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ABSTRACT 
Mobile devices are becoming increasingly sophisticated and the 
latest generation of smart cell phones now incorporates many 
diverse and powerful sensors. These sensors include GPS sensors, 
vision sensors (i.e., cameras), audio sensors (i.e., microphones), 
light sensors, temperature sensors, direction sensors (i.e., mag-
netic compasses), and acceleration sensors (i.e., accelerometers). 
The availability of these sensors in mass-marketed communica-
tion devices creates exciting new opportunities for data mining 
and data mining applications. In this paper we describe and evalu-
ate a system that uses phone-based accelerometers to perform 
activity recognition, a task which involves identifying the physi-
cal activity a user is performing. To implement our system we 
collected labeled accelerometer data from twenty-nine users as 
they performed daily activities such as walking, jogging, climbing 
stairs, sitting, and standing, and then aggregated this time series 
data into examples that summarize the user activity over 10-
second intervals. We then used the resulting training data to in-
duce a predictive model for activity recognition. This work is 
significant because the activity recognition model permits us to 
gain useful knowledge about the habits of millions of users pas-
sively—just by having them carry cell phones in their pockets. 
Our work has a wide range of applications, including automatic 
customization of the mobile device’s behavior based upon a 
user’s activity (e.g., sending calls directly to voicemail if a user is 
jogging) and generating a daily/weekly activity profile to deter-
mine if a user (perhaps an obese child) is performing a healthy 
amount of exercise. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning-induction 

General Terms 
Algorithms, Design, Experimentation, Human Factors 

Keywords 
Sensor mining, activity recognition, induction, cell phone, accel-
erometer, sensors 

1. INTRODUCTION 
Mobile devices, such as cellular phones and music players, have 
recently begun to incorporate diverse and powerful sensors. These 
sensors include GPS sensors, audio sensors (i.e., microphones), 
image sensors (i.e., cameras), light sensors, temperature sensors, 
direction sensors (i.e., compasses) and acceleration sensors (i.e., 
accelerometers). Because of the small size of these “smart” mo-
bile devices, their substantial computing power, their ability to 
send and receive data, and their nearly ubiquitous use in our soci-
ety, these devices open up exciting new areas for data mining 
research and data mining applications. The goal of our WISDM 
(Wireless Sensor Data Mining) project [19] is to explore the re-
search issues related to mining sensor data from these powerful 
mobile devices and to build useful applications. In this paper we 
explore the use of one of these sensors, the accelerometer, in or-
der to identify the activity that a user is performing—a task we 
refer to as activity recognition. 

We have chosen Android-based cell phones as the platform for 
our WISDM project because the Android operating system is free, 
open-source, easy to program, and expected to become a domi-
nant entry in the cell phone marketplace (this is clearly happen-
ing). Our project currently employs several types of Android 
phones, including the Nexus One, HTC Hero, and Motorola Back-
flip. These phones utilize different cellular carriers, although this 
is irrelevant for our purposes since all of the phones can send data 
over the Internet to our server using a standard interface. How-
ever, much of the data in this work was collected directly from 
files stored on the phones via a USB connection, but we expect 
this mode of data collection to become much less common in 
future work. 

All of these Android phones, as well as virtually all new smart 
phones and smart music players, including the iPhone and iPod 
Touch [2], contain tri-axial accelerometers that measure accelera-
tion in all three spatial dimensions. These accelerometers are also 
capable of detecting the orientation of the device (helped by the 
fact that they can detect the direction of Earth’s gravity), which 
can provide useful information for activity recognition. Acceler-
ometers were initially included in these devices to support ad-
vanced game play and to enable automatic screen rotation but 
they clearly have many other applications. In fact, there are many 
useful applications that can be built if accelerometers can be used 
to recognize a user’s activity. For example, we can automatically 
monitor a user’s activity level and generate daily, weekly, and 
monthly activity reports, which could be automatically emailed to 
the user. These reports would indicate an overall activity level, 
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which could be used to gauge if the user is getting an adequate 
amount of exercise and estimate the number of daily calories 
expended. These reports could be used to encourage healthy prac-
tices and might alert some users to how sedentary they or their 
children actually are. The activity information can also be used to 
automatically customize the behavior of the mobile phone. For 
example, music could automatically be selected to match the ac-
tivity (e.g., “upbeat” music when the user is running) or send calls 
directly to voicemail when the user is exercising. There are un-
doubtedly numerous other instances where it would be helpful to 
modify the behavior of the phone based on the user activity and 
we expect that many such applications will become available over 
the next decade. 

