Best-first search

- Idea: use an evaluation function $f(n)$ for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node

- Implementation:
 Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A^* search

Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
- = estimate of cost from n to goal
- e.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
Greedy best-first search example

Properties of greedy best-first search
• Complete? No – can get stuck in loops, e.g., Iasi \(\rightarrow\) Neamt \(\rightarrow\) Iasi \(\rightarrow\) Neamt \(\rightarrow\)
• Time? \(O(b^m)\), but a good heuristic can give dramatic improvement
• Space? \(O(b^m)\) -- keeps all nodes in memory
• Optimal? No

A* search
• Idea: avoid expanding paths that are already expensive
• Evaluation function \(f(n) = g(n) + h(n)\)
• \(g(n)\) = cost so far to reach \(n\)
• \(h(n)\) = estimated cost from \(n\) to goal
• \(f(n)\) = estimated total cost of path through \(n\) to goal

A* search example
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance).
- Theorem: If $h(n)$ is admissible, A^* using TREE-SEARCH is optimal.

Optimality of A^* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above

Therefore, $f(G_2) > f(n)$, and A^* will never select G_2 for expansion.
Consistent heuristics

- A heuristic is consistent if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),
 \[h(n) \leq c(n,a,n') + h(n') \]
- If \(h \) is consistent, we have
 \[f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \geq g(n) + h(n) = f(n) \]
- i.e., \(f(n) \) is non-decreasing along any path.
- Theorem: If \(h(n) \) is consistent, \(A^* \) using GRAPH-SEARCH is optimal

Optimality of \(A^* \)

- \(A^* \) expands nodes in order of increasing \(f \) value
- Gradually adds "\(f \)-contours" of nodes
- Contour \(i \) has all nodes with \(f \leq f_i \), where \(f_i < f_{i+1} \)

Properties of \(A^* \)

- **Complete?** Yes (unless there are infinitely many nodes with \(f \leq f(G) \))
- **Time?** Exponential
- **Space?** Keeps all nodes in memory
- **Optimal?** Yes

Admissible heuristics

E.g., for the 8-puzzle:
- \(h_1(n) \) = number of misplaced tiles
- \(h_2(n) \) = total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

- \(h_1(S) = ? \)
- \(h_2(S) = ? \)

Dominance

- If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
 then \(h_2 \) dominates \(h_1 \)
- \(h_2 \) is better for search

- Typical search costs (average number of nodes expanded):
 - \(d=12 \)
 - IDS = 3,644,035 nodes
 - \(A(h_1) = 227 \) nodes
 - \(A(h_2) = 73 \) nodes
 - \(d=24 \)
 - IDS = too many nodes
 - \(A(h_1) = 39,135 \) nodes
 - \(A(h_2) = 1,841 \) nodes