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represent a color C(/) ?
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Representation of Light and Color

« Do we need to represent all /, to
represent a color C(/) ?

* No — we can approximate usinl%_ a
three-color additive system (taking
into account the described
problems)

» Frames can be displayed using
RGB system:
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cause each point to have a different

color or shade to generate depth perception.

Motivation

» Suppose we build a model of a green sphere
using many polygons and just color it.
We get something like:

» The image of the sphere looks flat!

« But light-material interactions should
cause each point to have a different

color or shade to generate depth perception.

* Need to consider
» Light sources
» Material properties
* Location of viewer
» Surface orientation




Principle Lighting Model

1.
2.

Lighting (or illumination): Description or model of light-object-eye interaction.

Physically, surfaces may reflect
or emit light or both.

Color that we see is determined
by multiple interactions between
light and surfaces.

Recursive process:
Light from Ais reflected on B is
reflected on Ais reflected on B...

Equations could be derived which use

principles like conservation of energy to describe this process.

This results in integral equation which can not be solved analytically...
...but global model lighting approaches like ray-tracing and radiosity
use numerical approximations which are becoming real-time capable
(depending on parameterization and HW-support).

Principle Lighting Model




Principle Lighting Model

«  Correct shading requires a global
calculation involving all objects
and light sources.

* Incompatible with ﬁlpellne model

which shades eac polyg
independently (local rendering).

*  Numerical solutions are expensive
but can in principle be sped up
using dedicated hardware.

Principle Lighting Model

«  Correct shading requires a global
calculation involving all objects
and light sources.

* Incompatible with ﬁlpellne model

which shades each poly
independently (local rendering).

*  Numerical solutions are expensive
but can in principle be sped up
using dedicated hardware.

£ .-=tfanslucency

multiple
reflections

shadows

*  For real time computer graphics,
approaches are utilized which
imitate physically correct light-
matter-eye interaction, hence
which “look right”.

«  Exist many techniques for
approximating global effects




Local Lighting Model

Local model:

*  Following rays of light from light emitting
surfaces (light-sources) instead of looking
at a global energy balance.

*  Derive a model which describes how these
rays interact with reflecting surfaces.

*  Will focus on single interaction in contrast
to multiple interaction (like used in ray-tracing).

*  This approach requires light sources and
reflection model.
* Viewer sees only light which reaches eye.

* No reflection inbetween:
Perception of light source's color.

«  With surface reflection:
Perception based on light source’s color and surface material.
* Viewer's eye is exchanged for COP (Center of Projection)
and projection plane.

Local Lighting Model

+ Light that strikes an object is

+ partially absorbed and vAs o
. <> =P
+ partially scattered (reflected). VA J J@% e
iOV« f><3
* The amount reflected determines a
+ the color and
« brightness of the object. 361
> A surface appears red under white light 2

because the red component of the light is
reflected and the rest is absorbed

* The reflected light is scattered in a :ﬁ
manner that depends on vAs¢ . ﬂi . vAs
+ the smoothness and ’9‘ "*

» orientation of the surface.




Reflecting Surfaces

N

Reflecting Surfaces |

* (a) Specular surfaces: 5?
*  Appear shiny because most of reflected light is

scattered in a narrow range of abgles close to
angle of reflection. (a)

* Ideal reflectors: Mirrors (parts can be still absorbed).
* Angle of incidence is equal angle of reflection.
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Reflecting Surfaces

N\UV
* (a) Specular surfaces: TN
* Appear shiny because most of reflected light is

scattered in a narrow range of abgles close to
angle of reflection. (a)

* Ideal reflectors: Mirrors (parts can be still absorbed).

* Angle of incidence is equal angle of reflection.
* (b) Diffuse surfaces:

* Reflected light is scattered in all directions.

* E.g., walls painted with matte or flat paint or terrains
seen from hight.

+ Perfect diffuse surfaces scatters equally in all
directions.
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Reflecting Surfaces

* (a) Specular surfaces: i

*  Appear shiny because most of reflected light is
scattered in a narrow range of abgles close to
angle of reflection.

* Ideal reflectors: Mirrors (parts can be still absorbed).
* Angle of incidence is equal angle of reflection.

* (b) Diffuse surfaces:
+ Reflected light is scattered in all directions.

