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Abstract. We describe an anthropomorphic agent that is engaged in
an imitation game with the human user. In imitating natural gestures
demonstrated by the user, the agent brings together gesture recognition
and synthesis on two levels of representation. On the mimicking level,
the essential form features of the meaning-bearing gesture phase (stroke)
are extracted and reproduced by the agent. Meaning-based imitation re-
quires extracting the semantic content of such gestures and re-expressing
it with possibly alternative gestural forms. Based on a compositional se-
mantics for shape-related iconic gestures, we present �rst steps towards
this higher-level gesture imitation in a restricted domain.

1 Introduction

Intuitive and natural communication with a computer is a primary research
goal in human-computer interaction. This vision includes the usage of all com-
municative modalities, e.g., speech, gesture, gaze, and intonation, and has led
to extensive work on processing a user's multimodal input as well as on creat-
ing natural utterances with humanoid agents. To address these problems with
regard to gesture, we employ a scenario in which the human user is engaged in
an imitation game with an anthropomorphic agent, Max. The human user meets
Max in a virtual environment where he is visualized in human size. The agent's
task is to immediately imitate any gesture that has been demonstrated by the
user.

Imitation tasks are of particular interest as this capability can be considered
a key competence for communicative behavior in arti�cial agents. Just like in
infant development of communicative skills, two important steps towards this
competence would be the following: First, the agent's capability to perceive the
various behaviors in his opposite's utterance and to mimic them in a consistent
way (mimicking-level). Second, and higher-level, to understand the meaning of
the perceived utterance and re-express its content with his own communicative
means, i.e., in his own words and with his own gestures (meaning-level).

Our previous work was directed to processing multimodal utterances of the
user and to synthesizing multimodal responses of Max, both including coverbal



gestures [13, 7]. This contribution describes how the developed systems can be
combined to enable the gesture imitation game on both aforementioned levels
(see Fig. 1 for an overview):
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Fig. 1. Levels of gesture imitation (bottom-up: form-based and meaning-based)

On the mimicking level, Max employs a body-centered representation of the
gesture as an interface between his recognition and production systems. Imita-
tion therefore includes formally describing a gesture's meaningful (stroke) phase
in terms of its mandatory spatiotemporal features which transcends the direct
transfer of low-level body con�guration parameters like in motion capture. This
kind of gesture imitation has been successfully realized for a certain range of
gestures and is described in more detail in Section 3. Beyond mimicking, a rec-
ognized gesture can be conceptualized on the meaning level yielding a modality-
independent representation of its content (idea unit). From this representation
a gestural imitation can be generated that preserves the original communicative
idea but may very well result in di�erent realizations, e.g., dependent on the
availability of expressive resources. For a domain limited to object shape de-
scriptions by iconic gestures, we present a spatial representation for a gesture's
imaginal content in Section 4. First steps towards automatically building such
representations, i.e., interpreting gestures, as well as forming particular gestures
for them are described.

2 Related work

In spite of its signi�cance for the cognitively plausible development of human-
computer communication, imitation scenarios have not been adopted in previous
systems and especially not so with respect to gestures. There is a large body of
research on gesture recognition viewed as pattern classi�cation. Systems based
on this paradigm segment the input data stream from the sensing device and con-
sider gestures as atomic pieces of information that can be mapped one-to-one on
some application-dependent meaning. Popular computer vision methods include
training-based approaches like Hidden Markov Models and Arti�cial Neural Net-
works, as well as explicit feature-based methods [16]. Multimodal approaches
that include gesture and speech additionally consider the context-dependency
of gesture semantics. Usually, some form of multimodal grammar is employed



to unify gesture and speech tokens in a common complex of meaning [4]. A se-
mantic aspect which is particularly important in natural gestures is iconicity.
However, most current systems do not provide any means to model gestural im-
ages explicitly based on their inner structure. One noteworthy exception is the
ICONIC system that maps object descriptions with coverbal gestures on possi-
ble referents based on an explicit comparison of form features and their spatial
con�guration [15].

Similar to most recognition approaches, gesture generation in conversational
agents (e.g. [12, 1]) usually relies on a �xed one-to-one mapping from commu-
nicative intent to prede�ned animations that are drawn from static libraries on
the basis of speci�c heuristics. Although the animations can be parametrized
to a certain extent or concatenated to form more complex movements, this ap-
proach obviously does not resemble a real \transformation" of meaning into
gesture. Cassell et al. [2] present a system for planning multimodal utterances
from a grammar which describes coverbal gestures declaratively in terms of their
discourse function, semantics, and synchrony with speech. However, gesture pro-
duction again does not associate semantic features with particular gesture fea-
tures (i.e., handshape, orientation, movement) that would constitute a literally
context-dependent gesture (cf. [2, p. 175]). A fully automatic gesture creation was
targeted by only few researchers. Gibet et al. [3] apply generic error-correcting
controllers for generating sign language from script-like notations. Matari�c et
al. [10] stress the problem of determining appropriate control strategies and pro-
pose the combined application of di�erent controllers for simulating upper limb
movements. For Max, we emphasize the accurate and reliable reproduction of
spatiotemporal gesture properties. To this end, motor control is planned directly
from required form properties and realized by means of model-based animation.

