
Natural Language Based Virtual Prototyping
on the Web

Bernhard Jung, Thies Pfeifer, Jure Zakotnik

Knowledge-Based Systems Group, Faculty of Technology,
University of Bielefeld

http://www.TechFak.Uni-Bielefeld.DE/techfak/ags/wbski/

Abstract

This contribution describes a WWW-based multi-user system for concurrent virtual
prototyping. A 3D scene of CAD parts is presented to the users in the web browser. By
instructing the system using simple natural language commands, complex aggregates can
be assembled from the basic parts. The current state of the assembly is instantly published
to all system users who can discuss design choices in a chat area. The implementation
builds on an existing system for virtual assembly made available as a web service. The
client side components are fully implemented as Java applets and require no plugin for
visualization of 3D content. Http tunneled messaging between web clients and server
ensures system accessibility from any modern web browser even behind firewalls. The
system is first to demonstrate natural language based virtual prototyping on the web.

1 Background and Motivation

A current trend in CAx technology – historically one of the major driving forces in the de-
velopment of 3D based human-computer interfaces – is the move towards the Internet. For
example, 3D PartStream.NET1 offers internet based enabling technology that allows manufac-
tures to publish 3D CAD content to online catalogs and e-commerce solutions. Users of such
systems canviewCAD models over the web,rotatethe parts, andzoom in and out. Building on
PartStream technology, Technicon2 has developed a system with additionalconfigurationca-
pabilities. Customers can choose their desired product configurations by selecting predefined
values for parameters such as width, height, and diameter. Then the specific CAD model is
generated on the fly from the specified parameters. The generated 3D model can also bedown-
loadedin different file formats for use in own designs. These examples represent novel types
of applications which add value to existing, off-line CAD solutions. They do not, however,
provide functionalities traditionally offered by CAD systems, such as the free form modeling
of novel parts or the assembly of complex aggregrates out of a given set of base parts. One
likely reason for these limitations is rooted in the menu-overloaded, notoriously complex user
interfaces of current CAD systems whose transfer into the web browser is hard to imagine.

1www.3dpartstream.net
2www.technicon.com



We have developed a web-based system that addresses some of these shortcomings. Its
goal is to enable the interactiveassemblyof complex digital product models (virtual proto-
types) out of a given set of CAD parts. Instead of relying on time-consuming menus and input
fields for one-by-one entry of part mating constraints or numerical values for part transforma-
tions, high-levelnatural languageinstructions are used to build and modify the assembly. The
system further offersmulti userandchatcapabilities, thus supporting applications in concur-
rent engineering. A critical design goal was to ensure system access even behind firewalls.

The web-based solution builds on an existing system, the Virtual Constructor, described
in more detail in section 2, which already provides for natural language input but was so far
restricted to the off-line case. Section 3 describes the web browser based user interfaces and the
overall client-server architecture of the internet version of the Virtual Constructor. Section 4
describes the underlying http-based framework for two-way message transport between web
clients and the web server. Finally, we conclude and discuss the proposed system, especially
the natural language based approach to virtual prototyping within the larger context of so called
post-WIMPinterfaces (windows, icons, menus, pointers) advocated in virtual environments
research.

Figure 1: In the Virtual Constructor, complex aggregates can be assembled from 3D visualized
parts using direct manipulation or natural language instructions.

2 The Virtual Constructor

The Virtual Constructor is a knowledge-based system that enables an interactive assembly of
3D visualized mechanical parts to complex aggregates. The user can both directly manipulate
the virtual scene using the mouse or similar input devices and instruct the system using simple
commands in natural language. Various operations such as assembly, disassembly, and rotation
of sub-assemblies are supported by a knowledge-based description of the objects’ mating pos-
sibilities. A key feature of the system is that the current state of the assembly is dynamically
conceptualized by step-keepingly matching the geometry scene against a structured model of
the target aggregate. Dynamic knowledge representations are created when constructed aggre-
gates are recognized as assembly groups of the target aggregate. The internal representations
are further modified when, according to their use, the specific functions of single parts in the
target aggregate are determined. Therefore, verbal instructions can always refer to the current
state of the assembly.