+ E.g., walls painted with matte or flat paint or terrains
seen from hight.

+ Perfect diffuse surfaces scatters equally in all
directions.

* (c) Transluscent surfaces:

+ Allow some light to penetrate the surface and to
emerge from another location -> Refraction.

+ Some incident light may be reflected as well.




Light Sources

Light Sources

* Ingeneral, light sources should integrate light
coming from all points on the source.
+ Light can leave a surface by
» self-emission and/or
+ reflection.
« Each point p=(x,y,z) on the surface is characterized by
 the direction of emission (6, ¢) and
- the intensity of energy at each wavelength A and hence
+ the illumination function




Light Sources

* Ingeneral, light sources should integrate light
coming from all points on the source.
« Light can leave a surface by
» self-emission and/or
+ reflection.
+ Each point p=(x,y,z) on the surface is characterized by
 the direction of emission (0, ¢) and
- the intensity of energy at each wavelength A and hence
+ the illumination function
* To calculate the source’s contribution to an illuminated
surface one has to
» integrate over the source’s surface, I1x,, vy, 21, 0,,6,A)
» account for the emission angles and

» account for the distance between source
and surface.

/(X2, Yor Z9p, 02; ‘/’Qr A)

» Integration (analytical or numerical) is expensive.

w

Light Sources

An approximation to light-material interaction

» uses 4 different light sources to

» calculate an intensity function /

» using the three color model of the human visual system.

Ambient light: Same amount of light everywhere, can model contribution
of many sources and reflecting surfaces.

Point source: Model with position and color.
Distant (directional) light: Point source in infinite distance (parallel rays).
Spotlight: Point source with restricted light.

1 INE
ZAZiS

Directional Light Point Light Spot Light

Cut-off angle

Light direction




Ambient Light

* Near uniform lighting created by highly diffused light sources.

* One could model all light sources and interactions or use a
concept called “ambient light” which
+ lights all surfaces uniformly.
* is not viewer location dependent.

- m,,, vector is a material attribute
- s, vectoris a light source attribute

Point Light Sources

+ Ideal point emits light in all directions.

 Intensity of illumination is inverse square of distance between source
and surface

e

N

Use of point sources is more
a matter of efficiency
rather than realism as
most sources have a
dimension:




Spotlights and Distant Lights

Spotlights:
* Point source with limited direction.

+ Point source Ps in a direction I, and a width of 6.

» Spotlight attenuation:

» Greater realism can be obtained by varying the
intensity of light across the cone D S S

« Typical Function: cos (¢ )=S -1 7 B

Distant lights:

 Light sources that are 0 -
distant to the surface

« Lightis parallel:

<

Lighting in OpenGL penGL.

Light sources can be turned on/off:
glEnable (GL LIGHTING) ;
glEnable (GL LIGHTO) ;

» Support: multiple lights
* (but performance suffers)

* For each light:
« Ambient, Diffuse, Specular per RGB
 Position, Direction
» Spotlight Exponent and Cutoff Angle
« Light to Surface Distance Attenuation




Lighting At A Point

+ Lighting at a point on an object’s surface:

For each color in(Red, Green, Blue):
For each light source:
For each light type (ambient, diffuse, specular):
Determine the amount of light reaching the point
(Typically Ignore Shadowing)
Determine the amount of light reflected
(Based on properties of the surface)

« I, =>sum of all light reflection from each light source

Lighting At A Point

* lllumination, /, at a point is modeled as the sum of several terms:
* More terms give more plausible results.
* Fewer terms give more efficient computations.
- Each additive term of / is expressed in primary colors, /,, I, and /,,
i.e. I, where Aisr, g, or b (typically defined as a range from 0 to 1)
« Each of these colors (/,) is computed independently.

- Components (/,), can be used to express how much light a source emits
and a surface reflects.

» Total illumination: Sum of each light source
I?»=IM+I)\2+I7»

» Various solutions for dealing with possible overflow (>1), e.g.,
» clamp to max allowable
* normalize individual terms:




Applying a lighting model

Applying a lighting model

» Calculating lighting using objects defined by their surfaces:
* In which coordinate system should the lighting be applied?
» For which points on objects’ surfaces should lighting be applied?
» Sampling into surface may be to coarse
* or may be to detailed and may produce unnecessary computational overhead
» and sampling artifacts.