In order to address the activity recognition task using supervised 
learning, we first collected accelerometer data from twenty-nine 
users as they performed activities such as walking, jogging, as-
cending stairs, descending stairs, sitting, and standing. We then 
aggregated this raw time series accelerometer data into examples, 
as described in Section 2.2, where each example is labeled with 
the activity that occurred while that data was being collected.  We 
then built predictive models for activity recognition using three 
classification algorithms.  

The topic of accelerometer-based activity recognition is not new. 
Bao & Intille [3] developed an activity recognition system to 
identify twenty activities using bi-axial accelerometers placed in 
five locations on the user’s body. Additional studies have simi-
larly focused on how one can use a variety of accelerometer-
based devices to identify a range of user activities [4-7, 9-16, 21]. 
Other work has focused on the applications that can be built based 
on accelerometer-based activity recognition. This work includes 
identifying a user’s activity level and predicting their energy con-
sumption [8], detecting a fall and the movements of user after the 
fall [12], and monitoring user activity levels in order to promote 
health and fitness [1]. Our work differs from most prior work in 
that we use a commercial mass-marketed device rather than a 
research-only device, we use a single device conveniently kept in 
the user’s pocket rather than multiple devices distributed across 
the body, and we require no additional actions by the user. Also, 
we have generated and tested our models using more users 
(twenty-nine) than most previous studies and expect this number 
to grow substantially since we are continuing to collect data. The 
few studies that have involved commercial devices such as smart 
phones have focused either on a very small set of users [21] or 
have trained models for particular users [4] rather than creating a 
universal model that can be applied to any user. 

Our work makes several contributions. One contribution is the 
data that we have collected and continue to collect, which we plan 
to make public in the future. This data can serve as a resource to 
other researchers, since we were unable to find such publically 
available data ourselves. We also demonstrate how raw time se-
ries accelerometer data can be transformed into examples that can 
be used by conventional classification algorithms. We demon-
strate that it is possible to perform activity recognition with com-
monly available (nearly ubiquitous) equipment and yet achieve 
highly accurate results. Finally, we believe that our work will help 
bring attention to the opportunities available for mining wireless 
sensor data and will stimulate additional work in this area.  

The remainder of this paper is structured as follows. Section 2 
describes the process for addressing the activity recognition task, 

including data collection, data preprocessing, and data transfor-
mation. Section 3 describes our experiments and results. Related 
work is described in Section 4 and Section 5 summarizes our 
conclusions and discusses areas for future research. 

2. THE ACTIVITY RECOGNITION TASK 
In this section we describe the activity recognition task and the 
process for performing this task. In Section 2.1 we describe our 
protocol for collecting the raw accelerometer data, in Section 2.2 
we describe how we preprocess and transform the raw data into 
examples, and in Section 2.3 we describe the activities that will be 
predicted/identified. 

2.1 Data Collection 
In order to collect data for our supervised learning task, it was 
necessary to have a large number of users carry an Android-based 
smart phone while performing certain everyday activities. Before 
collecting this data, we obtained approval from the Fordham Uni-
versity IRB (Institutional Review Board) since the study involved 
“experimenting” on human subjects and there was some risk of 
harm (e.g., the subject could trip while jogging or climbing 
stairs). We then enlisted the help of twenty-nine volunteer sub-
jects to carry a smart phone while performing a specific set of 
activities. These subjects carried the Android phone in their front 
pants leg pocket and were asked to walk, jog, ascend stairs, de-
scend stairs, sit, and stand for specific periods of time. 

The data collection was controlled by an application we created 
that executed on the phone. This application, through a simple 
graphical user interface, permitted us to record the user’s name, 
start and stop the data collection, and label the activity being per-
formed. The application permitted us to control what sensor data 
(e.g., GPS, accelerometer) was collected and how frequently it 
was collected. In all cases we collected the accelerometer data 
every 50ms, so we had 20 samples per second. The data collection 
was supervised by one of the WISDM team members to ensure 
the quality of the data.  

