Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens

- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: n-queens

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
Hill-climbing search

- "Like climbing Everest in thick fog with amnesia"

```plaintext
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```

Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h = 17$ for the above state

- A local minimum with $h = 1$
Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but **gradually decrease** their frequency

```
function Simulated-Annealing(problem, schedule) returns a solution state
    inputs: problem, a problem
    schedule, a mapping from time to "temperature"
    local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps

    current ← Make-Node(InitialState[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
        next ← a randomly selected successor of current
        ∆E ← Value[next] - Value[current]
        if ∆E > 0 then current ← next
                     else current ← next only with probability \( e^{\Delta E / T} \)
```

Properties of simulated annealing search

• The parameter \(e^{\Delta E / T} \) is the key idea.
 The graph for \(x = \frac{\Delta E}{T} \) is given by
 the exponential function (see graph)
 \(x < 0 \Rightarrow f(x) < 1 \land f(x) > 0 \)

• One can prove: If \(T \) decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
• Widely used in VLSI layout, airline scheduling, etc
Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens
 \((\text{min} = 0, \text{max} = 8 \times 7/2 = 28)\)
- \(24/(24+23+20+11) = 31\%\)
- \(23/(24+23+20+11) = 29\%\) etc