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Introduction

First ... some extras

Available material

Additional web resources (code, datasets, links to papers)
can be found at
http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015
very recent review paper
accepted and (available online in July)
Indefinite proximity learning - A review
Schleif/Tino, Neural Computation, MIT press, 2015



http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015

Introduction

Motivation

Metric or Non-metric - this is the question

e The scientific world is widely metric, the reality not ...

Psychological studies - Colorspace is non-metric, perception is
non-metric [22, 20]

Image processing - Good recognition is non-metric [36]
Life sciences - many effective proximity measures are indefinite

Machine learning - asymmetry in graphs, ML in non-metric spaces
[31]
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Is non-metric representation the better one?
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Figure : Recent study on Labeled Faces in the Wild (LFW) from [22]

... and where does it occur . ..
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Some examples - Signal processing

Figure : Normal and abnormal ecg data

Figure : Dynamic time warping (DTW)[35]
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Some examples - Audio processing

Figure : Search algorithms on audio files

Kullback-Leibler (or other) Divergence on Histogram features
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Some examples - Image processing
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Figure : Shape retrieval using the inner distance[24]
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Some examples - text processing

doc-A doc-B

Ihr naht euch wieder,
schwankende Gestalten, Die friih
sich einst dem triiben Blick
gezeigt. Versuch ich wohl, euch ¢ TXT

diesmal festzuhalten? Flihl ich

mein Herz noch jenem Wahn “ ff’
‘/

geneigt? Ihr drangt euch zu! nun
gut, so mégt ihr walten, Wie ihr
aus Dunst und Nebel um mich
steigt; Mein Busen fiihlt sich
jugendlich erschittert Vom
Zauberhauch, der euren Zug
umwittert. (from Faust | http://
www.projekt.gutenberg.de/)

¥ gm0 = dist(doc-A,doc-B)
=X-bytes

Figure : Normalized compression
distance [8]


http://www.projekt.gutenberg.de/
http://www.projekt.gutenberg.de/

Introduction

Some examples - bioinformatics

MSTKLILSFSLCLMVLSCSAQLWPWQKGQG
SRPHHGRQQHQF QHQCDIQRLTASEPSRRV
RSEAGVTEIWDHDTPEFRCTGFVAVRVVIQP...

MNIFKQTCVGAFAVIFGATSIAPTMAAPLNLERP
VINHNVEQVRDHRRPPRHYNGHRPHR
PGYWNGHRGYRHYRHGYRRYNDGWW...

MGLPLMMERSSNNNNVELSRVAVSDTHGEDS
PYFAGWKAYDENPYDESHNPSGVIQMGLA
ENQVSFDLLETYLEKKNPEGSMWGSKGAP...

MASNTVSAQGGSNRPVRDFSNIQDVA
QFLLFDPIWNEQPGSIVP
WKMNREQALAERYPEL ...

Figure : Smith-Waterman sequence alignment
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Why should we care?

Challenges

o for non-metric kernels - classical methods (e.g. SVM) fail
o often cheats are used and results do not link back to original data

e many effective optimization strategies e.g. for large scale
approximation are inapplicable (psd assumtion)

* many algorithms (with psd requirement) show substantial numerical
errors for non-psd data

e non-metric representations are often more natural
o enforcing metric properties can reduce efficiency [33]
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A metric proximity function

« we can distinguish similarities s(x, y) and dissimilarities d(x, y)
e (squared) dissimilarities d(x, y) = {(x, x) + (¥, y) — 2(x, y)
e (X, y)is an inner product

e a metric proximity is symmetric, real, positive and obeys
X, x)=0 < x=0

e it implies a norm ||x|| = V{x, x) with the triangle inequality to hold
e a metric kernel gives raise to a reproducing kernel hilbert space

¢ indefinite, non-positive, non-metric, non-psd kernel (contains
negative eigenvalues)
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Indefinite proximity functions - are common ...