Applying a lighting model

{(:)}Iight

o) |=8e O E>-<E>-

Geometry \ Rasterizer
(tr?nﬁf_orm & (fragment
ighting) shading)

» Calculating lighting using objects defined by their surfaces:
* In which coordinate system should the lighting be applied?
» For which points on objects’ surfaces should lighting be applied?
» Sampling into surface may be to coarse
* or may be to detailed and may produce unnecessary computational overhead
+ and sampling artifacts.
* lIdea:
+ Lighting calculation per vertex and surface approximation in screen space.
» Supported by pipeline architecture.
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Ambient light

- Ambient reflection depends on ambient light intensity /,, and object’s
ambient material properties:
« Objects diffuse color O, (O, Oyy, Oyp)
« Overall fraction reflected is the ambient-reflection coefficient k,, (0 to 1)
« The overall fraction of primary reflected is: k, O,

» Specification allows independent control of the overall intensity of
reflection and of its color.

= The illumination model at an object point thus far:
L =1, k, O

an 'a

» Ambient light is not viewer location dependent
» Resulting images:

Ambient light in OpenGL penGL.

Enable a global ambient light:
float globalAmbient[] = {r,g,b,1};
glLightModelfv (GL_LIGHT MODEL AMBIENT, globalAmbient) ;

OpenGL allows an ambient term in individual lights (e.g.,
GL_LIGHTO)

Specify ambient material property:
» float ambient[] = {r,g,b,1};
+ glMaterialfv (GL FRONT AND BACK, GL_ AMBIENT, ambient);

Note that ks and Og, are combined.




Diffuse Reflection

(b)

» Scattering of Reflective Light.

« Consider how a dull, matte surface (e.g., chalk)
scatters light:

* When its orientation is fixed relative to a light, its
illumination looks the same from all viewing angles.

* When its orientation changes relative to a light, its é
illumination changes.

+ ltis brightest when the light shines directly on it.

+ lItis dimmer when it makes an angle to the light.

: A . : l/cos ¢
» This reflection is diffuse (Lambertian) reflection.

Lambertian Reflection

+ Diffuse (Lambertian) reflection: what we see is according to
Lambert’s law the vertical component of the incoming light
» This vertical componentatp is : N
I, cos(6) or
I, (N-L),where:

* The unit surface normal at a point, p, is N.
L is a unit vector pointing to the light source  ©lightsource
e 0is the angle between N and L.

« The reflected light is O for 6 > 90 degrees




Lambertian Reflection

» The diffusely reflected light depends on the surface’s
material properties :
- Objects diffuse color O, (O, Oyy, Oy)

* The overall fraction reflected is the diffuse-reflection
coefficient k, , range(0 to 1)

- The overall fraction of primary reflected is: k, O,

« Given point light source, the diffuse intensity at it is:
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Lighting model continued

= The illumination model at a point is thus so far:
Ix = Iak ka Odk + Ip)\kd de (N ) L)

» Diffuse lighting is not viewer location dependent
» The dot product is calculated at every point
+ The L vector is calculated at every point except:
* The light’s position is infinitely far away.
« All rays are parallel by the time they reach the scene.
* The resulting images look like:
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Diffuse Reflection in OpenGL penGL.

» Specify the light’s color:
float diffuselO[] = {r,g,b,1};
glLightfv (GL_LIGHTO, GL DIFFUSE, diffuse0);
» Specify the light’s direction:
float directionO[] = {dx,dy,dz,0};
glLightfv (GL_LIGHTO, GL POSITION, direction0);
« The parameter being set is GL_ POSITION
« The 0 in the last element of directionO indicates that this
light is a directional light.
» Specify diffuse material property:
float diffuse[] = {r,g,b,1};
glMaterialfv (GL_FRONT AND BACK, GL DIFFUSE, diffuse)
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Specular Reflection

» Consider a glossy, shiny surface
(e.g., plastic, metal).

+ The surface reflects a bright highlight.

* The highlight changes with viewing angle.
» This reflection is specular reflection.
* Reflection is highest in a certain direction.