The Virtual Instructor incorporates several methods from Artificial Intelligence that allow
for a natural, task-level, and closed-loop human-computer interaction:



� Knowledge-Based, Real-Time Assembly Simulation: Knowledge-based descriptions of
the visualized mechanical objects’ connection ports enable the simulation of part as-
sembly and disassembly as well as aggregate modifications along rotational and trans-
lational degrees of freedom. Top-level concepts our port taxonomy include extrusion
ports for modeling peg-in-hole-like insertions, plane ports for modeling connections be-
tween co-planar faces, and point ports for modeling point-like connections that induce
no translational degrees of freedom.

� Dynamic Scene Conceptualization: Geometry scene objects are represented in the frame-
based language COAR [6]. Inferences over COAR representations include aggregate
conceptualization, by which constructed aggregates are recognized as subassemblies of
the target aggregate, and role assignment, by which components are reclassified w.r.t.
the underlying concept hierarchy according to their use in larger assemblies. COAR
representations also integrate spatial informations, such as position, size, distance, or
orthogonality, which are inferred on need from the geometry scene.

� Multimodal Input

– Natural language instructions: Typed and spoken input is supported. Verbal in-
structions may refer to spatial and visual properties of objects and – due to dy-
namic conceptualization – to currently assembled aggregates and functional roles
of objects.

– Direct manipulation: Parts can be assembled, disassembled, and rotated by us-
ing the mouse or similar input devices. Direct manipulation operations build on a
knowledge-based snapping mechanism. E.g., for object assembly, the user moves
an object close to another object; the snapping mechanism then completes the fit-
ting process in a collision-free manner.

The Virtual Constructor is implemented as a distributed system consisting of various soft-
ware processes oragentsthat communicate via message passing. The agents can be divided
into logic and presentation layer agents (see Figure 2). The logic level agents provide the
core functionality such as simulation of various assembly operations, processing of natural
language instructions, and dynamic scene conceptualization. The presentation layer agents
visualize the 3D scene and provide forms for input of natural language instructions.

The Virtual Constructor has so far been tested on desk-top as well as large screen interfaces,
such as an interactive wall [7, 8]. The high-level instructability using natural language and
modular system architecture make the Virtual Constructor a suitable basis for the design of an
Internet-based system for virtual prototyping.

3 A Web Based Platform for Concurrent Virtual Proto-
typing

Virtual prototyping is concerned with the design and evaluation of CAD-based product models
(virtual prototypes) with the objective of reduced the product development cycle times. Virtual
prototyping often involves concurrent activities of diverse groups of individuals who may be
located at geographically different places. Through its task-level instructability using natural
language commands, the Virtual Constructor supports the rapid design of virtual prototypes



Text input

Assembly Simulation
• assembly
• disassembly
• adjustments

3D Viewer

Dynamic
Conceptualization

of Assembly Scene

Natural Language
Processing

NL instructions

Assembly scene

Part manipulations

Assembly scene

Assembly scene

+ assembly group structure

Presentation & Interaction Layer Logic Layer

Disambiguated
assembly command

Figure 2: Functional architecture of the Virtual Constructor. In the web-based version of the
Virtual Constructor, the logic modules reside on the web server. The presentation modules
are realized as Java applets and run on the client side.

assembled from pieces of standardized construction kits [8]. However, previous versions of
the Virtual Constructor were restricted to operation by a single user and assumed access to
more or less powerful graphics workstations. Our goal was to add support for concurrent
design activities by geographically widely distributed development teams.

As the Virtual Constructor is implemented as a distributed system,in principle, a multi-
user version could be realized by simply running its user interface modules at the client side
which at system startup would connect to some central server running the logic modules (cf.
Figure 2). While this solution would work in principle, in practice several difficulties could
arise. First, the 3D presentation modules would need to be installed and maintained at the
client side. Although the C++ coded presentation modules are available for several Unix plat-
forms (Irix, Solaris, Linux) a large subset of PC users would still be excluded. And second,
communication between presentation and logic modules in the Virtual Constructor is based
on plain TCP/IP connections which are often inhibited by restrictive firewall configurations.
This would exclude even more potential system users. For these reasons, we opted for a some-
what more radical approach for the realization of the internet platform for virtual protoyping:
System access should require only a web browser.

In sum, the following design choices were made for extending the Virtual Constructor into
an internet platform for concurrent virtual protoyping:

� System access should be possible from anywhere. No assumptions on the users’ com-
puting environment are made except for internet access and a modern web browser with
Java support. Especially, no browser plugins for display of 3D content should be re-
quired and no assumptions on firewall setups made (except for WWW access over stan-
dard http connections).

