H22: Which of the following (when stationary) are reversible Markov chains?

a) [4pts] The chain \(X = (X_n; n \geq 0) \) having transition matrix:

\[
P = \begin{pmatrix}
1 - \alpha & \alpha \\
\beta & 1 - \beta
\end{pmatrix},
\]

where \(\alpha + \beta > 0 \). (Note: The result can depend on the values of \(\alpha \) and \(\beta \).)

b) [4pts] The chain \(X = (X_n; n \geq 0) \) having transition matrix:

\[
P = \begin{pmatrix}
0 & p & 1 - p \\
1 - p & 0 & p \\
p & 1 - p & 0
\end{pmatrix},
\]

where \(0 < p < 1 \). (Note: The result can depend on the values of \(p \).)

H23: [3pts] Show that every Markov chain with a symmetric transition matrix and finite state space is reversible.

H24: Consider two players, \(A \) and \(B \), playing the following tossing coin game: at the beginning the player \(A \) has 100 euros and the player \(B \) has 200 euros. At each time step the players toss a coin with probability \(p \in [0, 1] \) of head. If the result is a head the player \(A \) gives 1 euro to the player \(B \), otherwise is the player \(B \) who gives 1 euro to the player \(A \). The game stops when the fortune of one of the players reaches 0 euros. We call \(X_n \) the fortune of the player \(A \) at time \(n \).

a) [3pts] Is the process \((X_n)_{n \geq 1} \) a Markov chain? If yes, give the state space and the corresponding transition matrix.

b) [6pts] For \(p = 0.5 \), \(p = 0.2 \) and \(p = 0.7 \), simulate 5 times the Markov chain \((X_n)_{n \geq 1} \) till the first time \(X_n \) is equal to 0 or 300 euros. Provide the results in a graph: you can either provide one graph for each simulation (5 graphs for each value of \(p \)) or you can group your results providing on each graph one simulation for each value of \(p \) (5 graphs in total).