Rearme 3D COmputer
Graphics
& Virtual Reality

OpenGL Performer

What is OpenGL Performer?

m A real-time scene graph based graphics
library

m OpenGL Performer is an extensible
software toolkit for creating real-time
3D graphics.

Use OpenGL Performer to:

m Build visual simulation applications and virtual
reality environments

= Render on-air broadcast and virtual set
applications quickly
= View large simulation-based design tasks

= Maximize the graphics performance of any
application

Why OpenGL Performer?

= If your application requires:
— real-time visuals
— free-running or fixed-frame-rate display
— high-performance rendering
= OpenGL Performer drastically reduces the
work required to tune your application's
performance. General optimizations include:
— Use of highly tuned routines for all performance-
critical operations
— Reorganization of graphics data and operations for
faster rendering

Resources

OpenGL Performer Programmer's Guide
OpenGL Performer Getting Started Guide
To read these online books, point your browser at:

- http://techpubs.sgi.com/library/d?/naweb_bin/0620/bin/nph-

dynaweb.cgi/dynaweb/SGI_Devel
BookView
= For general information about Performer, point your
browser at:
Electronic forum for discussions about OpenGL
Performer:
The info-performer mailing list
— info-performer-request@sgi.com.
_ (archives)

oper/Perf_PG/@Generic__

Performer structure

Set of libraries for different
purposes, e.g. for scene
graph management,
rendering, loading of
files...

High-Performance Rendering Library
libpr

m Consists of many facilities generally required
in most visual simulation and real-time
graphics applications, such as:

— High-speed geometry rendering functions
— Efficient graphics state management
— Comprehensive lighting and texturing

— Simplified window creation and
management

— Immediate mode graphics
— Display list graphics

High-Performance Rendering Library
libpr

— Integrated 2D and 3D text display functions

— A comprehensive set of math routines

— Intersection detection and reporting

— Color table utilities

— Windowing and video channel management
utilities

— Asynchronous filesystem 1/0

— Shared memory allocation facilities

— High-resolution clocks and video-interval
counters

Visual Simulation Application
Library - libpf

— Multiple graphics pipeline capability

— Multiple windows per graphics pipeline

— Multiple display channels and video channels
per window

— Hierarchical scene graph construction and
real-time editing

— Multiprocessing (parallel simulation,
intersection, cull, draw processes, and
asynchronous database management)

— System stress and load management

Visual Simulation Application
Library - libpf

— Asynchronous database paging

— Morphing

— Level-of-detail model switching, with fading or morphing
— Rapid culling to the viewing frustum

— Intersections and database queries

— Dynamic and static coordinate systems

— Fixed-frame-rate capability

— Shadows and spotlights

— Visual simulation features

= Environmental model, light points, both raster and calligraphic,
animation sequences, sophisticated fog and haze control,
landing light capabilities, billboarded geometry

Visual Simulation Application
Library - libpf

m Visual simulation features
— Environmental model
— light points, both raster and calligraphic
— animation sequences
— sophisticated fog and haze control
— landing light capabilities
— billboarded geometry

Geometry Builder Library
(libpfdu)

= Allows input in immediate mode fashion,
simplifying database conversion.

m Produces optimized OpenGL Performer data
structures.

— Tessellates input polggons including concave
polygons and recombines triangles into high-
performance meshes.

— Automatically shares state structures between
geometry when possible.

— Produces scene graph containing optimized
pfGeoSets and pfGeoStates

Geometry Builder Library
libpfdu

= databases import:

first, a user creates a
database with a
modeling program,
and then an OpenGL
Performer-based
application imports
that database using
one of the many
importing routines

Utility Library (libpfutil)

= Processor isolation routines

m GLX mixed mode utilities

= Device input and event handling

= Cursor control

= Simple and efficient GUI and widgets
m Scene graph traversal utilities

= Texture animation or "movies"

= Smoke and fire effect simulation

User Interface Library (libpfui)

m Motion models, including trackball, fly,
and drive

m Collision models

Database Loader Library
(libpfdb)

m Common software interface to read files

m Supports a wide variety of file formats,
e.g. VRML

m Source code included as templates for
customization

OpenGL Performer Library
Structure

= libpf is the visual simulation development library
— Functions from libpf make calls to libpr functions
— libpf thus provides a high-performance yet easy-to-use

interface to the hardware.

m Multiprocessing Framework

= libpf provides a pipelined multiprocessing model for
implementing visual simulation applications. The
critical path pipeline stages are:
— APP
— CULL
— DRAW

OpenGL Performer Stages

= APP: update and query scene

m CULL: traverse scene, adds all potentially visible geometry to a special
libpr display list, which is then rendered by the draw stage
= DRAW: draw the scene ->OpenGL

Application: scene- TraversalCull Draw- Frame Buffer

Process flow for a single-
pipe system. The
application constructs and
modifies the scene
definition associated with
a channel. The traversal
process associated with
that channel's pfPipe then
traverses the scene
graph, building a libpr
display list.