 Reflection intensity depends on angle between
reflection distribution and viewer position.
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Specular Reflection

*  More precisely:
* N is the unit normal at point p.
* L is the unit vector pointing to the light source.
e 0isthe angle between N and L.
* Ris the vector of mirror reflection.
* R also makes angle with N.
* Ris on the “other side” of L.
* Vs a unit vector pointing to the camera.
+ aisthe angle between Rand V.
*  The highlight’s visible intensity depends on: <K§*ight source
. o
« The highlight is most intense when o =0
« The highlight becomes dimmer as a grows.
* material properties
«  Example: Mirror reflects only with a =0
* A Mirror is a Perfect Reflector

1 n

Phong Model for Non-Perfect Reflectors

- Alight of intensity /,, produces a highlight intensity proportional to
l,, (cos (a))".

* The exponent, n is a material property
* (specular-reflection coefficient)

* Varies from 1 to several hundred
(from broad gentle falloff to sharp focused falloff):

1 T |
0.8 | TN AR |
> exponent = 1 // . FEE R
@ .1t S i 11 i
E 0.6 // ; 3 i
E AV A :
: / 8 1 \
3 - 32 \ <
o " .\
®02r /256 3 |
0 i ! iz b . . g, iy ey
2 . 0 /4 2




Specular Reflection

» Other material properties affect the intensity specularly reflected.

« The overall fraction of light reflected is W (8), often taken
to be the constant k; (ranges 0 to 1)

« The fraction of primary A reflected is O,

* The specular intensity is thus:

I, ks Og, (cos (a) )" or |y ks Og (R-V )"

pA s

= The illumination model at a point is thus so far:
L =1, k, de+ lpxkdOdK(N' L)+Ip}\ ki Oy, (R V)"
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Approximating Phong Lighting

» Calculating Phong Lighting equation requires calculation of perfect light
reflection vector.

N
R

N

 How is the reflection vector calculated?
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Approxmatmg Phong Lighting

Calculating Phong Lighting equation requires calculation of perfect light
reflection vector.

N what is R?
R L

* Termis maximum when R and V are equal.

» A popular variation by (Blinn, 1977):

* Where H is the normalized halfway vector between L and V:
» This approximation is expressed as:

Approxmatmg Phong Lighting

Calculating Phong Lighting equation requires calculation of perfect light
reflection vector.

N whatisR? R =2(N-L)N-L N
R L R L
N-L
| A
(N-L)N
-L

+ Termis maximum when R and V are equal.

* A popular variation by (Blinn, 1977):

* Where H is the normalized halfway vector between L and V:
» This approximation is expressed as:




Approxmatmg Phong Lighting

Calculating Phong Lighting equation requires calculation of perfect light
reflection vector.

N whatisR? R =2(N-L)N-L N
R ! L

W

(N-L)N

L

* Termis maximum when R and V are equal.
- A popular variation by (Blinn, 1977): [ .. = (N-H)"

* Where H is the normalized halfway vector between Land V: H =
- This approximation is expressed as: (R-V)" = (N -H)*"

L+V
IL+V|
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Applying the lighting model

= Iy Ko O+ 1y kg O (N L)+ 1, k Oy (R-V)
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Specular Reflection in OpenGL @GL

» Specify the light that can be specularly reflected:
float specularO[] = {r,g,b,1};
glLightfv (GL_LIGHTO, GL_SPECULAR, specular0);

» Specify specular material properties:
glMaterialf (GL_FRONT AND BACK, GL_SHININESS, n);
float specular[] = {r,g,b,1};
glMaterialfv (GL_FRONT AND BACK, GL_SPECULAR, specular);

« Note that k, and O, are combined.

Light-Source Attenuation

- To deal with light source distance, we introduce: f

» One option — light energy falls off at inverse square:
1

a4}

att
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1
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« What can we say about the practical issues of the term?

* progression, missing parametrization, physical inadequacy in rest of
calculation and device chain

= in In reality — this does not work well




Light-Source Attenuation

- To deal with light source distance, we introduce: f_;

» One option — light energy falls off at inverse square:
1
| fatt - dlz
« What can we say about the practical issues of the term?

