Logical Agents

*(Chapter 7 (Russel & Norvig, 2004))

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution
Knowledge bases

- Knowledge base = set of sentences in a formal language
- **Declarative** approach to building an agent (or other system):
 - Tell it what it needs to know
 - Then it can ask itself what to do - answers should follow from the KB
- Agents can be viewed at the **knowledge level**
 - i.e., what they know, regardless of how implemented
- Or at the **implementation level**
 - i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```java
function KB-AGENT(percept) returns an action
    static: KB, a knowledge base
              t, a counter, initially 0, indicating time
    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
    action ← ASK(KB, MAKE-ACTION-QUERY(t))
    TELL(KB, MAKE-ACTION-SENTENCE(action, t))
    t ← t + 1
    return action
```

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions
Wumpus World PEAS description

- **Performance measure**
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- **Environment**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- **Sensors** Stench, Breeze, Glitter, Bump, Scream
- **Actuators** Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- **Fully Observable** No – only local perception
- **Deterministic** Yes – outcomes exactly specified
- **Episodic** No – sequential at the level of actions
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent?** Yes – Wumpus is essentially a natural feature
Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world
Exploring a wumpus world
Exploring a wumpus world

- Breeze in (2,1) and (1,2):
 - no safe actions
- Assuming evenly distribution of pits:
 - (2,2) has pit w/ prob 0.86, vs. 0.31
- Smell in (1,1)
 - cannot move, can use a strategy of coercion:
 - shoot straight ahead
 - if wumpus was there then
 - wumpus dead
 - if wumpus dead then safe
 - else safe

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x+2 \geq y$ is a sentence; $x^2 + y > \emptyset$ is not a sentence
 - $x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
 - $x+2 \geq y$ is true in a world where $x = 7$, $y = 1$
 - $x+2 \geq y$ is false in a world where $x = 0$, $y = 6$
Entailment

- **Entailment** means that one thing logically follows from another:

 \[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true

 - E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”
 - E.g., \(x+y = 4 \) entails \(4 = x+y \)
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of **models**, which are formally structured worlds with respect to which truth can be evaluated

 - We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)

 - \(M(\alpha) \) is the set of all models of \(\alpha \)

 - Then the **formal definition of KB** \(KB \models \alpha \) is:

 \[KB \models \alpha \text{ holds if and only if } \alpha \text{ is true in every model in which } KB \text{ is true} \]

 \[\text{or} \]

 \[\text{iff } M(KB) \subseteq M(\alpha) \]

 - E.g. \(KB = \) Giants won and Reds won \(\alpha = \) Giants won
Entailment in the wumpus world

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]:

- Consider possible models for wumpus KB assuming only pits
- 3 Boolean choices \Rightarrow 8 possible models

Wumpus models

- $KB = \text{wumpus-world rules + observations}$
Wumpus models

- $KB = \text{wumpus-world rules + observations}$
- $\alpha_1 = \text{"[1,2] is safe"}$, $KB \models \alpha_1$, proved by **model checking**
Wumpus models

- $KB = \text{wumpus-world rules} + \text{observations}$
- $\alpha_2 = \text{"[2,2] is safe"}$, $KB \not\models \alpha_2$

Inference

- $KB \models \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$
- **Soundness**: i is sound if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$
- **Completeness**: i is complete if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the KB.
Propositional logic: Syntax

- Propositional logic is the simplest logic – illustrates basic ideas
- The proposition symbols P_1, P_2 etc are sentences
 - If S is a sentence, $\neg S$ is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol, e.g.:

$$m_1 = \{P_{1,2} = \text{true}, P_{2,2} = \text{true}, P_{3,1} = \text{false}\}$$

Using the 3 symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

- $\neg S$ is true iff S is false
- $S_1 \land S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
 - i.e., is false iff S_1 is true and S_2 is false
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{true} \lor \text{false}) = \text{true} \land \text{true} = \text{true}$$
Truth tables for connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Wumpus world sentences

- Let $P_{i,j}$ be true if there is a pit in [i, j].
- Let $B_{i,j}$ be true if there is a breeze in [i, j].

For all wumpus worlds:
- No pit in $P_{1,1}$
- "Pits cause breezes in adjacent squares" or "A square is breezy if and only if there is an adjacent pit"

For the specific world:
- No breeze in $B_{1,1}$
- Breeze in $B_{2,1}$

$$R_1 : \neg P_{1,1}$$
$$R_2 : B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$$
$$R_3 : B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$$
$$R_4 : \neg B_{1,1}$$
$$R_5 : B_{2,1}$$
Truth tables for inference

<table>
<thead>
<tr>
<th></th>
<th>B_{1,1}</th>
<th>B_{2,1}</th>
<th>P_{1,1}</th>
<th>P_{1,2}</th>
<th>P_{2,1}</th>
<th>P_{2,2}</th>
<th>P_{3,1}</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td></td>
<td>true</td>
</tr>
</tbody>
</table>

• Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too.

Inference by enumeration

• Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
 α, the query, a sentence in propositional logic
 symbols — a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB, α, symbols, [])

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if EMPTY?(symbols) then
 if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
 else return true
else do
 P ← FIRST(symbols); rest ← REST(symbols)
 return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
 TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
• For n symbols, time complexity is O(2^n), space complexity is O(n)
Logical equivalence

- Two sentences are logically equivalent iff true in same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha & \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) & \text{implication elimination} \\
(\alpha \Leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) & \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) & \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) & \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, \(A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the Deduction Theorem:
\(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

A sentence is satisfiable if it is true in some model
e.g., \(A \lor \neg B, C \)

A sentence is unsatisfiable if it is true in no models
e.g., \(A \land \neg A \)

Satisfiability is connected to inference via the following:
\(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable
Proof methods

• Proof methods divide into (roughly) two kinds:

 1. **Model checking**
 • truth table enumeration (always exponential in n)
 • improved backtracking, e.g., Davis–Putnam-Logemann-Loveland (DPLL)
 • heuristic search in model space (sound but incomplete)
 • e.g., min-conflicts-like hill-climbing algorithms

 2. **Application of inference rules**
 • Legitimate (sound) generation of new sentences from old
 • **Proof** = a sequence of inference rule applications
 Can use inference rules as operators in a standard search algorithm
 • Typically require transformation of sentences into a normal form

Inference in PL

• Inference rules
 • Modus Ponens: \(\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \)
 • and-elimination: \(\frac{\alpha \land \beta}{\alpha} \)

• all logical equivalences can be used as inference rules, e.g.,
 • \(\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \) and \(\frac{\alpha \Leftrightarrow \beta}{\alpha \Rightarrow \beta} \)

• but not all are bidirectional (see Modus Ponens)
Inference in PL

1. $R_1 : \neg P_{1,1}$
2. $R_2 : B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
3. $R_3 : B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
4. $R_4 : \neg B_{1,1}$
5. $R_5 : B_{2,1}$

- **Question:** $\vdash \neg P_{1,2}$
 - **Biconditional Elimination of R_2:** $R_6 : (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,1} \lor P_{2,2} \lor P_{3,1}) \Rightarrow B_{1,1})$
 - **And-Elimination:** $R_7 : ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
 - **Contraposition:** $R_8 : (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$
- **Modus Ponens (With Perception R_i):** $R_9 : \neg (P_{1,2} \lor P_{2,1})$
 - **De Morgan:** $R_{10} : \neg R_{2,1} \land \neg R_{3,1}$

- No pit in (1,2) and (2,1)