� The system should provide multi user and chat capabilities. The internet faciltitates
system access by distributed design teams. Interactively assembled virtual prototypes
can be reviewed and discussed by all participants.



� Furthermore, concerning the user interface, we decided to strictly rely on natural lan-
guage instructions to initiate various simulated assembly operations (assembly, disas-
sembly, adjustments) on the 3D parts. Menu-based interactions for assembly modeling
in conventional CAD systems are unnecessarily complex to transfer to the web browser.
On the other hand, task-level natural language commands already have proven feasible
in desktop and virtual reality versions of the Virtual Constructor.

As constraint on the implementation, the existing code base should be reused to the largest
extent possible.

3.1 System Architecture

The web-based multi-user platform for virtual prototyping builds on the Virtual Constructor
by making its core modules available on a web server. The presentation layer components for
visualization of 3D content and input of natural language command are implemented as Java
applets running in the web browser.

The server-side components essentially consist of existing logic layer agents of the Virtual
Constructor. These agents are responsible for the processing of natural language instructions,
the simulation of assembly operations, and the dynamic conceptualization of constructed as-
semblies. The only addition to existing agents is a simple gatekeeper agent that keeps track
of users being logged into the system. The gatekeeper also maintains a history of assembly
instructions and chat contributions of the individual users. Further, the gatekeeper effectively
synchronizes scene changes requested by the multiple users, processing instructions one at a
time. Every time the current assembly scene changes as result of a scene manipulation, and ev-
ery time a constructed assembly group matches a predefined model in the Virtual Constructors
knowledge base, the new assembly state is published to the presentation applets at the client
side.

The client-side components comprise a 3D visualization of the current assembly state and
a chat forum including a text input field for natural language instructions (Figure 3). All client
side components are implemented within one Java applet.

The 3D visualization extends shout3d’s java applet3 for interactive display of 3D content
which avoids the need for VRML plugins. As usual for 3D visualizations, the 3D scene can be
freely navigated. As a restriction, when compared to the desktop version of the Virtual Con-
structor, mouse based direct manipulations of the parts are not realized in the web-based pre-
sentation applets, as they require fast communication channels and visualization frame rates
not necessarily achieved in Internet situations. However, all part manipulations can be trig-
gered over natural language instructions.

The chat forum consists of an input field and a text area showing past contributions of all
users. Text input to the system can be of two kinds: A contribution to a discussion about
the assembly state or an instruction to change the assembly scene. To differentiate between
the two types of input, assembly instructions must be addressed to “Max”, an invisible user
interface agent present in the chat forum who represents the logic layer modules of the Virtual

3www.shout3d.com



Figure 3: The web browser interface of the virtual prototyping system consists of a 3D view
of the assembly scene and a chat area. Assembly instructions are addressed to MAX, a
user interface agent who is always present in the chat forum. Note: The picture shows a
software prototype. The final version will include further interface elements, such as buttons
for selection of different modes for 3D navigation.

Constructor4. Max also acknowledges the successful completion of assembly operations and
will notify the users if assembly instructions could not be performed, e.g. due to mispelled
worlds or unconnectablilty of two given CAD parts.

The assembly instructions are passed on to the natural language processing component of
the Virtual Constructor, so the full range of instruction types for assembly, disassembly, and
adjustments of assemblies is supported. More specifically, natural language instrutions can
make reference to visual (such as color, size) and spatial attributes (orientation of parts w.r.t.
camera, w.r.t. each other) of single parts as well as constructed assemblies. Some examples
from the Baufix construction kit domain are:5

� Max, put the bolt from below into the middle hole of the bar

� Max, attach the propeller to the airplane

� Max, rotate the lower bar crosswise to the tail unit

� Max, disconnect the right axle from the undercarriage

� Max, give me a long red screw

4MAX is the acronym for the Multimodal Assembly eXpert, an anthropomorhpic agent present in a virtual
reality application of the Virtual Constructor [9]. A visual representation of MAX might be added to the web
based system described here in the future.

5Instructions are translated from German. The Virtual Constructor (or Max) is currently monolingual.