» progression, missing parametrization, physical inadequacy in rest of
calculation and device chain

= in In reality — this does not work well
 Alternative:

) 1
= min 1
S (cl +c,d, +c3dL2 J

« Where c,, c,, and c; are user defined constants for a light source
« OpenGL: Attenuation can be set for each light source

Atmospheric Attenuation

+ Handles distance from observer to object
« more distant objects rendered with lower intensity than closer ones

. Define front and back depth-cue planes, and a (low intensity) color /,, at the back
depth-cue plane

o Set: 7= fgh +(1 = frog) lucy
« Where f,,, = 0 for objects in front of front plane,

fg = 1, for objects behind back plane,
f.e the fog factor, increasing between front and back planes

- if f,, increases, fog effect decreases...
+ FOG is OpenGL’s implementation of atmospheric attenuation

= The illumination model at a point is finally:
Ix = /ax K, de + Fo [/px Ky de (N-L)+ /p)\ ks Osk (R-V)]
b= frogh, H(1 = frog) lyes,




Fog example

—d
ffog — _e ep

C —(dyz,)
ffog_e p1
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Fog example

« Often just a matter of
» Choosing fog color
» Choosing fog model
* Turning it on
« How to compute f;,,?
« 3 ways
* linear:

* exponential; —d,z
p ffog — e f“p

* exponential-squared:

_ o dyz,)3
ffog =e ’
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Fog example

» Often just a matter of
» Choosing fog color
» Choosing fog model
* Turning it on

« How to compute f; ?

fog *
« 3 ways z, -z
* linear: ffog =
Zend

* exponential: -d,z
p ffog — e f“p

* exponential-squared:
_ sz
ffog =€ ’
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Appearance

» Appearance can be greatly enhanced by using textures.
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Appearance

» Appearance can be greatly enhanced by using textures.

+ Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.
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» Textures are used to describe appearance details.
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Appearance

» Appearance can be greatly enhanced by using textures.

+ Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.

» Textures are used to describe appearance details.

+ Simple textures are images which define a pixels color or a color
modification of the color produced by the lighting calculation.
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Appearance

* Appearance can be greatly enhanced by using textures.

» Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.

» Textures are used to describe appearance details.

+ Simple textures are images which define a pixels color or a color
modification of the color produced by the lighting calculation.

+ Normal maps or bump maps describe fine grained surface structures. & j"
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Appearance

» Appearance can be greatly enhanced by using textures.

+ Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.

» Textures are used to describe appearance details.

+ Simple textures are images which define a pixels color or a color
modification of the color produced by the lighting calculation.

* Normal maps or bump maps describe fine grained surface structures. §
* Shadow maps describe shadows cast onto a geometry.
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Appearance

* Appearance can be greatly enhanced by using textures.

» Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.

» Textures are used to describe appearance details.

+ Simple textures are images which define a pixels color or a color
modification of the color produced by the lighting calculation.

+ Normal maps or bump maps describe fine grained surface structures. & j"
* Shadow maps describe shadows cast onto a geometry.

+ Environment maps reflect light from the environment (e.g., for
simulating mirrors)

Realtime 3D Computer Graphics / Virtual Reality — WS 2006/2007 — Marc Erich Latoschik




Appearance

» Appearance can be greatly enhanced by using textures.

+ Textures are 2d or 3D arrays of values which are fed as an additional
parameter source into the render pipe’s calculations.

» Textures are used to describe appearance details.

+ Simple textures are images which define a pixels color or a color
modification of the color produced by the lighting calculation.

+  Normal maps or bump maps describe fine grained surface structures. ESE%
* Shadow maps describe shadows cast onto a geometry.

»  Environment maps reflect light from the environment (e.g., for
simulating mirrors)
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What now?
Shading

+ Ideally, the renderer should apply the illumination model at every visible
point on each surface

« This approach requires too much computation.

* As an alternative:
* Apply the illumination model at a subset of points.
 Interpolate the intensity of the other points.
* Apply the illumination model only visible surfaces
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Shading

 Ideally, the renderer should apply the illumination model at every visible
point on each surface

» This approach requires too much computation.

* As an alternative:

* Apply the illumination model at a subset of points.
 Interpolate the intensity of the other points.

» Apply the illumination model only visible surfaces
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What now?
Shading

 Ideally, the renderer should apply the illumination model at every visible
point on each surface

» This approach requires too much computation.

* As an alternative:

* Apply the illumination model at a subset of points.
 Interpolate the intensity of the other points.