¢ alignment (bioinformatics)

e cosinus measure (information retrieval)
e Hamming (information theory)

¢ geodesic distance (geometry)

e Jaccard index (statistics)

e compression distance

e graph structure kernels

¢ dynamic time warping (time-series)

GTTACAG

e shape matching distance
e earth mover distance

e manhattan kernel

e divergence measures [7]
e tangential distance [17]
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Basic formalisms

Basic formalisms

e X is a collection of N objects x;, i = 1,2, ..., N, in some input space Q2
¢ Q may not be an explicit vector space

a similarity function Q2 x Q — R (maybe not explicit)

Y is an (optional) label space

a proximity matrix S = X x X, in general S is symmetric

a test point x is a vector of N similarities obtained by x x X
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¢ similarity matrices (kernels) inner products
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e dissimilarities distances
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double centering

= —%JDJ J=1-11T/N

= /si+sj—2s;

e conversion between (symmetric)
proximities D
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... proximity matrices can become huge O(N?) complexity
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Krein space and pseudo-Euclidean space |

A Krein space is an indefinite inner product space endowed with a
Hilbertian topology
¢ let K be a real vector space.
¢ A vector space K with inner product (-, -)« is called an inner product
space.
e an inner product space with an indefinite inner product (-, -)¢ on K is
a bi-linear form where all f, g, h € K and a € R obey the following
conditions.
e Symmetry: (f, gx = (g, Fx
e linearity: (af + g, h)g = a(f, h)g + (g, h)«;
o (f,g)x = 0 implies f = 0.



Indefinite kernels and pseudo-Euclidean spaces

Krein space and pseudo-Euclidean space |l

e An inner product is positive definite if Vf € K, (f, f)x > 0, negative
definite if Vf € K, (f, f)% < 0, otherwise it is indefinite.

e An inner product space (K, (-, -}« is a Krein space if we have two
Hilbert spaces H, and H_ spanning K such that ¥f € K we have
f=1f_ +f withf, e H, and f- € H_ and Vf,g € K,

(f, P = (e, 9009, — (.9 )9

¢ A finite-dimensional Krein-space is a so called pseudo Euclidean

space



Introduction Indefinite kernels and pseudo-Euclidean spaces jefinite proximities

Krein space and pseudo-Euclidean space lli

¢ we can have negative squared "norm”, negative squared "distances”
and the concept of orthogonality is different

e given a symmetric dissimilarity matrix with zero diagonal, an
embedding of the data in a pseudo-Euclidean vector space
determined by the eigenvector decomposition of the associated
similarity matrix S is always possible [12]

¢ s0 in principle we can have an embedding (maybe into high
dimensions) but it is very costly
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Krein space and pseudo-Euclidean space IV

¢ Given the eigendecomposition of S, S = UAUT, we can compute
the corresponding vectorial representation V in the
pseudo-Euclidean space by

V= Up+q+z |Ap+q+z|1/2

where Ay, 44, consists of p positive, g negative non-zero
eigenvalues and z zero eigenvalues. Uy 4., consists of the
corresponding eigenvectors.

e The triplet (p, g, z) is also referred to as the signature of the
Pseudo-Euclidean space.

o details provided in [31, 9, 30].



Indefinite kernels and pseudo-Euclidean spaces

Sources of indefiniteness

Distance-based kernels: non-Hilbertian, non-metric
Prior knowledge in kernel construction

Invariant kernels (e.g. tangential kernel)

Robust or approximate (dis)similarities
Kernel combination (not all combinations lead to psd kernels)
Noise
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Take home message

o for indefinite spaces we speak about a Krein space
¢ adiscrete Krein space is a Pseudo Euclidean space

¢ a Pseudo-Euclidean space basically consists of a positive and a
negative Euclidean space

« for real problems we observe the Pseudo-Euclidean space as a
generalization of the Euclidean space