Windows

Linux

Mac

Linux-Server
• Apache
• Resin Servlet

Engine

http protocol

kqml-over-http

http protocolkqml-over-http

http protocol

kqml-over-http

Clients
• Web Browser
• Java 1.1 Applet
• Shout3d

Multi-Agent System
for Virtual Assembly

(C++/Java)

kq
ml

kqml

kqm
l

kqml
kqml

kqm
l

Figure 4: The web-based multi-user platform for virtual prototyping builds on the Virtual Con-
structor, a multi agent system for virtual assembly which is made abvailable on a Linux web
server. At the client side, platform independent Java applets present the assembly scene to
the user.

Together with the natural language instruction, also the user’s current location is transmitted
to the Virtual Constructor. This is necessary for the resolution of spatial adjectives such as
“left” , that can only be successfully evaluated if the user’s current location (camera viewpoint
and point of interest) in the 3D environment is known.

4 Agent Communication over the WWW: KQML-over-
HTTP

The software agents that make up the Virtual Constructor communicate with each other by
passing KQML-based messages. KQML (theknowledge query and manipulation language)
defines a textual message format and message exchange protocol with well-defined seman-
tics [5]. The logic-layer agents of the Virtual Constructor provide the high-level protocols for
interacting with presentation-layer agents responsible for visualization of 3D content and tex-
tual input of natural language instructions. Thus, the message contents generated by the logic-
layer agents can be reused for the web-based visualization clients. However, the presentation-
layer agents developed so far aim at applications in local area networks, e.g. in immersive
Virtual Reality settings, and utilize (TCP/IP) socket-based communications at the transport
level. In wide area networks such as the WWW communications based on plain socket con-
nections or similarly CORBA or RMI are problematic, as client side firewalls might be config-
ured in too restrictive ways. Therefore, a messaging framework was implemented that relies
on http connections only: KQML-over-HTTP. In addition to the request-response messaging
of standard http, the framework also supports publish-and-subscribe type messaging, where
messages are streamed from the server to the clients. The messaging framework is integrated
into a web-capable agent model that hides all details of the communication layer from the



W
eb

-A
ge

nt

Communication Layer

Applet

KQML
over HTTP

KQML

M
A

S for V
irtual A

ssem
blyC++ / Java

TCP/IP

Servlet-Engine

Proxy-Agent

TCP/IP

Communication Layer

Multiplexing of
Web-Agents

HTTP

kq
ml

kqml

kqm
l

kqml

kqml
kqm

l

HTTP

Web-Client Web-Server Local Network

Figure 5: The agents communicate by passing of KQML based messages. Communication
with applets on the client side tunnels http, avoiding problems with restrictive firewall set-ups.

application.
Conceptually, the web-based visualization and chat applets that run at the client side should

be considered as first-class agents being able to communicate with any other agent, no matter
if this agent is hosted on the web server, on some other computer in the same local network as
the web server, or as an applet on the computer of some other system user. A straightforward
implementation of applets as agents is however prohibited by the applet security model as the
applets are running inside a sandbox that places certain restrictions on the establishment of
communication channels. Our solution to the agentification of the visualization applets into
web-agentsbuilds on a server-sideproxy agentthat manages the message exchange between
applets and the other agents (Figure 5).

The proxy agent resides on the web server and is implemented as a Java servlet. On the
one side, it implements the same communication protocols as the logic layer agents on the
web server. I.e. the proxy agent opens TCP/IP based connections to the local agents and is
thus able to exchange messages with these agents. On the other side, the proxy agent keeps
persistent http connections to the applets. Technically, this is achieved in the following way:
The applet initiates the communication by opening an URL connection to the servlet. The
servlet responds to the applet’s request in its doPost() method where – to keep the connection
persistent – it enters an infinite loop, waiting for messages from the logic layer agents to be
forwarded to the applet. The establishment of a persistent connection between applet and
servlet is necessary to implement the publish-and-subscribe messaging required by KQML.
For example, the visualization applets subscribe a service offered by one of the logic layer
agents that always publishes the current transformations of the scene parts. Whenever the
scene changes, the new part positions are sent to the proxy agent and automatically forwarded
to the applet. In other words, the publish-and-subscribe-type messaging ensures that each
system user always is presented the current state of the evolving assembly without having to
repeatedly press the reload button in the web browser.