» Apply the illumination model only visible surfaces
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Further Expansions of the lllumination
Models

* Presented illumination model only involves:
 Light sources
» Materials at object point
* Known as a “Local Model”
* Real lighting involves:
* Light reflection from one object to another

* (Global Models)
* |.e. additional lighting sources for an object point

« Transparency

» Raytracing, Radiosity Approaches

“Local Model”
Shading Models

» Determines the shade of a object point or pixel

by applying the illumination model

 The models are only loosely physical, and
emphasize:
* Empirical success
« Efficiency




Flat (Constant) Shading

« Sample illumination at one point per polygon.
« Use constant interpolation:
all other points on the polygon get that point’s intensity.

» This approach would be valid if:
* The true surface really is faceted, so N is constant.
« The light source is at infinity, so L is constant.
* The viewer is at infinity, so V is constant.

Flat shading in OpenGL

* Just enable it:
* glShadeModel (GL_FLAT) ;




Gouraud Shading

flat Gouraud

* Apply the illumination model at each polygonal vertex.
« (Example: f,, f,, f3)
 Interpolate intensities as part of scan conversion
 Bi-linear interpolation:
« Interpolate span endpoints from edge vertices (ex. . f, f, )

« Interpolate points within a span from span endpoints (ex. . f, )

Gouraud Shading (Continued)

Reduces Mach bands (but not entirely).
Misses interior highlights
Smears highlights along edges

Some repetitive 3D patterns can be missed
completely




Gouraud Shading in OpenGL

 Just Enable It:
* glShadeModel (GL SMOOTH) ;

 Set Normals for all Vertices

Phong Shading

» Improves the Gouraud Shading Model by:
* Apply the illumination model at each pixel
» This requires a normal (N) at each pixel
* N at each pixel is interpolated from N at vertixes

» Gouraud applies the illumination model at each vertex, then
interpolates pixel value

* This requires a normal only at the vertices £;




conversion.

» To get N at span endpoints, interpolate from edge
vertices’ normals.

» To get N within a span, interpolate from span end-
points.

Phong Advantages

» This approach avoid some errors in specular
illumination that appear with Gouraud shading.

« Gouraud misses specular highlights within polygons.
» Gouraud spreads specular highlights along edges.

« Standard OpenGL does not support Phong shading!

« But Phong shading can be implemented using
programmable shaders.




Problems Common to Gouraud and
Phong Shading

» Silhouette edges are not smoothed

« Normal vector interpolation can cause problems:

* Interpolation may mask regular changes

* Interpolation ignores perspective distortion
* Due to foreshortening, a change in scanlines does not
correspond to a constant change in z in OpenGL eye
coordinates.
» So the scanline halfway between two vertices does not
correspond to z halfway between the vertices’ zs.

» But pixels on that scanline get an interpolated quantity
(intensity of N) that does correspond to the halfway z.

Problems with Gouraud & Phong Shading:
Vertex normals at creases

» Crease edges should not have smooth shading.
» Use multiple vertices, each with a different vertex normal.
« Example--cylinder in pieces:

» The top is one piece (one set of triangles).

» The sides are another piece (one set of quadrilaterals).

* Thus, sharing vertices on creases does not work.

nught wohg (tnangle stup)




Rendering Surfaces

» Visible surface determination
+ Compute set of surfaces visible from the viewpoint

 lllumination and shading (local, direct illumination-models): Render
depth, lighting effects, material properties to improve 3D perception.

Lighting Principles GrenL.

 Lighting simulates how
objects reflect light
« material composition of object
« light’s color and position

 global lighting parameters
« ambient light
+ two sided lighting

e available in both color index

and RGBA mode .




How OpenGL Simulates Lights

* Phong lighting model
« Computed at vertices
 Lighting contributors
» Surface material properties
 Light properties
 Lighting model properties

Surface
Normals

RasterH Frag H FB |

* Normals define how a surface reflects light
glNormal3f( x, y, z )
» Current normal is used to compute vertex’s color

» Use unit normals for proper lighting
« scaling affects a normal’s length

glEnable( GL NORMALIZE )
or =
glEnable( GL RESCALE NORMAL )/ -




Material Properties

» Define the surface properties of a primitive
glMaterialfv( face, property, value );

» separate materials for front and back

Light Properties

glLightfv( light, property, value );
« 1ight specifies which light
- multiple lights, starting with GL_LIGHTO
glGetIntegerv( GL MAX LIGHTS, é&n );
e properties
* colors

* position and type
« attenuation




Light Sources (cont.)