¢ the positive Euclidean space is what we all know

¢ the negative Euclidean space can have many sources (noise,
extended objects, ...)
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Approaches for processing indefinite proximities

L

\ ; \

Figure : Schematic view of different approaches to analyze non-psd data
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Proxy approaches
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Proxy approaches

Back to metric - optimizing an alternative metric matrix

Indefinite proximity due to noise

o Optimization problem max, E(e) s.t. C(«)

for SVM: max, @"e - 3" YKo Y st a"y =0,0<a<C

try to learn a psd proxy kernel K which is close to Kj

Optimization problem max, ming E(a) + pl|K — Kollg s-t. C(a), K =0
for SVM: max, ming a”e — JaT YKYa + pllK — Kollr s.t.
a'y=0,0sa<C,K>0

Work in this line e.g. [6, 26, 13]



Proxy approaches

Exemplary code

Some (matlab / ¢ code) examples for proxy approaches

Most code can be found here
http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015/

In parts you will need to download extra optimizers like MOSEK
https://www.mosek.com/ (Mosek provides renewable licenses - free of
charge - for academic use - just contact them)

Sometimes you may need an older matlab to get the code running
(without to much effort)


http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015/

Approaches for processing indefinite proximities

[ Jelele)

Elgenspectrum approaches

Eigenspectrum approaches
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o] lele)

Elgenspectrum approaches

Back to metric - via Eigenvalue correction

S = UAU", U - eigenvectors, A - eigenvalues

¢ Clip: negative eigenvalues in A are set to 0 - nearest psd matrix S in
terms of the Frobenius norm [19].

EV
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o] lele)

Elgenspectrum approaches

Back to metric - via Eigenvalue correction

S = UAU", U - eigenvectors, A - eigenvalues

¢ Flip: all negative eigenvalues in A are set to A; := |Aj| Vi keeps the
absolute values of the negative eigenvalues - information preserved
[33].

EV

/
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o] lele)

Elgenspectrum approaches

Back to metric - via Eigenvalue correction

S = UAU", U - eigenvectors, A - eigenvalues

¢ Shift: [23, 10] A := A — min; A Spectrum shift enhances all the
self-similarities by v and does not change the similarity between any
two different data points.

EV
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o] lele)

Elgenspectrum approaches

Back to metric - via Eigenvalue correction

S = UAU", U - eigenvectors, A - eigenvalues

e Square: A is changed to A := A? (elementwise)
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o] lele)

Elgenspectrum approaches

Back to metric - via Eigenvalue correction

S = UAU", U - eigenvectors, A - eigenvalues

e Square: A is changed to A := A? (elementwise)
o others (mixed schemes) see e.g. [28]
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Elgenspectrum approaches

Back to metric - via Eigenvalue correction
S = UAU", U - eigenvectors, A - eigenvalues

o Clip: negative eigenvalues in A are set to 0 - nearest psd matrix S in
terms of the Frobenius norm [19].

¢ Flip: all negative eigenvalues in A are set to A; := |Aj| Vi keeps the
absolute values of the negative eigenvalues - information preserved
[33].

e Shift: [23, 10] A := A — min; A Spectrum shift enhances all the
self-similarities by v and does not change the similarity between any
two different data points.

e Square: A is changed to A := A? (elementwise)
o others (mixed schemes) see e.g. [28]
If input is a dissimilarity matrix, double centering [31] is needed first
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Elgenspectrum approaches

Exemplary code

Some (matlab / ¢ code) examples for eigenvalue correction

approaches

An eigenvalue correction is fairly simple - but, can be costly for large
scale or if you start with a dissimilarity matrix.

At
http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015/
you can find an archive with some extra code also for eigenvalue
corrections with low rank matrices.


http://www.techfak.uni-bielefeld.de/~fschleif/ijcnn_2015/

Approaches for processing indefinite proximities

oooe

Elgenspectrum approaches

Take home message

e Eigenvalue correction
is a simple way to
make the data psd

e Clip is perfect if the
indefiniteness is due
to noise

¢ Flip / Square appear
to be good if
indefiniteness is
meaningful

e Eigenvalue
corrections are costly
(with exceptions - see
later)
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Indefinite learning algorithms

| Native methods in the Krein spacel
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Indefinite learning algorithms

Machine learning in another world ?