3 Mimicking: Form-based imitation

By gesture mimicking we mean the reproduction of the essential form proper-
ties of a demonstrated gesture by an articulated agent. This kind of imitation
should be independent from the agent's body properties (e.g., measures, propor-
tions, level of articulation) and, furthermore, should not need to take subsidiary
movement features into account. As depicted in Fig. 1, mimicking therefore in-
cludes (1) recognizing gestural movements from sensory input, (2) extracting
form features of the gesture stroke and specifying them in relation to the ges-
turer's body, and (3) synthesizing a complete gesture animation that reproduces
these features in its stroke phase. This section describes the methods developed
for all three stages and their combination in Max in order to enable real-time
gesture mimicking.

3.1 Feature-based representation of gesture form

A gesture's form features are described by a subset of MURML, a markup
language for specifying multimodal utterances for communicative agents [7].



MURML de�nes a hand/arm con�guration in terms of three features: (1) the lo-
cation of the wrist, (2) the shape of the hand, and (3) the orientation of the wrist,
compositionally described by the extended �nger orientation/direction and the
normal vector of the palm (palm orientation). Feature values (except for hand-
shape) can be de�ned either numerically or symbolically using augmented Ham-
NoSys [11] descriptions. Handshape is compositionally described by the overall
handshape and additional symbols denoting the exion of various �ngers.

A gesture is described in MURML by specifying its stroke phase that is con-
sidered as an arbitrarily complex combination of sub-movements within the three
features, e.g., moving the hand up while keeping a �st. To state the relation-
ships between such features, simultaneity, posteriority, repetition, and symmetry
of sub-movements can be denoted by speci�c MURML elements constituting a
constraint tree for the gesture (see Figure 2 for an example).

<constraints>
<parallel>
<symmetrical dominant=\right arm" symmetry=\SymMST"
center=\0 0 0 0 0 15.0">
<parallel>
<static slot=\HandShape" value=\BSat"/>
<static slot=\ExtFingerOrientation" value=\DirAL"/>
<static slot=\HandLocation" value=\LocChin
LocCCenterRight LocNorm"/>

</parallel>
</symmetrical>
<static slot=\PalmOrientation" value=\DirD" scope=\left arm" />
<static slot=\PalmOrientation" value=\DirD" scope=\right arm" />

</parallel>
</constraints>

Fig. 2. Example speci�cation of a static two-handed, symmetrical gesture

Each feature is de�ned over a certain period of time to be either (1) static,
i.e., a postural feature held before retraction, or (2) dynamic, i.e., a signi�cant
sub-movement uently connected with adjacent movement phases. For complex
trajectories, dynamic constraints are made up of segments, which can be further
di�erentiated for hand location constraints either as linear or curvilinear.

Like in HamNoSys, symmetric two-handed gestures are de�ned in terms of
the movement of the dominant hand and the type of symmetry obeyed by the
following hand. We de�ne eight di�erent symmetries made up of combinations
of mirror symmetries w.r.t. the frontal, transversal, and sagittal body planes
(\SymMST" in Figure 2 denotes mirror symmetries w.r.t. the sagittal and the
transversal plane). Regardless of the symmetry condition, handshapes are iden-
tical in both hands and the wrist orientation vectors are always switched in
transversal direction (left-right). Exceptions from this rule can be described ex-
plicitly by combining respective movement constraints with the symmetrical
node (as in Figure 2 for palm orientation).