2.2 Feature Generation & Data Transformation 
Standard classification algorithms cannot be directly applied to 
raw time-series accelerometer data. Instead, we first must trans-
form the raw time series data into examples [18]. To accomplish 
this we divided the data into 10-second segments and then gener-
ated features that were based on the 200 readings contained 
within each 10-second segment. We refer to the duration of each 
segment as the example duration (ED). We chose a 10-second ED 
because we felt that it provided sufficient time to capture several 
repetitions of the (repetitive) motions involved in some of the six 
activities. Although we have not performed experiments to deter-
mine the optimal example duration value, we did compare the 
results for a 10-second and 20-second ED and the 10-second ED 
yielded slightly better results (as well as twice as many training 
examples).  

Next we generated informative features based on the 200 raw 
accelerometer readings, where each reading contained an x, y, and 
z value corresponding to the three axes/dimensions (see Figure 1). 
We generated a total of forty-three summary features, although 
these are all variants of just six basic features. The features are 
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described below, with the number of features generated for each 
feature-type noted in brackets: 

• Average[3]: Average acceleration (for each axis) 

• Standard Deviation[3]: Standard deviation (for each axis)  

• Average Absolute Difference[3]: Average absolute 
difference between the value of each of the 200 readings 
within the ED and the mean value over those 200 values 
(for each axis)  

• Average Resultant Acceleration[1]: Average of the square 
roots of the sum of the values of  each axis squared  
√(xi

2 + yi
2 + zi

2) over the ED 

• Time Between Peaks[3]: Time in milliseconds between 
peaks in the sinusoidal waves associated with most 
activities (for each axis) 

• Binned Distribution[30]: We determine the range of values 
for each axis (maximum – minimum), divide this range into 
10 equal sized bins, and then record what fraction of the 
200 values fell within each of the bins. 

The “time between peaks” feature requires further explanation. 
The repetitive activities, like walking, tend to generate repeating 
waves for each axis and this feature tries to measure the time 
between successive peaks. To estimate this value, for each 
example we first identify all of the peaks in the wave using a 
heuristic method and then identify the highest peak for each axis. 
We then set a threshold based on a percentage of this value and 
find the other peaks that met or exceed this threshold; if no peaks 
meet this criterion then the threshold is lowered until we find at 
least three peaks. We then measure the time between successive 
peaks and calculate the average. For samples where at least three 
peaks could not be found, the time between peaks is marked as 
unknown. This method was able to accurately find the time 
between peaks for the activities that had a clear repetitive pattern, 
like walking and jogging. Certainly more sophisticated schemes 
will be tried in the future. 

The number of examples generated per user for each activity var-
ies. These differences are due to the time limitations that some 
users may have or physical limitations that impact the time they 
spend on each activity. Our data set is summarized in Section 3.1. 

2.3 The Activities  
In this study we consider six activities: walking, jogging, ascend-
ing stairs, descending stairs, sitting, and standing. We selected 
these activities because they are performed regularly by many 
people in their daily routines. The activities also involve motions 
that often occur for substantial time periods, thus making them 
easier to recognize. Furthermore, most of these activities involve 
repetitive motions and we believe this should also make the ac-
tivities easier to recognize. When we record data for each of these 
activities, we record acceleration in three axes. For our purposes, 
the z-axis captures the forward movement of the leg and the y-
axis captures the upward and downward motion. The x-axis cap-
tures horizontal movement of the user’s leg. Figure 1 demon-
strates these axes relative to a user.  
 