Some learning algorithms (e.g. Fisher Discriminant) remain valid
[32]
Support Vector Machine with SMO reaches a local optimum [40]

Core Vector Machine will in general not converge (due to strong
geometric assumptions)

Alternatives: empirical feature / similarity / dissimilarity space
representation
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Indefinite learning algorithms

Indefinite Kernel Methods

o Nearest Mean Classifier [31]

¢ Regression [30]

¢ Indefinite Support Vector Machine [15]

¢ Indefinite Fisher Discriminant [16]

¢ Indefinite Kernel Quadratic Discriminant [32]
¢ Kernel Mahalanobis Distances [16, 18]

¢ Indefinite Slow Feature Analysis [25]

« Non-metric Locality Sensitive Hashing [27]

¢ Relevance Vector Machine [41]

e Probabilistic Classification Vector Machine [5]



Approaches for processing indefinite proximities Large scale appro:

00000000000
Indefinite learning algorithms

Indefinite Fisher Discriminant (Pseudo Euclidean Fisher
Discriminant)

class means p. = - Yie, ¢(xi)

Between-class scatter projection: ZEE W = (4 — =)y — f—, WhpE

Within-class scatter projection: )t w = YL, w+ X f w

Z:‘l/:_,i W=D (p(xi) = = ){B(Xi) = ptss W)pE
Maximize Fisher Criterion:

WX W)

A

J(w)

Fisher Discriminant (decision function)
f(Z) = (W, Z)pE +b b= %(,UjL + U, W>pE



Indefinite learning algorithms

Approaches for processing indefinite proximities

0O000@0000000000

Geometric interpretation of the iKFD

negative subspace

classification boundaries in R

-4 -3 -2 -1 0
positive subspace
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9000000000

Indefinite learning algorithms

Indefinite kernel fisher discriminant

Kernelization

e Normal: w = Y7, aig(xi)

Between scatter: (w, 3.0 whpe = aK(cy —c_)(cy — ¢.)"Ka
Within-scatter: (w, ¥/t wype = o (K{ Hy KT + K-H-KT)a

e M=KCKand N=K,H, K, + K_H_K_ and C a coefficient matrix
and H a centering matrix (see [32])

Maximization of regularized fisher criterion

a" Ma
a™ Na

J(@) = a=N"K(c, —-c)

Indefinite KFD
f(X):ZIn:1 (Yik(Xj,X)+b b:%aT(JjK+1n++,:TK_1n_)

Correspondence to KFD with indefinite kernel
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Indefinite learning algorithms

Indefinite Kernel Methods

o Nearest Mean Classifier [31]

¢ Regression [30]

¢ Indefinite Support Vector Machine [15]

¢ Indefinite Fisher Discriminant [16]

¢ Indefinite Kernel Quadratic Discriminant [32]

¢ Kernel Mahalanobis Distances [16, 18]

¢ Indefinite Slow Feature Analysis [25]

« Non-metric Locality Sensitive Hashing [27]

¢ Relevance Vector Machine [41]

« Probabilistic Classification Vector Machine [5]
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Indefinite learning algorithms

Probabilistic Classification VM |

o Similar to Relevance Vector Machine by M. Tipping (JMLR’01)
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Indefinite learning algorithms

Probabilistic Classification VM |

o Similar to Relevance Vector Machine by M. Tipping (JMLR’01)
¢ Decision function looks like:

f(x) = W(dg(x)w + b)
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Indefinite learning algorithms

