AVANGO

A Display Device Abstraction for Virtual Reality Applications

Display Device Abstraction

- Great variety of display devices
 - Monitor
 - Workbench
 - Head-mounted display
 - CAVE

- Performance
- Ease of use
Devices

<table>
<thead>
<tr>
<th></th>
<th>Mono</th>
<th>Stereo</th>
<th>One Screen</th>
<th>Multi Screen</th>
<th>Dynamic Frustum</th>
<th>Static Frustum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereo Monitor</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workbench</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head-mounted Display</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAVE</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Representation

- Eye
- Screen
- View
 - MonoView
 - StereoView
- Window
 - MonoWindow
 - StereoWindow
Eye

- Scene graph node
- Determines camera position
- Defines near and far clipping planes

Screen

- Scene graph node
- Determines position and orientation of projection screen
- Size on local XZ-coordinate plane
View

- Associates Eye- and Screen-Node(s) with Window-Objects
- Calculates view frustum using
 - Position of eye node
 - Position and orientation of screen node
- CULL optimization for stereo views

Window

- Specifies graphics output window
 - Position and Size on graphics screen
 - View port
Class Diagram

Monitor
Head-mounted Display

CAVE
Conclusion

- Display device abstraction
- Few components
- Fits most common devices
- Implicit frustum definition
- Scene graph integration
- Performance optimizations
- Scriptable