®Light color properties
~GL_AMBIENT

~GL_DIFFUSE
~GL_SPECULAR

Types of Lights

* OpenGL supports two types of Lights
» Local (Point) light sources
* Infinite (Directional) light sources

» Type of light controlled by w coordinate




Turning on the Lights

 Flip each light's switch
glEnable( GL LIGHTn ) ;

e Turn on the power
glEnable( GL LIGHTING ) ;

Light Material Tutorial

: Light & Material [_[O]

Screen-space view Command manipulation window

GLfloat light_pos[]={ -2.00,2.00 ,2.00 ,1.00 }
GLfloat light_Ka[]={ 0.00 ,0.00 ,0.00 ,1.00 }
Glfloat light_Kd[]={ 1.00 ,1.00 ,1.00 ,1.00 };
GlLfloat light_Ks[]={ 1.00 ,1.00 ,1.00 ,1.00 };

_LIGHTO, GL_POSITION, light_pos);

_LIGHTO,

GLfloat material_Ka[]={ 0.11 ,0.06 , 0.11
GLfloat material_Kd[] ={ 0.43 ,0.47 ,0.54
GLfloat material_Ks[] ={ 0.33 ,0.33 , 052
GLfloat material_Ke[] = { 0.00 , 0.00 , 0.00
GLfloat material_Se = 10

World-space view

Click on the arguments and move the mouse to modify values.




Controlling a Light’s Position

» Modelview matrix affects a light’s position

« Different effects based on when position is specified
* eye coordinates
* world coordinates
* model coordinates

» Push and pop matrices to uniquely control a light’s
position

Light Position Tutorial

Command manipulation window

GLfloat pos[4] ={ 1.50 , 1.00 , 1.00 ,0.00 }
gluLookAt( 0.00 ,0.00 ,2.00 , <-eye
0.00 ,0.00 ,0.00 , <- center

0.00 ,1.00 ,0.00 ); <-up

glLightfv(GL_LIGHTO, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.




Advanced Lighting Features

« Spotlights
* localize lighting affects
 GL_SPOT DIRECTION

* GL_SPOT CUTOFF
* GL_SPOT EXPONENT

Advanced Lighting Features

 Light attenuation

 decrease light intensity with distance
« GL_CONSTANT ATTENUATION
« GL LINEAR ATTENUATION
« GL_QUADRATIC ATTENUATION




Light Model Properties

glLightModelfv( property, value );

Enabling two sided lighting
GL LIGHT MODEL TWO SIDE

Global ambient color
GL_LIGHT MODEL AMBIENT

Local viewer mode
GL_LIGHT MODEL LOCAL VIEWER

Separate specular color
GL LIGHT MODEL COLOR CONTROL

Tips for Better Lighting

» Recall lighting computed only at vertices

» model tessellation heavily affects lighting results
* better results but more geometry to process

» Use a single infinite light for fastest lighting
* minimal computation per vertex




Other methods of improving realism

» Texture and bump (wrinkle) mapping
» Transparencies & color blendings
» (Alpha Channel Blending)
 Light shadowing and shadow polygons

» Special reflections, refractions, transparencies

« Often used in the movie industry to “fake” highly reflective
surfaces such as glasses

» Modeling curved surfaces, physics-based models,
fractals

Universitit Bielefeld

Shading and Color

Global Models




Global Models

* Improvements normally mean increasing
computation

* [llumination/Shading models covered so far are
“local models”
* Only deal with light sources and single surface

» “Global models” include light reflecting of other
surfaces and shadows

« Two major approaches: raytracing and radiosity

Realtime 3D Computer Graphics / Virtual Reality — WS 2006/2007 — Marc Erich Latoschik

Comparison of Local vs Global Models

[ ———»

—~00® —~000
—~0e® 000

Realtime 3D Computer Graphics / Virtual Reality — WS 2006/2007 — Marc Erich Latoschik




Raytracing

* Follows light rays throughout scene
» Restrict to following light rays that reach the eye

Raytracing

» Cast a ray from a pixel until:
» Goes to infinity — assign pixel background color
« Hits a light — assign pixel light color




Raytracing Continued

» Cast Ray Hits a surface —
» Determine if surface is illuminated:
« Compute shadow or feeler rays from surface to light sources

« If feeler ray hits another surface first, then light source is
blocked (in shadow)

Raytracing Continued

* Feeler or Shadow rays can also be used to add light
reflected or transmitted from other surfaces

« At each intersection of a surface:

» Determine the illumination of that surface point (through a
recursive application of raytracing)

» Determine how much of that illumination is transmitted via
specular (reflective) or transparent effects along the original
feeler ray.

