

f̃ϑ
α(j)((T̃

ϑ
j )(i))

else

R(i) = 0
end if

end for

calculate
(
P̂ϑ

Pm
(A)

)
N

=
∑N

i=1 R(i)

N
, as estimate of P(G(z(f)) > gact).

4 Results

In this Section we brie�y examine the performance of our sampling method and then extract some
insights about the T cell model obtained with the help of simulation.

4.1 Performance analysis

We compare our method to the simple sampling method and the exact asymptotics based on large
deviation theory, as used in [28]. The goal is to estimate the probability P(G(z(f)) ≥ gact) as a
function of gact for various values of z(f). In immunobiology the corresponding graph is known as
an activation curve. The results of the three methods are summarized in Figure 4.

The main di�erence between our method and simple sampling is that, for every value of gact,
we calculate a new tilting factor and generate a fresh sample for the estimation, whereas this is
not required for simple sampling. Here we just generate a huge amount of samples �rst and then
calculate estimates. At �rst sight this seems to be a big disadvantage for our method, but reality
proves di�erent. Since P(G(z(f)) ≥ gact) decreases exponentially with gact, the number of samples
required to obtain su�cientily precise estimates with simple sampling increases exponentially.
With LD sampling only a linear increase in sample size is necessary. To generate the graphs in
Figure 4 we used 10000 samples per threshold value for LD sampling, that is 1.9 ∗ 105 samples
altogether. For simple sampling we generated 1.3 ∗ 108 samples. Within this sample, there were
no realizations of G(z(f)) beyond 400 (for z(f) = 1000) and 800 (for z(f) = 2000), respectively.
With LD sampling, however, we get realizations (and thus estimates) for the whole range of gact

values. The huge di�erence in sample size is of course re�ected in the runtime. Estimation via LD
sampling took only a few minutes, whereas simple sampling required 48 hours on a standard PC.

Last not least, Fig. 4 shows that the results of simple sampling and importance sampling
agree wherever they can be compared - as was to be expected. Also, the agreement with exact
asymptotics is excellent for large threshold values, whereas some (small) �nite size e�ects are
revealed at smaller gact.

The precision of the estimates is best analysed in terms of the relative error in the sense of
Dieker and Mandjes [8], i.e. the standard deviation of the estimate divided by the estimate. As
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Figure 4: Estimates of the activation curve, P(G(z(f)) ≥ gact), in the model (3) for z(f) = 1000 and
z(f) = 2000, as well as for the self background (z(f) = 0), on logarithmic scale. The probablities
were estimated independently with three di�erent methods at 19 values of gact (from 100 to 1000
in steps of 50). SS and IS denote simple and importance sampling, respectively, and LDT stands
for the exact asymptotics based on large deviation theory as used in [28]. For the IS simulation,
N = 1.9 ∗ 105 samples were generated (10000 per threshold), whereas for the SS simulation,
N = 1.3 ∗ 108 samples were used over the entire range. The SS curves end at gact = 400 and
gact = 800, respectively, because larger values were not hit in the given samples. The IS and SS
graphs agree perfectly until the SS simulation lacks precision. For larger threshold values, we see
a perfect agreement of the IS and LDT graphs. Note the general feature that, for threshold values
that are not too small, the activation probability in the presence of foreign antigens is several
orders of magnitude larger than the self background, i.e. Eq. (5) is satis�ed.

is to be expected, this increases exponentially with gact for simple sampling, whereas it reamins
more or less constant for importance sampling (if comparable sample sizes are used).

4.2 Analysis of the T cell model

In this Section, we will use our simulation method to obtain more detailed insight into the phe-
nomenon of statistical recognition in the T cell model. As discussed before, the task is to discrimi-
nate one foreign antigen type against a "noisy" background of a large number of self antigens. We
already know from Fig. 4 that, for threshold values that are not too small, the activation probability
in the presence of foreign antigens is several orders of magnitude larger than the self-background,
i.e. Eq. (5) is satis�ed. As discussed in [28], this distinction relies on z(f) > z(c), z(v)�basically,
what happens is that larger copy numbers of the foreign antigen "thicken" the tail of the distri-
bution of G(z(f)) (without changing its mean), so that the threshold is more easily surpassed.
The self-nonself distinction may, according to this model, be roughly described as follows. For a
given antigen (foreign or self), �nding a "highly-stimulating" T cell receptor is a rare event; but
if it occurs to a foreign antigen, it occurs manifold since there are numerous copies, which all
contribute the same large signal, since all receptors of the T cell involved are identical; the result-
ing activation rate is thus high. In contrast, if it is a self antigen that �nds a highly-stimulating
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receptor, the e�ect is less pronounced due to the smaller copy numbers. Put this way, the toy
model �explains� the distinction solely on the basis of copy numbers; in particular, the distinction
requires z(f) > z(c), z(v) [26, 28].

Following these intuitive arguments, we now aim at a more detailed picture of how the self
background looks, and how the foreign type stands out against it. To investigate this, it is useful
to consider the histograms of the total constitutive, variable, and foreign activation rates, i.e.,
the contributions of the �constitutive sum�, the �variable sum�, and the individual �foreign term�
in the sum (3), conditional on {G(zf ) ≥ gact} for various gact. Since this requires a higher
resolution (and thus larger sample size) than the calculation of the activation probabilities alone,
such analysis would be practically impossible with simple sampling. With importance sampling,
we again generated 10000 samples per gact value, from which between 30 and 70 percent turned
out to reach the threshold.

Figure 6 shows the resulting histograms for four di�erent gact values. The �rst observation
from these histograms is that the variable activation rate is closely peaked around a small mean,
unchanged under conditioning. In terms of signal discrimination this is of course favourable, as it
is easy to predict in advance. The picture is di�erent for the constitutive and foreign activation
rate. For gact = 100 the situation is still similar to the unconditional case. The foreign activation
rate is closely peaked at 0 and more or less follows the W -density from Figure 2. For gact = 250
where, according to Fig. 4, foreign-self distinction sets in, the foreign activation rate becomes
prominent: The right branch of the W -distribution now becomes populated, and the activation
rates are large due to the large copy number z(f). Still for gact = 250, the foreign activation
rate is close to 0 in a sizeable fraction of the cases in which an immune reaction occurs - here,
the reaction is brought about by the constitutive background, which moves to the right. Fig. 7
shows that the constitutive and foreign activation rates are, indeed, negatively correlated: as is
to be expected, low foreign rates are compensated by high constitutive rates and vice versa. If
gact is increased further, every T cell beyond the threshold displays high stimuli for the foreign
antigen, their distribution shifting even further to the right and concentrating near the maximal
stimulation rate given by the maximum of the function w of Eq. (1), more precisely, by z(f)w(1).
This maximum can, of course, not change due to conditioning; thus any further increase of gact

must then be matched by a shift of the constitutive background.

As pointed out before, this model is a very simplistic one, but it serves as a basis for the
development of more realistic ones. To enhance foreign-self discrimination, the mechanism must
work for far lower numbers z(f) of foreign antigen and for lower activation thresholds. As our
observations show, this requires a reduction of the constitutive background. This is achieved in
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an advanced version of the BRB model [26] that includes negative selection, a mechanism that
prevents the release of T cells which react too strongly to self activation. This model is even
harder to analyze analytically, but it should be possible to further develop our simulation method
to cope with the problem.
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100, 250, 350, 500, 750, 1000; columns (from left to right): variable (vertical)�constitutive (horizon-
tal); variable (vertical)�foreign (horizontal); constitutive (vertical)�foreign (horizontal). Lighter
shading corresponds to higher frequencies.
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