 
Figure 1: Axes of Motion Relative to User 

 
Figure 2 plots the accelerometer data for a typical user, for all 
three axes and for each of the six activities. It is clear that sitting 
and standing (Figure 2e,f) do not exhibit periodic behavior but do 
have distinctive patterns, based on the relative magnitudes of the 
x, y, and z, values, while the four other activities (Figure 2a-d), 
which involve repetitive motions, do exhibit periodic behavior. 
Note that for most activities the y values have the largest accel-
erations.  This is a consequence of Earth’s gravitational pull, 
which causes the accelerometer to measure a value of 9.8 m/s2 in 
the direction of the Earth’s center. For all activities except sitting 
this direction corresponds to the y axis (see Figure 1). 
The periodic patterns for walking, jogging, ascending stairs, and 
descending stairs (Figure 2a-d) can be described in terms of the 
time between peaks and by the relative magnitudes of the 
acceleration values. The plot for walking, shown in Figure 2a, 
demonstrates a series of high peaks for the y-axis, spaced out at 
approximately ½ second intervals. The peaks for the z-axis 
acceleration data echo these peaks but with a lower magnitude. 
The distance between the peaks of the z-axis and y-axis data 
represent the time of one stride. The x-axis values (side to side) 
have an even lower magnitude but nonetheless mimic the peaks 
associated with the other axes. For jogging, similar trends are 
seen for the z-axis and y-axis data, but the time between peaks is 
less (~¼ second), as one would expect. As one might expect, the 
range of y-axis acceleration values for jogging is greater than for 
walking, although the shift is more noticeable in the negative 
direction.  

For descending stairs, one observes a series of small peaks for y-
axis acceleration that take place every ~½ second. Each small 
peak represents movement down a single stair. The z-axis values 
show a similar trend with negative acceleration, reflecting the 
regular movement down each stair. The x-axis data shows a series 
of semi-regular small peaks, with acceleration vacillating again 
between positive and negative values. For ascending stairs, there 
are a series of regular peaks for the z-axis data and y-axis data as 
well; these are spaced approximately ~¾ seconds apart, reflecting 
the longer time it takes to climb up stairs. 
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(a) Walking 
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(c) Ascending Stairs 
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(e) Sitting 

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5
Time (s)

A
cc

el
er

at
io

n

Y Axis

Z AxisX Axis

 
(b) Jogging 
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(d) Descending Stairs 
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(f) Standing 

 
Figure 2: Acceleration Plots for the Six Activities (a-f) 
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As one would expect, sitting and standing do not exhibit any 
regular periodic behavior and all of the acceleration values are 
relatively constant. As mentioned earlier, the primary differences 
between these activities is the relative magnitudes of values for 
each axis, due to the different orientations of the device with 
respect to the Earth when the user is sitting and standing Thus it 
appears easy to differentiate between sitting and standing, even 
though neither involves much movement. Note that because the 
accelerometers are themselves able to determine orientation with 
respect to the Earth’s gravitational field, it would be relatively 
straightforward to compensate/correct for any changes in the cell 
phone’s orientation due to the phone shifting position in a user’s 
pocket. We plan to implement this correction in future work. 

3. EXPERIMENTS 
In this section we describe our experiments and then present and 
discuss our results for the activity recognition task.  

3.1 Description of Experiments 
Our experiments first require us to collect the labeled raw accel-
erometer data and then transform that data into examples. This 
process was described in Section 2. The resulting examples con-
tain 43 features and cover twenty-nine users. This forms the data 
set, described in Table 1, which is subsequently used for training 
and testing. The last row in Table 1 shows the percentage of the 
total examples associated with each activity. 

Table 1: Number of Examples per User and Activity 
ID Walk Jog Up Down Sit Stand Total 
1 74 15 13 25 17 7 151 
2 48 15 30 20 0 0 113 
3 62 58 25 23 13 9 190 
4 65 57 25 22 6 8 183 
5 65 54 25 25 77 27 273 
6 62 54 16 19 11 8 170 
7 61 55 13 11 9 4 153 
8 57 54 12 13 0 0 136 
9 31 59 27 23 13 10 163 
10 62 52 20 12 16 9 171 
11 64 55 13 12 8 9 161 
12 36 63 0 0 8 6 113 
13 60 62 24 15 0 0 161 
14 62 0 7 8 15 10 102 
15 61 32 18 18 9 8 146 
16 65 61 24 20 0 8 178 
17 70 0 15 15 7 7 114 
18 66 59 20 20 0 0 165 
19 69 66 41 15 0 0 191 
20 31 62 16 15 4 3 131 
21 54 62 15 16 12 9 168 
22 33 61 25 10 0 0 129 
23 30 5 8 10 7 0 60 
24 62 0 23 21 8 15 129 
25 67 64 21 16 8 7 183 
26 85 52 0 0 14 17 168 
27 84 70 24 21 11 13 223 
28 32 19 26 22 8 15 122 
29 65 55 19 18 8 14 179 

