
Augmented Intelligent Space
Intelligent Systems Laboratory — Winter Term 2013/2014

Benjamin Errouane & Jan-Erik Platte & Robin Schiewer
Supervisors: Thies Pfeiffer

Bielefeld University, Faculty of Technology

Abstract
The Augmented Intelligent Space (AIS) project is all about representing a physically existent environment with a virtual

model, thus enabling the creator to modify this model in any desired way. Our goal is to achieve an as immersive as possible
but yet adjustable and controllable environment to enhance productivity and simplify workflows, for example by presenting
the output of a sensor by simply looking at the specific sensor. We achieve this by utilizing the Oculus Rift head mounted
display to depict our virtual version of the environment, which is simulated in the blender game engine. While head movement
is tracked by the Oculus’ internal accellerometer, the position of the subject is determined via an ordinary VR marker tracking
approach. Both, position and rotation information, are integrated inside the blender game engine.

Introduction
When dealing for example with problems in a cognitive information technology context, there are often lots
of sensors, actuators and 3rd party applications involved, all connected via a sufficient middleware. Hence
keeping track of things can become a difficult task. To carry out simple tasks like e.g. verify the output of a
sensor or, in general, a system component, the user often has to do the same steps, (addressing components,
query data etc.) over and over again. The idea behind AIS is to provide additional interfaces to simplify and
speed up the process of interaction by providing firsthand information inside the virtual representation of an
environment. We thereby use a similar approach like [3], but with a more leightweight software architecture
and a non-see-through display. Due to the simplified interaction principle, this approach also allows untrained
users to work with complex systems.

Main Objectives
1. Display an arbitrary virtual environment to the user via a head mounted display.

2. Provide an intuitive interface for controlling the viewport (i.e. rotate your head to look around).

3. Track the user’s real position in order to realize movement in the simulation.

4. Integrate a basic interaction scenario (e.g. move objects in the simulation by moving objects in the real
world)

5. Recreate an existing place virtually to enable the user to move through the virtually modified version of this
place.

6. Integrate additional, more complex types of interaction (e.g. tracking of the user’s focus)

Materials, Methods and Architecture
While [4] utilize the concept of an augmented reality mainly for displaying data, visualize processes and
planning tasks, we concentrated our work in this semester on the creation of an as intuitive as possible user
interface and a basic infrastructure for interactions. To do so, we use the Oculus Rift head mounted display
(HMD) to depict the virtual environment to the user and make use of the accellerometer integrated in the Ocu-
lus Rift to track head rotation. To determine the user’s position, we utilize a simple marker tracker approach
and mount a commen VR marker on the Rift. We currently also provide tracking mechanisms for additional
markers, which can represent for example objects in the virtual world. Then, this objects can be moved by
relocating the markers in the real world.

Whereas [3] use a see-throgh HMD to project virtual content into a real scene, we prefer to trade in the
advantages of a see-through solution (e.g. realistically looking and reacting environment is already present)
against a fully virtual scene representation. The reason is, that controlling and manipulating a completely
virtual scene is far more easy, than trying to do so with a mixture of simulated and real contents, like they are
present on a see-through HMD. Another point is, that we expect the Oculus Rift to represent the first prototype
in an upcoming series of devices, which will probably be programmalbe and usable in a very similar way. That
makes it especially interesting for us to work with this technology right now.

To provide proper ways of communication for our program components, we use the Robot Service Bus
(RSB) framework and have additionally developed two plugins for blender. Those plugins are basically wrap-
pers for various c++ functions of the RSB framework and the Oculus Rift drivers. We thereby make use of
the cython package for python to address c and c++ code in python, since blender is programmable in python
only. The basic architecture of our application is shown in figure 1 and gives a brief overview about the current
state of development.

Figure 1: The basic program architecture is shown above: At (1) there is the marker located, which designates the origin of the
global coordinate system. (2) marks the camera, which records video data, that is then sent to an openCV based image processing
application (4). At (3) there is the Oculus Rift depicted, which serves as an accellerometer and an output display at the same time.
Consider the marker attached to the Oculus Rift, which is tracked by the camera at (2). The processed results of (4) are sent via RSB,
which should be illustrated through the two yellow and the one blue lead, and caught by blender via a small pugin (6). Blender then
carries out all extracted movement information. At the same time, the Oculus Rift (3) is directly connected to blender via another
plugin (7) and recieves data from the Rift’s accellerometer in realtime. The transmission of the by blender produced images back to
the Oculus Rift’s display is omitted in this scheme.