Probabilistic Classification VM |

o Similar to Relevance Vector Machine by M. Tipping (JMLR’01)
¢ Decision function looks like:

f(x) = W(dg(x)w + b)

o sparse probabilistic kernel classifier
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Indefinite learning algorithms

Probabilistic Classification VM |

Similar to Relevance Vector Machine by M. Tipping (JMLR’01)
Decision function looks like:

f(x) = W(dg(x)w + b)

sparse probabilistic kernel classifier
unused basis functions in ®4 are pruned during training
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Indefinite learning algorithms

Probabilistic Classification VM I

f(x) = W(dy(x)w + b)

dy(x) is a vector of basis function evaluations for the data point x
(e.g. the similarities of x w.r.t. all other points)

W(z) = [ N(tl0,1)dt is the probit link function

parameters are:

e w - weights with hyper parameters «;
e b - bias with hyper parameter 8

learning by modified Expectation Maximization (EM)

but classical RVM has various issues due to an inappropriate model
for the hyperparameter priors
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0000000008000 00
Indefinite learning algorithms

Probabilistic Classification VM Il

Instead: PCVM hyperparameter priors are truncated Gaussian priors:
¢ negative weight for class 1
e positive for class 2

Gaussian and truncated (-1/+1 class) Gaussian Hyperprior

i\
=

[

RVM PCVM

... but both approaches have O(N®) complexity at the beginning.
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Indefinite learning algorithms

Indefinite Kernel Methods

o Nearest Mean Classifier [31]

¢ Regression [30]

¢ Indefinite Support Vector Machine [15]

¢ Indefinite Fisher Discriminant [16]

¢ Indefinite Kernel Quadratic Discriminant [32]
¢ Kernel Mahalanobis Distances [16, 18]

¢ Indefinite Slow Feature Analysis [25]

« Non-metric Locality Sensitive Hashing [27]
¢ Relevance Vector Machine [41]

e Probabilistic Classification Vector Machine [5]
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Indefinite learning algorithms

Non-metric Locality Sensitive Hashing

¢ Hashing is used to organize large datasets by small codes

o Locality sensitive hashing (LSH) by Indyk provides hash functions
such that objects in close proximity share similar hash codes

¢ A hash function family H is called locality sensitive if
Py [h(p) = h(q)] = Sim(p, q) with h € H (originally with Sim(p, g) -
metric)

e We can obtain K = K; — K_ by an SVD on Sim (K)

e Now in [27] LSH hash functions are constructed for h; and h_ - the
two Euclidean spaces in the Krein space

e This can be done on a few training points and using the kernel trick
(details in [27])
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Indefinite learning algorithms

Non-metric LSH - image retrieval

airplane 5Ad-..w » .H.;*
automobile
wo Elmall Wi b
« EEGHOSEEEsP
ceer 15 IO 1 5 R
dog mﬁlaﬂﬂﬂa‘l

s

frog
horse

ship

e Jﬂhlﬂliﬂ.l
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Indefinite learning algorithms

IntemetAD CIFAR-10 UsPS-Digit

Proporton of Good Neighbers when Hamming Distance <= 1
Proporton of Good Neighbors when Hamming Distance <= 1
Proportion of Good Neighbors when Hamming Distance <= 1

0 e 0 2%

0 35 40 I 0 s 40
Number o Hash Bits Number of Hash Bits Number of Hash Bits

Figure : In general the retrieval accuracy ( proportion of good neighbors) is better
with non-metric LSH than using K, or K_ alone.
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Indefinite learning algorithms

Take home message

o tailored methods to indefinite problems beneficial

¢ available e.g. for classification, regression, variance analysis (PCA),
retrieval (hashing)

« classical implementations are costly (typically O(N®))

« Efficient implementations possible if input matrix has low rank (next
slides)

¢ A more comprehensive overview is available in our Neural
Computation paper Indefinite proximity learning - A review,
Schleif/Tino, Neural Computation, MIT press, 2015
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Large scale approximation