Sum 1683 1321 545 465 289 223 4526
% 37.2 29.2 12.0 10.2 6.4 5.0 100 

Note that certain activities contain fewer examples than others, 
mainly because the users were not asked to perform strenuous 
activities (e.g., jogging, climbing stairs) for very long and because 
we thought that the patterns in other activities (e.g., standing) 
would become apparent quickly so that there would be no need to 
waste the users time literally “standing around.” Furthermore, 
certain activities, like standing and sitting, were only added after 
the study began, so we have no data for these activities for some 
users. 

Once the data set was prepared, we used three classification tech-
niques from the WEKA data mining suite [20] to induce models 
for predicting the user activities: decision trees (J48), logistic 
regression and multilayer neural networks. In each case we used 
the default settings. We used ten-fold cross validation for all ex-
periments and all results are based on these ten runs. 

3.2 Results 
The summary results for our activity recognition experiments are 
presented in Table 2. This table specifies the predictive accuracy 
associated with each of the activities, for each of the three learn-
ing algorithms and for a simple “straw man” strategy. The straw 
man strategy always predicts the specified activity (i.e., walking 
for the first row in Table 2 and jogging for the second row of 
Table 2) or, when assessing the overall performance of the classi-
fier (i.e., the last row of Table 2), always predicts the most fre-
quently occurring activity, which happens to be walking. The 
baseline straw man strategy allows us to consider the degree of 
class imbalance when evaluating the performance of the activity 
recognition system.  

Table 2: Accuracies of Activity Recognition 

 % of Records Correctly Predicted 
 J48 Logistic 

Regression 
Multilayer
Perceptron 

Straw
Man 

Walking 89.9 93.6 91.7 37.2 
Jogging 96.5 98.0 98.3 29.2 
Upstairs 59.3 27.5 61.5 12.2 

Downstairs 55.5 12.3 44.3 10.0 
Sitting 95.7 92.2 95.0 6.4 

Standing 93.3 87.0 91.9 5.0 
Overall 85.1 78.1 91.7 37.2 

Table 2 demonstrates that in most cases we can achieve high lev-
els of accuracy. For the two most common activities, walking and 
jogging, we generally achieve accuracies above 90%. Jogging 
appears easier to identify than walking, which seems to make 
sense, since jogging involves more extreme changes in accelera-
tion. It appears much more difficult to identify the two stair 
climbing activities, but as we shall see shortly, that is because 
those two similar activities are often confused with one another. 
Note that although there are very few examples of sitting and 
standing, we can still identify these activities quite well, because, 
as noted earlier, the two activities cause the device to change 
orientation and this is easily detected from the accelerometer data. 
Our results indicate that none of the three learning algorithms 
consistently performs best, but the multilayer perceptron does 
perform best overall. More detailed results are presented in Tables 
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3-5, which show the confusion matrices associated with each of 
the three learning algorithms. 