3.2 Gesture recognition and feature extraction

The gesture recognition stage transforms sensory data into a MURML form
representation (Fig. 3). We employ a 6DOF tracking system and data-gloves
to capture hand motion as well as posture information. Data from the devices
is processed by a chain of software modules which are tightly integrated in the
immersive virtual reality environment [9]. The modules compute form and move-
ment features of MURML as well as cues for gesture segmentation. A specialized
segmentation module processes such cues to divide the data stream into gesture
phases based on the approach by Kita et al. [5]. A movement interval, includ-
ing hand motion and posture changes, is segmented at points where an abrupt
change of the movement direction occurs and the velocity pro�le signi�cantly
changes. An alternation of direction includes the transition between movement
and holds. For each phase, a form description frame is created that includes the
relevant features. The resulting frame sequence is searched for typical pro�les
that indicate a gesture phrase, for example, a phase in which the hand rises,
followed by a hold, and then a lowering phase, is regarded as a preparation-
stroke-retraction phrase. The hold in the middle would then be tagged as the
meaningful phase and encoded in MURML.
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Fig. 3. Stages of the recognition process

3.3 Gesture synthesis

On the gesture synthesis stage, Max is able to create and execute gesture anima-
tions from MURML descriptions in real-time. An underlying kinematic skeleton
for the agent was de�ned comprising 103 DOF in 57 joints, all subject to realistic
joint limits. This articulated body is driven by a hierarchical gesture generation
model, shown in Figure 4, that includes two stages: (1) high-level gesture plan-
ning and (2) motor planning. During gesture planning (see [6]), the expressive
phase of a gesture is de�ned by setting up a fully quali�ed set of movement con-
straints. This stage optionally includes selecting an abstract gesture template
from a lexicon, allocating body parts, expanding two-handed symmetrical ges-
tures, resolving deictic references, and de�ning the timing of the stroke phase.
During lower-level motor planning (described in [7]), a solution is sought to con-
trol movements of the agent's upper limbs that satisfy the constraints at disposal.
A kinematic model of human hand-arm movement is employed that is based on
�ndings from human movement science and neurophysiology. Each limb's motion
is kinematically controlled by a motor program that concurrently employs low-
level controllers (local motor programs; LMPs). LMPs animate sub-movements,



i.e., within a limited set of DOFs and over a designated period of time, by em-
ploying suitable motion generation methods. During planning, specialized motor
control modules instantiate and prepare LMPs and subjoin them to the motor
program(s). Our system provides modules for the hand, the wrist, the arm, as
well as the neck and the face of the agent. Depending on body feedback during
execution, blending of single gesture phases emerges from self-activation of the
LMPs as well as the transfer of activation between them and their predecessors
or successors, respectively.
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Fig. 4. Overview of the gesture generation model

Gesture recognition and synthesis have been connected by way of transferring
the essential form features of a gesture encoded in MURML. That way, Max is
able to mimic gestures in real-time standing face-to-face to the user (see Fig. 5
for examples). The recognition capabilities of the agent are currently limited to
meaningful hold phases or turning points combined with arbitrary handshapes
(e.g., as in pointing gestures). Dynamic movements and especially curvilinear
trajectories pose particular problems for gesture segmentation as well as feature
extraction and are subject of ongoing work.

Fig. 5. Form-based gesture imitation: The form of a demonstrated gesture (upper
picture) is mimicked by Max (lower picture)



4 Understanding: Meaning-based imitation

The recognition and generation systems described so far realize a �rst-level ab-
straction of upper limb movements to their essential form features (cf. Fig. 1).
On this basis, we can approach meaning-based gesture imitation by deriving
the idea unit behind the gesture from its form features (interpretation), for-
mally representing this semantics, and re-expressing it in possibly alternative
gestures (formation). To this end, plausible \sense-preserving" transformations
between gesture morphology and meaning are needed. This section, �rst, de-
scribes a spatial representation for the semantics of iconic gestures for a domain
limited to object shape descriptions. Experimentally derived, heuristic rules are
presented for the mapping between this representation of gesture meaning and
the feature-based descriptions of gesture form. Finally, �rst steps towards im-
plementing this mapping in both directions, i.e., interpreting as well as forming
shape-related iconic gestures, are described.

4.1 Imagistic representation of object shape

We conducted an empirical study to unveil the semantic features of shape and
to determine the mapping between form and meaning of gestures in an object
description task [14]. We observed that most gestures reect an abstract image
of their object which represents its extent in di�erent spatial dimensions. We
introduced the term dimensional gestures for this particular class. Such gestures
are often reduced to convey just one or two dimensions, a phenomenon that
we call dimensional underspeci�cation. Following the object's structure, gestural
descriptions mostly decompose objects into simple geometric shapes that are
described successively. Sometimes such descriptions contain an abstract sketch
of the whole object before going into details. Successive dimensional gestures
tend to coherently retain the spatial relations between the objects they repre-
sent. Groups of them may form complex elusive images in gesture space that
reect the qualitative arrangement of objects and their parts. For example, the
main body of a riddled bar introduced by an iconic gesture may serve as a
frame of reference for gestures indicating the position of the holes. Therefore,
the spatial representation should cover larger semantic units spanning several
gestures to allow for analyzing or synthesizing spatial coherence. We have cho-
sen a structured, 3D representation called imagistic description tree (IDT) to
model these properties. Each node represents an object's or part's basic spatial
proportions. The approach is derived from a semantic representation schema for
dimensional adjectives [8].1 An object schema consists of up to three orthogonal
axes describing the object's extent. An integrated axis covers more than one di-
mension. A 2D-integrated axis can be regarded as the diameter of some object
with a roundish cross-cut, and a 3D-integrated axis as the diameter of a sphere.