5 Conclusion

This contribution described a web-based multi-user environment for virtual prototyping. Un-
like other web based virtual prototyping environments currently advertized as innovative add-
ons to CAD systems, the proposed system supports the interactive design of novel virtual
prototypes assembled from CAD-based parts. A prerequisite for the real-time assembly of
the 3D visualized parts is of course, that the parts’ mating features are represented in the sys-
tem. The little extra effort for modeling of mating features is however more than justified in
situations where many products are assembled from the pieces of the same construction kit.
In other work, we have developed a feature recognizer that is able to automatically detect the
mating features of arbitary CAD parts [3]. Also, unlike other web based systems in the context
of virtual prototyping, no plugins for viewing and manipulating of 3D content and no special
firewall configurations are necessary. The only requirement for system access is a Java-enabled
web browser.

The implementation of the multi-user platform for virtual prototyping is based on an ex-
isting system, the Virtual Constructor, whose functionality is made available as a web service.
This design choice – as opposed to providing all of the virtual prototyping functionality as
client-side applets – allows the reuse of the large existing C++ code base to the largest extent
possible. As welcome side-effect, far less program code needs to be transferred to the client
thus minimizing download time. The web-based version of the Virtual Constructor is hosted
on a Linux system running the Apache web server and Caucho’s Resin servlet engine6. The
viewing and chat applet is implemented in Java 1.1 as newer Java versions are typically not
supported by common web browsers.

A further noteworthy feature of the described system is that it abondons conventional
menu-based interactions and replaces them by natural language instructions. In Virtual En-
vironments research, such 3D interfaces with non-conventional human-computer interaction
methods have been labeled aspost-WIMP(windows, icons, pointers, menus) [11] or even
SILK (speech, image, language, vision) [2] interfaces. Natural language interfaces have been
proposed and successfully applied for control of various virtual environments, especially for
instruction of animated characters, e.g. [1, 4, 12, 10]. The use of natural language at the
human-computer interface is doubtlessly appealing as it exploits the most intuitive commu-
nication modality of the human user. Our work on the Virtual Constructor demonstrates that
task-level, natural language based interactions techniques can also be applied in virtual proto-
typing domains.

References

[1] N.I. Badler, B.L. Webber, J. Kalita, and J. Esakov. Animation from Instructions. In N.I.
Badler, B.A. Barsky, and D. Zeltzer, editors,Making Them Move. Mechanics, Control,
and Animation of Articulated Figures, pages 51–93. Morgan Kaufman, San Mateo, CA,
1991.

[2] W. Barfield and T.A. (Eds.) Furness.Virtual Environments and Advanced Interface De-
sign. Oxford University Press, 1995.

6www.caucho.com



[3] P. Biermann. Interaktives VR-System zur halbautomatischen Generierung von Wissen
über Verbindungsmerkmale CAD-basierter Bauteil-Modelle. Diplomarbeit, Universit¨at
Bielefeld, 2000.

[4] B. Blumberg and T. Galyean. Multi-level direction of autonomous creatures for real-time
virtual environments. InComputer Graphics Proceedings, SIGGRAPH-95, 1995.

[5] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In
J. Bradshaw, editor,Software Agents. MIT Press, 1995.

[6] B. Jung. Reasoning about objects, assemblies, and roles in on-going assembly tasks. In
Distributed Autonomous Robotic Systems, volume 3, pages 257–266. Springer, 1998.

[7] B. Jung, M. Latoschik, S. Kopp, T. Sowa, and I. Wachsmuth. Virtuelles Konstruieren mit
Gestik und Sprache.Künstliche Intelligenz, 2000/2:55–11, 2000.

[8] B. Jung, M. Latoschik, and I. Wachsmuth. Knowledge-based assembly simulation for
virtual prototype modeling. InIECON’98 - Proceedings of the 24th Annual Conference
of the IEEE Industrial Electronics Society, volume 4, pages 2152–2157. IEEE, 1998.

[9] S. Kopp and B. Jung. An anthropomorphic assistant for virtual assembly: Max. In
In Workshop Communicative Agents in Intelligent Virtual Environments, Autonomous
Agents, 2000.

[10] Jan-Torsten Milde. Action-centered communication with an embedded agent. InFLAIRS,
Special Track on natural language processing and Human Computer Interaction, 1998.

[11] A. van Dam. Post-WIMP user interfaces.Communications of the ACM, pages 63–67,
1997.

[12] I. Wachsmuth, B. Lenzmann, T. J¨ording, B. Jung, M. Latoschik, and M. Fr¨ohlich. A
virtual interface agent and its agency. In W.L. Johnson, editor,Proceedings of the First
International Conference on Autonomous Agents, pages 516–517. ACM Press, 1997.