Table 3: Confusion Matrix for J48 

Predicted Class  
Walk Jog Up Down Sit Stand 

Walk 1513 14 72 82 2 0 
Jog 16 1275 16 12 1 1 
Up 88 23 323 107 2 2 

Down 99 13 92 258 1 2 
Sit 4 0 2 3 270 3  A

ct
ua

l C
la

ss
 

Stand 4 1 2 7 1 208 

Table 4: Confusion Matrix for Logistic Regression 

Predicted Class  
Walk Jog Up Down Sit Stand 

Walk 1575 14 53 36 2 3 
Jog 15 1294 6 6 0 0 
Up 277 36 150 77 1 4 

Down 259 6 136 57 3 4 
Sit 1 0 4 11 260 6 A

ct
ua

l C
la

ss
 

Stand 3 1 7 3 15 194 

Table 5: Confusion Matrix for Multilayer Perceptron 

Predicted Class  
Walk Jog Up Down Sit Stand 

Walk 1543 5 73 60 1 1 
Jog 3 1299 16 3 0 0 
Up 84 24 335 98 2 2 

Down 108 10 136 206 2 3 
Sit 0 2 4 1 268 7 A

ct
ua

l C
la

ss
 

Stand 1 0 5 4 8 205 
 

The most important activities to analyze are the climbing-up and 
climbing-down stair activities, since these were the only activities 
that that were difficult to recognize. The confusion matrices indi-
cate that many of the prediction errors are due to confusion be-
tween these two activities. If we focus on the results for the J48 
decision tree model in Table 3, we see that when we are climbing 
up stairs the most common incorrect classification occurs when 
we predict “downstairs,” which occurs 107 times and accounts for 
a decrease in accuracy of 19.6% (107 errors out of 545). When 
the actual activity is climbing downstairs, walking slightly out-
paces “upstairs” in terms of the total number of errors (99 vs. 92), 
but this is only because walking occurs more than three times as 
often as climbing upstairs in our dataset. If we look at Figures 2a, 
2c, and 2d, we see that the patterns in acceleration data between 
“walking”, “ascending stairs” and “descending stairs” are some-
what similar. To limit the confusion between the ascending and 
descending stair activities, we ran another set of experiments 
where we combine ascending stairs and descending stairs into one 
activity. The resulting confusion matrix for the J48 algorithm is 
shown in Table 6 (in the interest of space we do not show them 
for the other two algorithms). We see that the results are substan-
tially improved, although stair climbing is still the hardest activity 
to recognize. 

Table 6: Confusion Matrix for J48 Model (Stairs Combined) 

Predicted Class  

Walk Jog Stairs Sit Stand 
Accur. 

(%) 

Walk 1524 7 148 2 2 90.6 
Jog 10 1280 31 0 0 96.9 

Stairs 185 33 784 4 4 77.6 
Sit 4 0 2 272 4 96.5 

A
ct

ua
l C

la
ss

 

Stand 3 1 10 0 209 93.7 
 

4. RELATED WORK 
Activity recognition has recently gained attention as a research 
topic because of the increasing availability of accelerometers in 
consumer products, like cell phones, and because of the many 
potential applications. Some of the earliest work in accelerometer-
based activity recognition focused on the use of multiple acceler-
ometers placed on several parts of the user’s body. In one of the 
earliest studies of this topic, Bao & Intille [3] used five biaxial 
accelerometers worn on the user’s right hip, dominant wrist, non-
dominant upper arm, dominant ankle, and non-dominant thigh in 
order to collect data from 20 users. Using decision tables, in-
stance-based learning, C4.5 and Naïve Bayes classifiers, they 
created models to recognize twenty daily activities. Their results 
indicated that the accelerometer placed on the thigh was most 
powerful for distinguishing between activities. This finding sup-
ports our decision to have our test subjects carry the phone in the 
most convenient location—their pants pocket.  

Other researchers have, like Bao & Intille, used multiple acceler-
ometers for activity recognition. Krishnan et. al. [9] collected data 
from three users using two accelerometers to recognize five ac-
tivities—walking, sitting, standing, running, and lying down. This 
paper claimed that data from a thigh accelerometer was insuffi-
cient for classifying activities such as sitting, lying down, walk-
ing, and running, and thus multiple accelerometers were neces-
sary (a claim our research contradicts). In another paper, Krishnan 
et. al. [10] examined seven lower body activities using data col-
lected from ten subjects wearing three accelerometers. This 
method was tested in supervised and semi-naturalistic settings. 
Tapia et. al. [16] collected data from five accelerometers placed 
on various body locations for twenty-one users and used this data 
to implement a real-time system to recognize thirty gymnasium 
activities. A slight increase in performance was made by incorpo-
rating data from a heart monitor in addition to the accelerometer 
data. Mannini and Sabitini [23] used five tri-axial accelerometers 
attached to the hip, wrist, arm, ankle, and thigh in order to recog-
nize twenty activities from thirteen users. Various learning meth-
ods were used to recognize three “postures” (lying, sitting, and 
standing) and five “movements” (walking, stair climbing, run-
ning, and cycling). Foerster and Fahrenberg [28] used data from 
five accelerometers in one set of experiments and from two of 
those accelerometers in another for activity recognition. Thirty-
one male subjects participated in the study and a hierarchical 
classification model was built in order to distinguish between 
postures such as sitting and lying at specific angles, and motions 
such as walking and climbing stairs at different speeds. 

