VR display systems

- Morton Heilig began designing the first multisensory virtual experiences in 1956 (patented in 1961): Sensorama
- Projected film, audio, vibration, wind, and odors.
- The five "experiences" included
 - a motorcycle ride through New York
 - a bicycle ride
 - a ride on a dune buggy
 - a helicopter ride over Century city in 1960
 - a dance by a belly dancer.

- Heilig also patented an idea for a device that some consider the first Head-Mounted Display (HMD) (proposed 1960 and applied for patent in 1962).
 - Wide field of view optics to view 3D photographic slides.
 - Stereo sound.
 - Odor generator.
VR visual display systems

- “A head-mounted three-dimensional display” (Sutherland, 1968) by Iven. E. Sutherland:
 - Hidden-line graphics
 - Mechanical tracking
 - See through HMD
 - Quint Foster wearing the Head-Mounted Display (circa 1967)

VR visual display systems

- Head-mounted display (HMD)
 - Scene completely surrounds user
 - Graphics are sharp and bright
 - FOV is narrow
 - Devices are heavy, cumbersome
 - Can’t see other people (nowadays see-through with some devices)

- Boom (Binocular Omni Orientation Monitor)
 - High resolution (>1280x1024)
 - Wide Field of View
 - User must not carry heavy weight
 - Electromechanical tracking with minimal lag
 - Limited user movement
 - Requires the user to hold onto the BOOM for control
VR visual display systems

- Projection Walls
 - Active or passive stereo
 - Multi-projector systems require overlap

VR visual display systems

- Cylindrical Screen Configurations, e.g., Cone
 - Common in industry
 - Projection difficult, curved screen requires distortion correction in hardware or software
VR visual display systems

- (Responsive) Workbench
 - Table-top metaphor
 - Change display orientation
 - Integrates real & virtual
 - Less immersion
 - Occlusion/cancellation
 - Expensive

Baron workbench (courtesy of BARCO Co.)

- Two-Sided Workbench, holoscreen
 - Enlarged view volume (w.r.t. workbench)
 - Enhanced immersion
 - High resolution possible
 - Telepresence

Wall (door/window metaphor)
 - Allows 1:1 real object sizes
 - High resolution possible
 - Relative cheap
 - Screen size limit
 - Immersion breaks at the display borders

GMD/TAN 1997/98
VR visual display systems

- CAVE1 (Cave Automatic Virtual Environment)
 - Multi-wall (usually 4) provides wide FOV
 - Can see other people
 - Higher deg. of immersion
 - High resolution possible
 - Less bright with CRT, Wall-wall reflection with DLP etc.
 - Visible edge(s)
 - Calibration expensive
 - Expensive

1registered trademark of Fakespace Systems

picture courtesy of Fakespace Systems
VR display systems

- Several more specialized visual display systems exist (see images on bottom/right).
- The term display system is not restricted to visual display system.
- Each sense for which stimuli has to be simulated requires its own display.
- Many VR systems (including the introduced ones) already include more than one display type, e.g., many visual displays include an auditory display (CAVEs, HMDs with earphones, etc.).