Computational effort

n size

5000 190 MB
10.000 763 MB
20.000 3.0GB
50.000 18.6 GB
200.000 300.0 GB

Table : Size of a matrix (double precision)



Large scale approximation

Computational effort

Dissimilarity calculation to a parameter vector w; based on similarities S

2
lIxi —will= = §;;—-2 Z @S+ Z ajor Sy
i g

= e,-TSe,- - Ze,-Sa,- + a/jTSa'j

Sm,N
Nystrém approximation (low rank approach) [43] Sm.m
Sample m landmarks only: approximate
S~ SN,mS;JmSm,N Snm

This approximation can be done for dissimilarities and similarities psd or
non-psd [39].
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)

o [Klij = [Kng)li-K5 [K(q)n].j (single value evaluation)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)
o [Klij = [Kng)li-K5 [K(q)n].j (single value evaluation)
o X = Ky,(q)K; "X (Extension of x)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)
o [Klij = [Kng)li-K5 [K(q)n].j (single value evaluation)
o X = Ky,(q)K; "X (Extension of x)

o K]y, = Kn(q) Ky ' [K(q).n]-1 (Kernel evaluation idx 1 vs all)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)
o [Klij = [Kng)li-K5 [K(q)n].j (single value evaluation)
o X = Ky,(q)K; "X (Extension of x)
o K]y, = Kn(q) Ky ' [K(q).n]-1 (Kernel evaluation idx 1 vs all)
o ilKlki = (2 Kn(q)K3") K]k (k-th Row/Column sum of K)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,q)K;'Kg)n (Kernel reconstruction)
o [Klij = [Kng)li-K5 [K(q)n].j (single value evaluation)
o X = Ky,(q)K; "X (Extension of x)
o K]y, = Kn(q) Ky ' [K(q).n]-1 (Kernel evaluation idx 1 vs all)
o ilKlki = (2 Kn(q)K3") K]k (k-th Row/Column sum of K)
H _ —1 ’ :
o diag(K) = X(K; KN,(q)) o} KN’(q) (Diagonal elements of K)
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Practical benefits of the Nystrom approximation |

K is a (symmetric) proximity matrix (similarities or dissimilarities)
o K = Ky,(q)K;"K(g).n (Kernel reconstruction)
o [Klij = [Kng)li-K7 ' [K(q)n].j (single value evaluation)
o X = Ky (q)K; " x (Extension of x)
o [K1. = Ki(q)K7 ' [K(g)n]-1 (Kernel evaluation idx 1 vs all)
o 2ilKlki = (2 Knq) K5 K]k (k-th Row/Column sum of K)
o diag(K) = X(K;' Kl (q)) @ Ki () (Diagonal elements of K)
. K,\,,(q)((K,\TL(q)x)TKq“)T (Matrix times vector Xx)

with linear costs (and accurate given the matrix is low rank)
— replace full matrix operations in the corresponding algorithms
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Practical benefits of the Nystrom approximation Il

Pseudo-Inverse (PINV), Singular Value Decomposition

(SVD), Eigenvalue Decomposition (EVD)

to calculate the pseudo-inverse we need a singular value
decomposition

for the SVD we need the eigenvectors of KTK and KK™
due to symmetry we approximate ¢ = KK by Nystrom

now we only need to calculate eigenvectors / eigenvalues of ¢
this can be done (exact) in linear time also for indefinite kernels

Details in [11, 37, 38]
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Runtime analysis employing the Nystrom approximatiom

——EPCVM

0%
e Ny-EPCVM
e CVM
102
g
10
>
z
o
100
10 1 1 ! 1 1 ! I I I ]
1000 2000 3000 4000 5000 000 7000 8000 9000 10000 11000
# training points

Figure : CPU time at logarithmic scale for a larger dataset for EPCVM, CVM and
Ny-EPCVM. For Ny-EPCVM
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Further approximation concepts