Researchers have used a combination of accelerometers and other 
sensors to achieve activity recognition. Parkka et. al. [27] created 
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a system using twenty different types of sensors (including an 
accelerometer worn on the chest and one worn on the wrist) in 
order to recognize activities such as lying, standing, walking, 
running, football, swinging, croquet, playing ball, and using the 
toilet in specific locations. Lee and Mase [25] created a system to 
recognize a user’s location and activities, including sitting, stand-
ing, walking on level ground, walking upstairs, and walking 
downstairs using a sensor module that consisted of a biaxial ac-
celerometer and an angular velocity sensor worn in the pocket 
combined with a digital compass worn at the user’s waist. 
Subramayana et. al. [26] addressed similar activities by building a 
model using data from a tri-axial accelerometer, two micro-
phones, phototransistors, temperature and barometric pressure 
sensors, and GPS to distinguish between a stationary state, walk-
ing, jogging, driving a vehicle, and climbing up and down stairs.  

While these systems using multiple accelerometers or a combina-
tion of accelerometers and other sensors were capable of identify-
ing a wide range of activities, they are not very practical because 
they involve the user wearing multiple sensors distributed across 
their body. This could work for some short term, small scale, 
highly specialized applications (e.g., in a hospital setting) but 
would certainly not work for the applications that we envision. 

Some studies have also focused on combining multiple types of 
sensors in addition to accelerometers for activity recognition. 
Maurer et al. [13] used “eWatch” devices placed on the belt, shirt 
pocket, trouser pocket, backpack, and neck to recognize the same 
six activities that we consider in our study. Each “eWatch” con-
sisted of a biaxial accelerometer and a light sensor. Decision 
trees, k-Nearest Neighbor, Naïve Bayes, and Bayes Net classifiers 
with five-fold cross validation were used for learning. Choudhury 
et. al [6] used a multimodal sensor device consisting of seven 
different types of sensors (tri-axial accelerometer, microphone, 
visible light phototransitor, barometer, visible+IR light sensor, 
humidity/temperature reader, and compass) to recognize activities 
such as walking, sitting, standing, ascending stairs, descending 
stairs, elevator moving up and down, and brushing one’s teeth. 
Cho et. al. [5] used a single tri-axial accelerometer, along with an 
embedded image sensor worn at the user’s waist, to identify nine 
activities. Although these multi-sensor approaches do indicate the 
great potential of mobile sensor data as more types of sensors are 
being incorporated into devices, our approach shows that only one 
type of sensor—an accelerometer—is needed to recognize most 
daily activities. Thus our method offers a straightforward and 
easily-implementable approach to accomplish this task.  

Other studies, like our own, have focused on the use of a single 
accelerometer for activity recognition. Long, Yin, and Aarts [22] 
collected accelerometer data from twenty-four users using a tri-
axial accelerometer worn without regard for orientation at the 
user’s waist. Data was collected naturalistically, and decision 
trees as well as a Bayes classifier combined with a Parzen win-
dow estimator were used to recognize walking, jogging, running, 
cycling, and sports. Lee et. al. [24] used a single accelerometer 
attached to the left waists of five users. Standing, sitting, walking, 
lying, and running were all recognized with high accuracies using 
fuzzy c-means classification. However unlike these studies, which 
use devices specifically made for research purposes, our method 
utilizes commercial devices that are widely-available without any 
additional specialized equipment. This approach enables make 
practical real-world applications for our models.  

Several researchers have considered the use of widely-available 
mobile devices such as cell phones to address the activity recogni-
tion problem. However the earlier approaches did not take advan-
tage of the sensors incorporated into the mobile devices them-
selves. For example, Gyorbiro et. al. [7] used “MotionBands” 
attached to the dominant wrist, hip, and ankle of each subject to 
distinguished between six different motion patterns. Each Mo-
tionBand contained a tri-axial accelerometer, magnetometer, and 
gyroscope. As the MotionBand collected data, the data was then 
transmitted to a smart phone carried by the user to be stored. Ravi 
et. al. [15] collected data from two users wearing a single acceler-
ometer-based device and then transmitted this data to the HP 
iPAQ mobile device carried by the user. Using this data for activ-
ity recognition, researchers compared the performance of eighteen 
different classifiers. Lester et. al. [11] used accelerometer data, 
along with audio and barometric sensor data, to recognize eight 
daily activities from a small set of users. While these studies 
could have used a cell phone to generate the accelerometer data, 
they did not do this. Instead, the data was generated using distinct 
accelerometer-based devices worn by the user and then sent to a 
cell phone for storage.  