Pipeline oJ

OpenGL Performer Stages

m Rendering pipelines can be split into separate processes to
tailor the application to the number of available CPUs.

Scene

Pipeline 1 \

Process flow for a
dual-pipe system

Aoplietin

TraversavCul

Draw

Frame Buffer

Pipeline & ——

TraversaliGull

Parallel Pipeline Processes

= OpenGL Performer provides additional,

asynchronous stages for various computations:

— INTERSECTION - intersects line segments with the
database for things like collision detection and line-
of-sight determination, and may be multithreaded.

— COMPUTE - for general, asynchronous computations.

— DATABASE - for asynchronously loading files and
adding to or deleting files from the scene graph.

Multiple Pipes

= You may find it appropriate to
display your data over more (noma
than one display system. For
example, you might want to
present the left side and right \
side of a scene on two different \
monitors. The CULL and DRAW \
stages are specific to each
pfPipe object; the APP stage,
however, is shared by both
pfPipe objects

Parallel Pipeline Processes

= An application might have multiple rendering
pipelines drawing to multiple graphics
pipelines with separate processes. The CULL
task of the rendering pipeline can itself be
multithreaded.

= Multiprocess operation is largely transparent
because OpenGL Performer manages the
difficult multiprocessing issues for you, such
as process timing, synchronization, and data
exclusion and coherence

Parallel Pipeline Processes

Cornpute

Application Seene
‘ Gul LP‘o\m

Draw

Frame Buffer

Frarme Buifer

Shared Memory

After the APP process updates the
frame, the process places a copy of
unique data for the frame in the shared
memory arena.

The CULL J)rocess takes the frame from
the shared memory arena, culls out
data invisible to the viewer, and places
arevised copy of the frame back in the
shared arena'memory in the form of a
libpr display list for that frame.

The DRAW process uses the updated
frame and renders the scene to the
display system.

More OpenGL Performer features

= Display
- IibpfFProv_ides software constructs to facilitate visual database rendering.
A pfPipe is a rendering pipeline that renders one or more pfChannels into
one or more pfPipeWindows. ApfChannel is a view into a visual
database, equivalent to a viewport, within a pfPipeWindow.
= Frame Control
— Designed to run at a fixed frame rate specified by the application.
Measures graphics load and uses that information to compute a stress
value. Stress Is applied to the model's level of detail to reduce scene
complexity when nearing graphics overload conditions.
= Multiple pfChannels on a single pfPipeWindow, multiple .
PfPlpeW_lndows on a single pfPipe, and multiple pfPipes per machine
or multichannel, multiwindow, and multipipe operation. Frame
synchronization between channels and between the host application
and the graphics subsystem is provided. This also supports
simulations that display multiple simultaneous views on different
hardware displays.

General Naming Conventions

m Prefixes

— The prefix of the command tells you in which
library a C command or C++ class is found. All
exposed OpenGL Performer C commands and
C++ classes begin with "pf*. The utility libraries
use an additional prefix letter, such as “pfu" for
the libpfutil general utility library, "pfi" for the
libpfui input handling library, and "pfd" for the
libpfdu database utility library. Libpr level
commands still have the ~pf' prefix as they are still
in the main libpf library.

General Naming Conventions

= Naming in C and C++

— All C++ class method names have an expanded C counterpart. Typically,
the C routine will include the class name in the routine, whereas the C++
method will not.