1 The original implementation as a graph structure [13] allowed an arbitrary number
of axes and spatial relations. It was modi�ed to be compatible with Lang's more
restricted object schemas [8] which simpli�es the recognition process.



Axis proportions and "meanings" can be qualitatively speci�ed by the following
attributes:

max de�nes the perceptually most salient axis which is commonly associated
with the object's length. It is always disintegrated.

sub de�nes an integrated or disintegrated axis which is perceptually less salient.
It is associated with the object's thickness, its material, or substance.

dist de�nes an interior extent, e.g., of non-material "parts" like holes.

Each axis' extent may be speci�ed quantitatively with a length. To inte-
grate verbal information, each schema contains names for the part it de�nes,
e.g. \head" and \shank" for a screw. The tree structure models a part-of re-
lation together with the spatial relation of a child node relative to its parent
speci�ed by a homogeneous transformation matrix. Thus it is possible to rep-
resent decomposition and spatial coherence. Fig. 6 shows an IDT for a stylized
screw. It contains an underspeci�ed schema for the whole object as root node
as well as part schemas for the "head", the "shank", and the "slot" as a part of
the head. The letters a, b, and c mark the spatial dimensions. Integrated axes
are marked with parentheses, e.g. (b c). Attributes and quantitative values are
listed below the axes.

"slot"

    6.0   0.2   0.2

iT = position/orientation
   transformation matrix

"head" "shank"

<   a    (b  c)   >
   max   sub
    6.5     4.0

< a >
max
10.0

"screw"

<   (a  b)    c   >
               sub
      6.0     3.5

<   a      b      c   >
   max

3T

2T1T

Fig. 6. Imagistic description tree for a stylized screw

4.2 The mapping between form and meaning

The gesture interpretation and formation stages concern the mutual conversion
between a MURML form description and the semantic layer represented as an
IDT. Indications for this mapping were obtained from the empirical study. It
provides information about the form features used to gesturally encode spatial
axes. Table 1 illustrates the combination frequencies of spatial features and form
features in a corpus of 383 gestures judged as iconic. Note that the sum over all
cells of the table exceeds 383 since several features may be present in a single
gesture. The �rst column shows the number of gestural expressions of linear axes,



i.e. length, breadth, or width, the second one of the diameter of objects with a
circular cross-cut. The third column lists cases in which a round shape, e.g. a
hole, is indicated. The last two columns refer to indications of rounded corners or
edges and the hexagonal shape of one of the stimulus objects. Axis, diameter, and
round shape properties can be modeled with the imagistic description approach,
whereas the model provides no means to describe the latter two. This weakness is
acceptable since it a�ects only a small portion of the semantic object properties
indicated by gestures (less than 3% of all descriptions).

linear diameter round r. edge/corner hexagonal

movement 166 27 50 9 3

distance 87 40

hand aperture 55 16

palm orientation 15

curved/round handshape 45

index �nger direction 1

Table 1. Frequency of gesture form attributes expressing geometrical attributes

Generally, the relation between gesture form and meaning is a many-to-many
mapping. However, Tab. 1 shows that a rather concise set of { still not unambigu-
ous { heuristic rules can be derived if a compositional, feature-based approach is
used on both the form- and the meaning-level. These rules are listed in Tab. 2.

# form feature axis type axis orientation axis degree

1 linear movement disintegrated orientation of
movement segment

length of segment

2 circular movement 2D-integrated movement plane diameter of the circle

3 two-handed static
posture, palms
facing each other,
at handshape

disintegrated di�erence segment
between palms

distance between
palms

4 two-handed static
posture, palms
facing each other,
rounded handshape

2D-integrated plane by di�erence
vector between
palms and extended
�nger orientation

distance between
palms

5 precision-grip
posture (thumb and
other �ngers facing
each other)

disintegrated vector between
thumb tip and �nger
tip closest to thumb

hand aperture

6 at hand
(one-handed gesture)

disintegrated extended �nger
orientation

(unde�ned)