A few studies, like ours, did use an actual commercial mobile 
device to collect data for activity recognition. Such systems offer 
an advantage over other accelerometer-based systems because 
they are unobtrusive and do not require any additional equipment 
for data collection and accurate recognition.  Miluzzo et. al. [14] 
explored the use of various sensors (such as a microphone, accel-
erometer, GPS, and camera) available on commercial smart 
phones for activity recognition and mobile social networking 
applications. In order to address the activity recognition task,  
they collected accelerometer data from ten users to build an activ-
ity recognition model for walking, running, sitting, and standing 
using J48. This model had particular difficulty distinguishing 
between the sitting and standing activities, a task that our models 
easily achieve.  Yang [21] developed an activity recognition sys-
tem using the Nokia N95 phone to distinguish between sitting, 
standing, walking, running, driving, and bicycling. This work also 
explored the use of an activity recognition model to construct 
physical activity diaries for the users. Although the study 
achieved relatively high accuracies of prediction, stair climbing 
was not considered and the system was trained and tested using 
data from only four users. Brezmes et. al. [4] also used the Nokia 
N95 phone to develop a real-time system for recognizing six user 
activities. In their system, an activity recognition model is trained 
for each user, meaning that there is no universal model that can be 
applied to new users, for whom no training data exists. Our mod-
els do not have this limitation. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we described how a smart phone can be used to per-
form activity recognition, simply by keeping it in ones pocket. 
We further showed that activity recognition can be highly accu-
rate, with most activities being recognized correctly over 90% of 
the time. In addition, these activities can be recognized quickly, 
since each example is generated from only 10 seconds worth of 
data. We have several interesting applications in mind for activity 
recognition and plan to implement some of these applications in 
the near future. 

Our work would not have been possible without establishing our 
WISDM Android-based data collection platform, and we view 
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this software and hardware architecture, where data is transmitted 
by the phone to our Internet-based server, as a key resource pro-
duced as a consequence of this work. By having this in place we 
will be able to mine other mobile sensor data much more quickly. 
This platform, as well as the data that we collected, will ulti-
mately be made public. 

We plan to improve our activity recognition in several ways. The 
straightforward improvements involve: 1) learning to recognize 
additional activities, such as bicycling and car-riding, 2) obtaining 
training data from more users with the expectation that this will 
improve our results, 3) generating additional and more sophisti-
cated features when aggregating the raw time-series data, and 4) 
evaluating the impact of carrying the cell phone in different loca-
tions, such as on a belt loop. In addition, in the near future we 
plan to significantly enhance our WISDM platform so that we can 
generate results in real-time, whereas currently our results are 
generated off-line and are not reported back to the mobile phone 
and the user. We plan to provide real-time results in two ways. 
The first way minimizes the intelligence required on the phone by 
having the phone transmit the data to the Internet-based sever 
over the cellular connection, as usual, with the server applying the 
activity recognition model and transmitting the results back to the 
phone.  In one variant, the phone will send the raw accelerometer 
data and in a second variant the phone will perform the data trans-
formation step and only transmit the data when an example is 
generated. The second method involves implementing the activity 
recognition model directly on the cell phone. Given the computa-
tional power of these devices, this is certainly a feasible option. 
One key advantage of this method is that it removes the need for a 
server, which makes the solution perfectly scalable, and ensures 
the user’s privacy, since the sensor data is kept locally on the 
device. 

The work described in this paper is part of a larger effort to mine 
sensor data from wireless devices. We plan to continue our 
WISDM project, applying the accelerometer data to other tasks 
besides activity recognition and collecting and mining other sen-
sor data, especially GPS data. We believe that mobile sensor data 
provides tremendous opportunities for data mining and we intend 
to leverage our Android-based data collection/data mining plat-
form to the fullest extent possible. 
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