Locality and nearness

o often local metric preservation sufficient
e — enforced by local correction approach [3, 4]
e Barnes-Hut can be heuristically applied (e.g. almost metric) [1]

¢ sparsity and feature selection strategies can be used for proximity /
empirical feature space representation
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Take home message

o if low rank, proximity matrices can be approximated with linear costs

¢ proximity matrices can be effectively converted between each other
see [11]'

e various calculations (EVD,SVD,PINV) can be based on the
approximation

e |ocality / nearness concepts can help as well

o but still a lot of work todo for non-heuristic approaches

" Metric and non-metric proximity transformations at linear costs, Gisbrecht / Schleif,
Neurocomputing, currently open access online.


http://authors.elsevier.com/a/1RL5U_L2Otoc4a

Applications

Overview

@ Applications
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Life science data sets

Dataset description

e Copenhagen Chromosomes 4,200 human chromosomes from 21
classes, given as grey-valued images and encoded as strings
measuring the thickness of their silhouettes. Compared using the
edit distance [29]. Signature of (2258, 1899, 43).

e ProDom dataset with signature (1502, 680, 422) consists of 2604
protein sequences with 53 labels [34]. The pairwise structural
alignments are computed by [34]. Each sequence belongs to a
group labeled by experts

¢ the Protein data set has sequence-alignment similarities for 213
proteins from 4 classes [21]. The signature is (170, 40, 3).

o the SwissProt data set with a signature (8487,2500, 1), consists of
5,791 points of protein sequences in 10 classes as a subset from
the SwissProt database [2]. ( release 37, 10 most frequent classes)
compared using Smith-Waterman[14].
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Embeddings of the similarity matrices
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Visualization of the proxy kernel matrices

(e) Chromosom (f) Prodom
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Eigenspectra of the proxy kernels

) Chromosom ) Prodom

(k) Protein () Swissprot

Figure : Eigenspectra of the proxy kernel matrices of Aural sonar, Chromosom,
Delft and Prodom
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A classification task - |

Table : Comparison of different priorly discussed methods for various non-psd

data sets.

Method PCVM IKFD kNN SVM
Chromosoms 85.48+3.65 97.36+1.09 95.11+0.88 97.10 £ 1.00
Prodom 99.62+0.60 99.46+0.55 99.87 +0.21 not converged
Protein 9576 +4.17 99.05+201 59.13+1244 61.50+10.64
SwissProt 97.78+0.48 96.81+0.79 98.59 +0.35 97.38 £ 0.36
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Applications

Table : Comparison of different priorly discussed methods for various non-psd

data sets.

Method SVM-Flip SVM-Clip SVM-Squared SVM-Shift
Chromosoms 97.64+0.79 9748 +0.72 96.81 +0.68 97.10 £ 0.92
Prodom 99.65+0.56 99.65+056 99.92+0.22 98.96 = 0.99
Protein 98.59+230 89.67+9.75 98.59 +3.21 61.97 +9.83
SwissProt 97.33+042 97.38+0.37 98.37+0.33 97.37 +0.38
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Effect of negativity in the protein data
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Figure : Analysis of eigenvalue correction approaches using the Protein data with
varying negativity. The prediction accuracies have been obtained by using SVM.
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Visualization of non metric data relations
o t-distributed stochastic Neighbor Embedding (t-SNE) with multiple
maps (mm-tsne) [42]
¢ classical embedding in general restricted to Euclidean embeddings
¢ intransitive similarities and central objects can be visualized within
multiple maps visualizations

Map 1 Map 2

(DA e
®c ®c

Figure : A maybe close to C and B maybe close to C. But A may not be close to B
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Figure : With MM-tsne rather complex indefinite similarity relations can be
represented.



Applications

Take home message

¢ indefinite proximities can be very useful

¢ many classical methods can be non-heuristically applied with extra
effort

« native methods for indefinite proximities are available for many
learning tasks

¢ no need to restrict yourself to Euclidean proximities
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Thank you, for your attention!
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