+ Diffuse effects are ignored




Raytracing Examples

Raytracing Environments




Vertex by Vertex vs Pixel by Pixel

 Different from our previous approach
* Previous approach is vertex by vertex
* This is pixel by pixel
» Raytracing also includes hidden surface removal

Radiosity

« Whereas Raytracing is very good for specular/
transparent environments,

« Radiosity is very good for diffuse environments
« Radiosity uses a “global energy balance” approach




Consider

* In the real world, diffuse surfaces impact the cuiur ui
each other:
* Ared wall next to a white wall:
» The red wall will be lighten by diffuse light from the white wall

» The white wall will have a red tint from diffuse light from the red
wall

» These are diffuse-diffuse interactions
* Not taken into account in either local models or raytracing

Radiosity

fy?

» Radiosity is a numerical method for approximating diffuse-
diffuse interaction

. BaS|c Approach:

Break scene up into small flat polygons (patches) each which are
perfectly diffuse and constant shade

» Consider the patches pairwise to determine their light interaction
(form factors)
» For each patch:

» Determine the color by calculating the light energy from all form
factors that include this patch

» Once the patch colors are determined, render using a flat shading
model




Radiosity

» Each round of patch calculation can in

the realism of the image
» For example, imaging a three walls of three different
color-R, G, B
* The 18t round calculate patches:
+ RG+RB, GR+GB, BR+BG
« The 2" round improves this by calculating the

interactions of these mixed color patches

« (RG+RB)(GR+GB)+(RG+RB)(BR+BG), ...

Radiosity Calculation Costs

« Each round is an O(n2) for n patches
* Most of the time, only one round is calculated

* One major advantage of using Radiosity™:

» Since there is no specular or transparent lighting effects,
lighting is not viewer dependent!

« This means that one can walk through a radiosity-
rendered scene!

* Most often used for architectural renderings and
walkthroughs

*Althoughmormally used with a flat shading model, it is possible to use gouraud or phong shading
g y g




Summary

lllumination Models
Local Models
Global Models

Key: All techniques “fake” reality

Appearance

* N is the unit normal at point p.
« L is the unit vector pointing to the light

source.
0 is the angle between N and L.

* R is the vector of mirror reflection.

* R also makes angle with N.
* Ris on the “other side” of L.

» Vs a unit vector pointing to the camera.
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« I, is channel intensity of current light source for channel A.

+ k, is a reflection type dependent factor (ambient, diffuse, specular).
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~# 1S Light source attenuation.
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N is the unit normal at point p.

* L is the unit vector pointing to the light
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« 0is the angle between N and L.
* Ris the vector of mirror reflection.
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I, = 1,y Ky O+ Fayll kg O (N* L)+ 1, kg Og (R V )] with
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. 1S channel intensity of current light source for channel A.

k, is a reflection type dependent factor (ambient, diffuse, specular).
O, is a material dependent reflection factor for that channel.

fa
Atmospheric attenuation effect (OpenGL):

« IS Light source attenuation.

Appearance

b,

* N is the unit normal at point p.

« L is the unit vector pointing to the light
source.

« 0Bisthe angle between N and L.
* R is the vector of mirror reflection.
* R also makes angle with N.
* Ris on the “other side” of L.
Phong lighting model: » Vs a unit vector pointing to the camera.

I, =1,y Ky O+ Fayll kg O (N* L)+ 1, kg Og (R V )] with
I

. 1S channel intensity of current light source for channel A.

k, is a reflection type dependent factor (ambient, diffuse, specular).
O, is a material dependent reflection factor for that channel.
f,

~# 1S Light source attenuation.

Atmospheric attenuation effect (OpenGL):

"= sl, +(1-s)l,, where 0<s<1 for objects between near/far planes.