Table 2. Rules for the conversion of form- and meaning-based representations



Complex images emerge either from the parallel use of features in a single
gesture, or from their sequential expression in successive gestures. Since in the
�rst case simultaneous form features must not occupy the same motor resources,
the elementary mappings from Tab. 2 are composable in the following ways:

� 1 + 3: linear movement, two-handed symmetrical posture, at hands
� 1+4: linear movement, two-handed symmetrical posture, rounded handshape
� 1 + 5: linear movement, precision-grip
� 3 + 5: two-handed symmetrical posture, precision-grip

Other combinations seem possible, but have not been observed in our corpus.
Sequential arrangements of features, i.e., the distribution of an object schema
across more than one gesture phrase, appear when incompatible form features
are employed. An example is the description of a cube with three two-handed
gestures of type 3, indicating successively its width, height, and length.

4.3 First implementation steps

The realization of meaning-based gesture imitation is an ongoing challenge in
our lab. However, the imagistic shape representation provides an already oper-
ational basis for formalizing a gesture's imaginal content and the heuristic rules
o�er hints on how gestural form features can be associated. First steps towards
utilizing these rules to automatically build an imagistic description tree from
given gesture descriptions in MURML (interpretation) as well as to transform
such a tree into MURML de�nitions (formation) have been taken. We expect
that their combination will enable Max to recognize the image behind a sequence
of iconic gestures and to create a di�erent gestural depiction on his own.

Gesture interpretation For gesture interpretation the rules from Tab. 2 are
basically implemented "from left to right". If a suitable form feature occurs in
the MURML description, the corresponding axis type, its orientation and degree
are inserted into the imagistic model. There are several possibilities for insertion
depending on the feature arrangement strategy. Axes concurrently recognized,
i.e. in a single dimensional gesture, always belong to one object schema. An axis
expressed in sequence to another either completes the current object schema, or
it opens up a new one. Furthermore, the algorithm has to decide where spatial
coherence ends and a new gestural image begins. In its current state, the system
assumes the beginning of a new image description if the hands return to a rest
position after performing several gestures.

Gesture formation Starting from an imagistic description tree, gesture forma-
tion must cope with sequencing gestures that { in combination { are to express
multiple object schemas with possibly multiple object features. Regarding this
problem on a higher level, we assume that an object is described from its gen-
eral spatial properties to more speci�c ones. This strategy resembles a depth-�rst



traversal of the imagistic description tree which, in addition, increases the spatial
coherence in elaborating an object schema by describing its descendant schemas
(e.g., the slot of the screw in Fig. 6 appears in relation to the head). For each ob-
ject schema, a gestural expression is formed by iterating through its axes (from
the dominant to the smaller ones), determining form features for each axis, and
combining them if possible in accord to the aforementioned composition rules.
Form features are selected according to the heuristic rules in Tab. 2. The am-
biguity of this choice can be partially resolved based on the degree of the axis
(e.g., feature 5 is selected for an axis of small degree rather than feature 1 or
3). In case feature selection is still ambiguous, the choice is done by chance. For
each selected form feature, the corresponding movement constraints in MURML
are created and adapted to the particular properties of the axis, e.g., hand aper-
ture to axis degree. If the movement constraints of two or more axes cannot be
combined due to conicting consumption of body resources, separate gestures
are instantiated as children of a sequence node in the MURML tree. All ges-
tures formed for single object schemas are added into a single utterance, i.e. a
single gesture unit, for the entire description tree. Currently, the composability
of features of di�erent axes is ignored during feature selection.

5 Conclusion

We have presented an approach for enabling arti�cial agents to imitate in a im-
mediate, game-like fashion natural gestures demonstrated by a human user. The
imitation scenario demands the connection of gesture recognition and synthesis
methods. We propose two levels of gesture imitation, where representations of
di�erent degrees of abstraction are employed: On the mimicking-level, a gestural
body movement of the user is reduced to the essential form features of its mean-
ingful phase. These features proved successful for form-based gesture imitation
when appropriate models are employed for both gesture recognition and synthe-
sis. Gesture mimicking is demonstrable { so far limited to static gestures { in a
real-time imitation game with Max. Building on the form-level abstraction, we
further presented novel steps towards processing the meaning of iconic gestures
that depict geometrical objects. A spatial representation for the semantics of
such gestures was described along with experimentally derived rules that for-
malize the ambiguous mapping between form and meaning in an implementable
way. Realizing this mapping in both directions is subject of ongoing work. In fu-
ture work, we intend to include speech in the meaning-based imitation process.
This would, for example allow the user to refer to an object using one modality
(e.g., saying \bolt") and getting it re-expressed by Max using the other modality
(e.g., con�rming the bolt's shape with iconic gestures).
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