Results
The representation of a given scene and the basic interaction with it work with overall satisfying results. First,
the quality of the displayed scene depends on the level of detail of the underlying 3D model and the display
technology, that is used. At the moment, we use low detail scenes intended for basic testing only, because

creating a highly detailed 3D scenery by hand can be very time consuming and is moreover not decisive for
our projet to work, so it was considered to be of minor importance at this point.

The display of the Oculus Rift provides a rather low solution of 640x800 pixels per eye, making it easy to
spot single pixels. Whereas this on the one hand lowers the overall visual quality, on the other hand other
factors like viewing angle, available drivers and the integrated position sensor provided decisive advantages.

The movement tracking works stable and fast, but there is only a small area covered, which lies directly
in front of the camera. This area can be slightly increased by choosing bigger markers, but remains rather
limited. As a result, the user experience is disturbed when the user moves too far away from the center of
the camera’s field of view, since in this case the camera will probably loose track of the marker attached to
the HMD. This means, the user won’t be able to move in the virtual world anymore, unless he or she retreats
towards the center of the camera’s field of view again. At this point, the importance of a high quality high
resolution tracking camera became clear, since in contrast to for example [5], where mainly GPS is used, our
navigation is based entirely on VR marker positions.

Another problem related to the limited camera viewing area is the tracking of an object-representing marker
and the HMD marker at the same time. While there are no performance issues existent when tracking multiple
markers at a time, the camera’s field of view is simply to small, to allow excessive movement of both mark-
ers inside the stable trackable area. While the VR marker remains recognizable for the human eye when the
user moves too far away from the camera, our approach tends to loose track after a few meters. This slightly
reduces the freely traversable space further, but the Oculus Rift’s cable is the more limiting factor here.

When it comes down to the tracking camera’s resolution, it turned out that a too high resolution decreases
the quality of the overall results. While the marker is moved, our camera delivers high resolution images with
noticeable motion blur, which can interrupt the tracking. Moreover, the tracking range decreased as well. If
the resolution is choosen too low, the marker is not tracked stable enough and thus it’s position is flickering,
causing the simulation to flicker as well.

Figure 2: Various border cases of our marker tracking approach. Left: An arbitrary small part of the marker leaves the camera’s
viewport. Middle: The farthest point, where the marker can still be seen by out tracking application. Right: Even if the marker is
orientated almost parallel to the camera’s viewing axis, it can still be tracked.

Conclusions
• Due to the present navigation mechanisms integrated in our application, being in the simulation gives a

really immersive feeling, regardless of the low quality 3D models used. Nevertheless, we aim to refine our
tracking mechanisms and 3D models in order to further improve the user’s experience.

• While the marker tracker approach gives good results in general, because of the limited traversable area we
certainly consider the support of multiple tracking cameras to be our next step.

• To increase the range of our marker tracking approach, we also want to examine the performance of better
cameras with a higher resolution. Another step will be to further examine the impact of the recording frame
rates on the image sharpness in our scenario.

• With the manipulation of objects via trackable markers as a first way of interaction, we want to provide
additional types of interaction to the user, for example looking at objects to cause a system reaction.

• Currently, we rely almost entirely on the blender game engine to depict our scene. For better flexibility and
because of several blender-related limitations, we want to investigate other solutions.

References
[1] Rodney A. Brooks, editor. The Intelligent Room Project. MIT Artificial Intelligence Lab, 1997.

[2] Andrew Graham Daniel Brooker, Toby Collett, editor. Improving Augmented Reality Visualisation for Mo-
bile Robot Development. School of Engineering, The University of Auckland, Auckland, New Zealand,
2009.

[3] Burkhard C. Wuensche Ian Yen-Hung Chen, Bruce MacDonald, editor. Mixed Reality Simulation for
Mobile Robots. Dept. of Computer Science University of Auckland New Zealand, 2009.

[4] Jonathan Foote Sagar Gattepally Don Kimber Bee Liew Eleanor Rieffel Jun Shingu Jim Vaughan Mari-
beth Back, Anthony Dunnigan. The virtual chocolate factory; building a real world mixed - reality system
for industrial collaboration and control. FX Palo Alto Laboratory.

[5] Shean White. Interaction with the environment: Sensor data visualization in outdoor augmented reality.
Department of Computer Science, Columbia University, Department of Botany, Smithsonian Institution,
2009.

Acknowledgements
Special thanks go to Dr. Thies Pfeiffer for providing us a very good image tracking library and lots of ideas
and help regarding our project. We also want to thank Florian Lier for assistance regarding ROS/RSB and a
propererly organized course.