C: pfGetPi peScreen();
C++: pi pe->get Screen();

For some very general routines on the most abstract classes, the class name
is omitted. This is the case with the child APl on pfNodes:

C: pf AddcChi | d(node, chi | d);
C++: node->addChi | d(child);

Command and type names are mixed case; the first letter of a new word in a
Inzaxme is capitalized. C++ method names always start with a lowercase
etter.

pf Texture *texture; texture->loadFile();

Inheritance Graph

= The relations
between classes
can be arranged in
a directed acyclic
inheritance graph in
which each child
inherits all of its
parent's attributes
(does not use
multiple oo
inheritance)

Scene graph nodes

= OpenGL Performer's
node hierarchy begins
with the pfNode class

Scene graph nodes

P) g
pfNode Abstract Basic node type. N\
pfGroup Branch Groups zero or more children. LA W,
pfScene Root Parent of the visual database.
pfscs Branch Static coordinate system.
pfDCS Branch Dynamic coordinate system.
pfFCS Branch Flux coordinate system.
pfDoubleSCS Branch Double-precision static coordinate system.
pfDoubleDCS Branch Double- precision dynamic coordinate system.
pfDoubleFCS Branch Double- precision flux coordinate system.
pfSwitch Branch Selects among multiple children.
pfSequence Branch Sequences through its children.
pfLOD Branch Level-of-detail node.
pfLayer Branch Renders coplanar geometry.

Contains specifications for a light source.
pfGeode Leaf Contains geometric specifications.

pfBillboard Leaf Rotates geometry to face the eyepoint .
pfPartition Branch Partitions geometry for efficient intersections.
pfText Leaf Renders 2D and 3D text.

pfASD Leaf Controls transition between LOD levels.

pfLightSource Leaf

Creating a Display

m Scene-to-Screen Path

A description of your
world is encapsulated in

the scene graph, and a)
view into the world is \
described by a pfChannel

Scene graph

piChannel

N
<\
A

piPipeWindow

Display systern

Creating a Display

= A pf Channel isa
view into a scene
graph based on the ‘
following:

— Location and
orientation of the
camera in the scene

— Viewing frustum

piChannel 0

!

soene.

)\

Soene graph

piChamelo phanmelt

Creating a Display

Parameters that define
a symmetric viewing
frustum (for asymmetric
frusta refer to the
pfChannel(3pf) or
pfFrustum(3pf) man
pages for further
details. Eront

AspectPatio = L

tan(vertical FOV2)

X = Bnorzonal FoviZ)

Creating a Display

Setting Up a Viewpoint: usepf ChanVi ew(chan, poi nt,
dir) or pf ChanVi ewvat (chan, mat) to define the viewpoint
for the pfChannelidentified by chan.

Heading is a rotation about the Z axis
Pitch is a rotation about the X axis
Roll is a rotation about the Y axis

™

The value of dir is the product of the rotations ROTy(oll) * ROTx(pitch)
* ROTz(heading), where ROTa(angle) is a rotation matrix about axis A of
angle degrees

Creating a Display

mai n() {
pflnit();
pf Confi g();
I nitScene();
I ni t Pi pe();
I ni t Channel () ;

/* Application main | oop */

whi | (! Si nDone()) {

}

Creating a Display

voi d I nitChannel (void) {
pf Channel *chan;
chan = pf NewChan(pf Get Pi pe(0));

/* Set the callback routines for the pfChannel */
pf ChanTravFunc(chan, PFTRAV_CULL, Cull Func);
pf ChanTravFunc(chan, PFTRAV_DRAW DrawFunc) ;

*

Attach the visual database to the channel */
pf ChanScene(chan, Vi ewsState->scene);
Attach the EarthSky nodel to the channel */
pf ChanESky(chan, Vi ewSt at e->eSky);
Initialize the near and far clipping planes */
pf ChanNear Far (chan, Vi ewState->near, ViewState->far);
Vertical FOV is matched to wi ndow aspect ratio. */
pf ChanFOV(chan, 45. 0f/ NunChans, f);
Initialize the viewi ng position and direction */
pf ChanVi ew(chan, Vi ewState->initView xyz,
Vi ewSt at e- >i ni t Vi ew. hpr) ;

o+ %

Creating a Display

/* CULL PROCESS CALLBACK FOR CHANNEL*/
/* The cull function callback. Any work that needs to be * done in
the cull process should happen in this function. */
void Cul | Func(pfChannel * chan, void *data) {
static long first = 1;
if (first) {
if ((pfGetMiltiprocess() & PFMP_FORK CULL) &&
(Viewst ate->procLock & PFMP_FORK_CULL))
pf uLockDownCul | (pf Get ChanPi pe(chan));
first = 0;
}
PreCul | (chan, data);
pfCull(); /* Cull to the viewing frustum */
Post Cul | (chan, data);

Creating a Display

/* DRAW PROCESS CALLBACK FOR CHANNEL*/

/* The draw function callback. Any graphics functionality * outside
OpenGL Performer nust be done here. */

voi d Drawrunc(pf Channel *chan, void *data) {
PreDraw(chan, data); /* Clear the viewport, etc. */
pfDraw(); /* Render the frame */
/* draw HUD, or whatever else needs * to be done post-draw. */
Post Draw(chan, data);

Multiple channel support

= Single-Channel and Multiple-
Channel Display:

— e.g., if multiple channels are
needed when inset views
must appear within an
image

— for stereo support

— multiple video outputs per
pipeline

channels can share
attributes (grouping of
channels)

Channel groups

PFCHAN_FOV Horizontal and vertical fields of view

PFCHAN_VIEW View position and orientation

PFCHAN_VIEW_OFFSETS (X, K z) and (heading, pitch, roll) offsets
of the view direction

PFCHAN_NEARFAR Near and far clipping planes

PFCHAN_SCENE All channels display the same scene.

PFCHAN_EARTHSKY All channels display the same earth/sky

model.
PFCHAN_STRESS All channels use the same stress filter.
PFCHAN_LOD All channels use the same LOD
modifiers.

PFCHAN_SWAPBUFFERS All channels swap buffers at the same

time.
PFCHAN_SWAPBUFFERS_HW Synchronize swap buffers for channels
on different graphics pipelines.

Creating a scene graph

= On your own

Wheel

Creating a scene graph

Instancing: A scene graph is typically constructed at applicatio n
initialization time by creating and adding new nodes to the graph. If a
node is added to two or more parents it is termed instanced and is
shared by all its parents

Group 1
Group 0 Group 1

Group 0

Shared instancing

¢ QO

Creating a scene graph

The cloned instancing operation constructs new copies of each
internal node of the shared hierarchy, but uses the same shared
instance of all the leaf node.

Cloned instancing

Creating a scene graph

= Or by loading it by using
pfdLoadFi | e(const char *fil enane);

\
-
’

Soene graph

Creating a scene graph

= Some common supported loaders:

Alias| Wavefront .obj

3D Studio .3ds
Coryphaeus .dwb
Multigen fit
Inventor .iv
Lightscape .Isa, .Isb
Performer (native) .pfa, .pfb

Scene graph traversals

m A traversal is a method applied to
(potentially) every node in a scene graph.

= Each node type responds in its own way by
implementing a method call. For example, a
common traversal culls the scene. Each
pfNode implements a cull() method so the
node can respond to the traversal.

= Individual node instances can further
customize traversal behavior with their own
callbacks.

Scene graph traversals

m Some nodes, called group nodes, simply pass
the traversal to other nodes. In some cases
(pfSwitch, pfLOD), the group node passes the
traversal only to selected children nodes.

m Other nodes, called leaf nodes, such as a
pfGeode node, either encapsulate geometry
to be rendered or represent significant
computation, such as pfASD.

Scene graph traversals

= Pipelined Traversals
— Several standard traversal operations are usually necessary for basic
application operation and for the efficient rendering of a scene
— Provides automatic and transparent mechanisms for utilizing pipelined
and parallel multiprocessing for handling these different traver sals.

The following processes can be created for the purpose of handling a
specific traversal with its own effective copy of the scene graph nodes:

APP - user traversal for updating the values in the nodes.
CULL - evaluates application settings and eliminates the processing of
any nodes out of view.

DRAW - renders the culled scene graph.
ISECT - intersects a set of line segments with the scene graph.
DBASE - loads new database and deletes pieces no longer needed.

Application Traversal

= First traversal that occurs during the processing of the scene graph

= Initiated by calling pfAppFrame (). If pfAppFrame() is not explicitly
called, the traversal is automatically invoked by pfSync() or
pfFrame().

= Can be invoked for each channel, but usually channels share the same
application traversal (see pfChanShare()).

= Updates dynamic elements in the scene graph, such as geometric
morphing.

= Used for implementing animations or other custom processing when it
is desirable to have those behaviors embedded in the scene graph
and invoked by OpenGL Performer rather than requiring application
code to invoke them every frame.

= The selection of which children to traverse is also affected by the
alaplication traversal mode of the channel, in particular the choice of
all, none, or one of the children of pfLOD, pfSequence and pfSwitch
nodes is possible.

Application Traversal

int AttachPendul um(pf DCS *dcs, Pendul unData *pd) { pfNodeTravFuncs(dcs,
PFTRAV_APP, Pendul unfFunc, NULL);

pf NodeTr avDat a(dcs, PFTRAV_APP, pd);

int Pendul unfFunc(pfTraverser *trav, void *userData) { Pendul unData *pd =
(Pendul unDat a*) user Dat a,
pf DCS *dcs = (pfDCS*)pf Get TravNode(trav);
it (pd>on) {

doubl e now = pf Get FrameTi meStanp();
float frac, dummy;
pd- >l ast Angl e += (now - pd- >l ast Ti me) *360. Of * pd- >f r equency;
if (pd>lastAngle > 360.0f)
pd- >l ast Angle - = 360.0f;
/1 using sinusoidally generated angle
pf Si nCos(pd->l ast Angl e, &rac, &Jlumy);
frac = 0.5f + 0.5f * frac;
frac = (1.0f - frac)*pd- >angle0 + frac*pd->angl el;
pf MakeRot Mat (mat, frac, pd->axis[0], pd->axis[1], pd- >axis[2]);
pf DCSMat (dcs, mat); pd->lastTine = now, }
return PFTRAV_CONT;

Cull Traversal

Culling to the frustum

Cull Traversal

1. Prune the node, based on the channel's draw traversal mask
and the node's draw mask.

2. Invoke the node's pre-cull callback and either prune,
continue, or terminate the traversal, depending on callback's
return value.

3. Prune the node if its bounding volume is completely outside
the viewing frustum.

4. Traverse, beginning again at step 1, the node's children or

eometry (pfGeoSets) if the node is completely or partially in
the viewing frustum. If the node is a pfSwitch, a pfSequence,
or a pfLOD, the state of the node affects which children are
traversed.

5. Invoke the node's post-cull callback.

Culling

Organizing a database for
efficient culling: Organizing this
database spatially, rather than
by object type or other
attributes, promotes efficient
culling.

Cull traversal

= pfChannel can rearrange the order in which
pfGeoSets are rendered for improved
performance and image quality by binning
and sorting.

= Binning is the act of placing pfGeoSets into
specific bins, which are rendered in a specific
order.

— Two default bins: one for opaque geometry and
one for blended, transparent geometry. The
opaque bin is drawn before the transparent bin so
transparent surfaces are properly blended with the
background scene

Draw traversal

= For each bin the cull traversal generates a libpr
display list of geometry and state commands which
describes the bin's geometry that is visible from a
pfChannel.

= The draw traversal parses all root bins (bins without
a parent bin) in the order given by their rendering
order value.

= For each root bin, it simplﬁ traverses the display list
and sends commands to the Geometry Pipeline to
enerate the image. If a bin has sub-bins, objects
that are not in any sub-bin of the bin are rendered
first and are followed by objects of each sub-bin. The
order in which sub-bins of the bin are drawn is
determined by their rendering order value.

Scene graph traversals

= Stages (sometimes = Traversal Order: Scene

rocesses) traverse from graphs are traversed in a
Ehe root ngde degth-flrst, left-toright
order.

Reot_node
DRAW.

|
\\

Sharod memory 16 é

Geometry

= pf GeoSet s for holding low-level geometric descriptions of
objects

Placing Geometry in a Scene
Graph

Create a pfGeoSet with
pf NewGSet () .

= Types: \
~"PFGS PO NTS . AN AN Attach the pfGeoSet to a
— PEGS LI NES Points Lines Line srps pfGeoState using
— PFGS_LI NESTR PS P . pf GSet Gstat e().
- PEGS FLAT_LINSTRIPS A\ /v 7, i, < Add the pfGeoSet to a pfGeode
- EEg_TRI S g s s popens node in a scene graph using
— PFGS TR STRIPS pf AddGSet ().
— PFGS_FLAT_TRI STRI PS
— PFGS_TRI FANS
— PFGS_FLAT_TR FANS
— PFGS_PQLYS
Appearance Appearance

= A pf St at e holds the global graphic's state
description.

A pf GeoSt at e encapsulates the graphics
state elements, such as lighting,
transparency, and texture that define the
appearance of a pfGeoSet.

Every pf GeoSet must reference a

pf GeoSt at e. State definitions for the

pf GeoSet come either from its

pf GeoSt at e, or from the global, default
settings in the global pf St at e.

m pf GeoSt at es can specify the following,
among other things:

1. Material properties with the pf Mat eri al
state attribute object

2. Textures with the pf Text ur e state
attribute object

3. Transparency with the transparency mode

Appearance

Defining a pfGeoState:
1. Create a pf GeoSt at e object using
pf NewGSt at e ().

2. Associate the pfGeoState appearance values with a

Some reminders

m Open GL Performer supports real time
applications

Appearance

For example, to enable lighting and antialiasing and to set the
material of the geometry to metal, use code similar to the
following:

