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Abstract

We investigate the convergence properties of heuristic matrix relevance updates in
Learning Vector Quantization. Under mild assumptions on the training process, sta-
tionarity conditions can be worked out which characterize the outcome of training in
terms of the relevance matrix. It is shown that the original training schemes single
out one specific direction in feature space which depends on the statistical properties
of the data relative to the approached prototype configuration. Appropriate regular-
ization terms can be used to favor full rank relevance matrices and to prevent over-
simplification effects. The structure of the stationary solution is derived, giving insight
into the influence of the regularization parameter.
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Stationarity of Matrix Relevance Learning Vector Quantization

1 Introduction

Similarity based methods play an impportant role in supervised and unsupervised ma-
chine learning tasks, such as classification, regression or clustering. For a recent
overview see, for instance, [1]. Most methods employ pre-defined measures which
are used to evaluate a generalized distance between vectors in feature space. The by
far most popular choices are the standard Minkowski measures and generalizations
thereof such as weighted Euclidean or Manhattan distance.

The key problem is, of course, the identification of a suitable measure which is
appropriate for the problem at hand. Available insights into the scaling of different
features or relations between them can be taken advantage of in the construction of
a specific weighting scheme, for instance. However, frequently, a priori knowledge is
limited and it is unclear which choice would facilitate good performance.

A particular attractive concept is that of adaptive distance measures which change
in the course of learning. In this report we discuss adaptive metrics in the context of
Learning Vector Quantization (LVQ) [2]. This family of supervised, distance based clas-
sification schemes has proven useful in a variety of practical problems. LVQ algorithms
are particularly intuitive as they determine a set of codebook vectors or prototypes in
feature space, which are then used to parameterize a nearest prototype classifier in the
simplest case. LVQ is easy to implement and fast, it is a natural tool for multiclass clas-
sification and one can incorporate adaptive metrics in a straightforward way. Training
provides at the same time typical representatives of the classes and a discriminative
distance measure. Most powerful relevance LVQ (RLVQ) schemes employ different
measures locally in different regions of feature space.

Once a particular parametric form of the distance measure is chosen, e.g. weighted
Euclidean, relevance learning algorithms allow for data driven parameter adaptation,
see [9] for the first realization in the context of LVQ. In cost function based learning,
gradient descent or other optimization schemes can be applied to the distance mea-
sure as well, see for instance [7]. Here we consider quadratic measures used in LVQ
systems for N -dimensional data which are parameterized by an (N × N) relevance
matrix [3, 4, 5]. This generalization of Euclidean distance allows for the weighting of
single features and, in addition, takes into account pairwise correlations between the
features through off-diagonal matrix entries.

While metrics adaptation has proven useful in many practical applications, a bet-
ter theoretical understanding is desirable. Essential questions concern, for instance,
convergence behavior of the algorithms and uniqueness of the obtained solutions. We
investigate properties of stationary relevance matrices in metrics adaptation. We show
that generic update rules display a tendency to yield a low rank measure which takes
into account a single direction in feature space, asymptotically. On the one hand, this
effect can help to avoid overfitting effects in practical situations since it limits the com-
plexity of the distance measure. On the other hand, this tendency can lead to deterio-
rating performance due to over-simplification and to numerical instabilities as matrices
become singular. Regularization methods can be applied to cure these problems, we
consider a particular strategy which allows to control the complexity of the relevant
eigenspectra continuously [10, 11].

In the next section we introduce a heuristic local metrics adaptation scheme which
is based on LVQ1 [2] and serves as an example for the discussion of stationarity. In
Sec. 3 the stationarity of unregularized training is discussed while the effect of the
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regularization is studied in Section 4. Section 5 summarizes our results and concludes
with a brief discussion. In the Appendices details of the analysis are given and we
show how our results carry over to global matrix updates.

2 Matrix relevance updates in LVQ

Matrix relevance learning has been introduced in [3, 4] as a modification of Generalized
LVQ (GLVQ) [6, 7]. For simplicity, we study here the convergence of matrix learning
in the framework of the basic LVQ1 algorithm [2] and its extension by local relevance
matrices. It can be viewed as a generalization of the Relevance LVQ (RLVQ) scheme
presented in [9] and the formulation is particularly clear-cut in the context of this heuris-
tic prescription.

We will discuss the convergence of the below defined matrix updates under simpli-
fying assumptions in the following section. Note, however, that these considerations
should carry over to many similar and related supervised and unsupervised learning
algorithms.

2.1 Generalized distance measure

Several similarity based methods of unsupervised or supervised learning use a gener-
alized Euclidean distance measure of the form

d(y, z) = (y − z)> Λ (y − z) for y, z ∈ IRN . (1)

We require here that it fulfills the conditions d(y,y) = 0 and d(y, z) = d(z,y) ≥ 0
for all y, z with y 6= z. These are conveniently satisfied by assuming the following
parameterization:

Λ = ΩΩ> i.e. d(y, z) = (y − z)> ΩΩ> (y − z) =
N∑

i,j,l=1

(yi − zi) ΩilΩjl (yj − zj). (2)

Here, the N × N -matrix Ω> defines a linear mapping to a space in which standard
Euclidean distance can be applied.

It is important to note that, given Λ, the matrix Ω is not uniquely defined by Eq.
(2). The distance measure is, for instance, invariant under rotations or reflections in
feature space and Λ = ΩΩ> can have many solutions, in general. The unique, positive
symmetric root with Ω> = Ω and Λ = ΩΩ could be treated as a special case, for
instance.

Mainly, we will consider unrestricted matrices Ω without imposing symmetry or other
constraints on the structure. In this case, the elements of Ω can be varied indepen-
dently. The derivative with respect to an arbitrary entry is

∂d(y, z)

∂Ωkm

=
∑

j

(yk−zk)Ωjm(yj−zj)+
∑

i

(yi−zi)Ωim(yk−zk) = 2(yk−zk)
[
Ω>(y−z)

]
m

(3)

In matrix notation this reads

∂d(y, z)

∂Ω
= 2 (y − z)

[
Ω>(y − z)

]>
= 2 (y − z) (y − z)> Ω (4)

Machine Learning Reports 3



Stationarity of Matrix Relevance Learning Vector Quantization

which will be the basis of the analysed adaptation schemes.
Note that the derivative with respect to a symmetric matrix would read

∂d(y, z)

∂Ω
= 2 (y−z)(y−z)>Ω + 2 Ω(y−z)(y−z)> − 2 I ◦

(
(y−z)(y−z)>Ω

)
(5)

which takes into account that off-diagonal elements occur twice in a symmetric quadratic
form.1 Here I is the N -dim. identity matrix and A ◦B is the element-wise or Hadamard
product of matrices A and B, see [12] for a compilation of derivatives with respect to
generic and structured matrices.

2.2 Local Matrix LVQ1 (LMLVQ1)

The following summarizes a heuristic extension of LVQ1 along the lines of relevance
matrix learning for a set of prototypes

{
wk
}M

k=1
carrying class labels

{
sk
}M

k=1
. The

distance of ξ from a particular prototype wk is evaluated using a local matrix Λk =

ΩkΩk>:
d(wk, ξ) = (ξ −wk)>ΩkΩk>(ξ −wk). (6)

Upon presentation of a single example ξ from class σ, the update rule reads

(1) determine the winning prototype w∗ with d(w∗, ξ) = min
k
{d(wk, ξ)}

(2) update w∗ as in LVQ1: w∗ → w∗ + ηw ψ(s∗, σ) Ω∗Ω∗> (ξ −w∗)
where the pre-factor ψ(s, σ) = 1 if s = σ and ψ(s, σ) = −1 else. The learning rate
ηw controls the magnitude of the prototype update which is along the gradient of
d(w, ξ) w.r.t. w.

(3) update the unrestricted, local matrix Ω∗ attached to the winner according to

Ω∗ → Ω∗ − η ψ(s∗, σ)
1

2

∂d(w∗, ξ)

∂Ω∗ = Ω∗ − η ψ(s∗, σ)xx> Ω∗, (7)

where we have introduced the shorthand

x = (ξ −w∗). (8)

In addition, we normalize the matrix after each step such that
∑

i Λ
∗
ii =

∑
ij(Ω

∗
ij)

2 =
1 remains satisfied. Note that the learning rate η for matrix updates is frequently
chosen different from (smaller than) ηw.

The effect of this heuristic update is that, if the same or a similar feature vector is
presented thereafter, a smaller (larger) distance will be observed if the class label σ
agrees (disagrees) with that of the winning prototype, respectively.

As an alternative, we can consider the update of a symmetric Ω as a special case.
While the corresponding gradient step could be derived from Eq. (5) we resort to a
somewhat simpler, symmetrized version of Eq. (7):

(3′) update the local symmetric matrix Ω∗ attached to the winner according to

Ω∗ → Ω∗ − η ψ(s∗, σ)
1

2

[
Ω∗ xx> + xx> Ω∗] (9)

1We would like to thank Sander Land for drawing our attention to this point.

4 Machine Learning Reports



Stationarity of Matrix Relevance Learning Vector Quantization

Again, Ω∗ is normalized after each training step.
Note that Eq. (9) performs larger updates of diagonal elements than the gradient,

Eq. (5), would suggest for symmetric matrices. However, (9) still constitutes a descent
step with respect to d(w∗, ξ) and is easily analysed in the same framework as the
generic update (7). Note that one could also modify (9) by using a learning rate η/2 for
the diagonal elements Ωii in order to recover true gradient step in d.

2.3 Regularized updates

As we will discuss in the following sections, the updates introduced above result in
singular matrices Ω and Λ, generically, which can lead to oversimplification effects
[10, 11]. One can force Λ to maintain full rank, i.e. remain non-singular, by means of a
regularization technique which was introduced in [10, 11].

Note that, under the normalization constraint TrΛ = 1, det Λ is maximized if all
eigenvalues of Λ are equal. Therefore, we extend the matrix update by a contribution
in the direction of the gradient of ln det Λ. For unrestricted matrices Ω without symmetry
constraints the latter reads in matrix form [12]

∂ ln det ΩΩ>

∂Ω
= 2 Ω−> (10)

with the shorthand Ω−> = (Ω−1)>. Its contribution to the training prescription is con-
trolled by an additional parameter µ. Before normalization the training step for the
matrix attached to the winning prototype reads

Ω∗ → Ω∗ − η ψ(s, σ)xx> Ω∗ − µΩ∗−T . (11)

A similar, cost function based algorithm is presented and discussed in greater detail in
[10, 11]. Here we study the stationarity of the simpler regularized LMRLVQ1 update as
a first example.

In case of symmetric matrices Ω one could base the regularization term on the
gradient

∂ ln det ΩΩ

∂Ω
= 4 Ω−1 − 2 I ◦ Ω−1. (12)

For simplicity and in analogy with the previous section, we will consider the naı̈vely
symmetrized version of Eq. (11),

Ω∗ → Ω∗ − 1

2
η ψ(s, σ)

(
xx>Ω∗ + Ω∗xx>

)
− µΩ∗−1, (13)

instead.
For high-dimensional data, costly matrix inversions might constitute a problem in

practice. It is, however, possible to devise schemes that iteratively update an approxi-
mation of the inverse. We will address this point in a forthcoming publication.

3 Stationarity of unregularized matrix updates

For the following arguments, we make the simplifying assumption that the prototypes
can be considered stationary, either because we set ηw = 0 explicitly, or because they
have converged after an initial training phase.

Machine Learning Reports 5
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In addition, we assume that the assignment of feature vectors to the prototypes
does not change even though the distance measure is modified. One scenario in which
this condition is satisfied is that of data drawn from well separated clusters – which
may contain examples from different classes. Strictly speaking, the following applies
only to cases where finite gaps separate the clusters of data which are assigned to
different prototypes. Generically, this should be the case for finite training sets under
mild assumptions on the positions of the input vectors in feature space.

Assuming that the assignment of inputs to prototypes is fixed, we can consider a
single prototype w∗ = const., its local relevance matrix Ω∗, and the fixed set of vectors
ξ assigned to w∗. In an update step (which concerns w∗), one example is selected
randomly and the matrix is updated as in Eq. (7). or (9).

In the following section, we analyse the above defined matrix updates for a given
set of examples and derive the corresponding stationary state.

3.1 Unrestricted matrix update

In the following, we omit the index that identifies the winning prototype w with label s.
It is implicitly understood that the local matrix is updated only from the corresponding
subset of data. In time step t of this training (sub-) process an example ξ is presented.
Before normalization, the update of the corresponding matrix in time step t of the train-
ing reads

Ω(t+ 1) ∼ Ω(t)− η ψ(s, σ)xx> Ω(t)

with the abbreviation x defined in Eq. (8).
We will consider the update on average over all examples in the relevant subset

of data. This corresponds to interpreting the single example update as a stochastic
gradient descent with respect to the sum of the distances d(ξµ,w) over the subset of
data assigned to w. We introduce the corresponding shorthand notation

〈· · · 〉 =
∑

µ

(· · · )φ(ξµ,w)

/∑
µ

φ(ξµ,w)

where the sum is formally over all examples and the indicator function φ(ξ,w) = 1 if w
is the prototype closest to ξ and φ(ξ,w) = 0 else. For the averaged update step we
obtain

Ω(t+ 1) ∼ Ω(t)− η
〈
ψ(s, σ) xx>

〉
Ω(t) = [I − η C ] Ω(t), (14)

where the symmetric matrix C is defined as

C =
〈
ψ(s, σµ) xx>

〉
. (15)

Under the assumption of constant prototype posiontions and assignments φ(ξ,w), C
itself remains constant in the iteration. Note that t in Eq. (14) counts only non-zero
updates of the matrix Ω, i.e. only updates from examples assigned to w.

It is important to point out that, in general, C cannot be interpreted as a positive
(semi-) definite covariance matrix, since it takes into account label information: Exam-
ples can contribute with positive or negative sign ψ.

We assume an ordering of the eigenvalues of C: λ1 < λ2 < λ3 . . . < λN and exploit
the fact that the set of eigenvectors forms an orthonormal basis {vj}N

j=1 of IRN . In the
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presence of degeneracies λi = λj the following arguments have to be modified slightly,
considering the corresponding eigenspaces.

An unnormalized update of the form (14) will be dominated by the largest eigen-
value and corresponding eigenvector of the matrix [I − η C]. For sufficiently small η
this eigenvalue is (1 − ηλ1) > 0, where λ1 is the smallest eigenvalue of C. However,
the iteration of Eq. (14) would yield either divergent behavior for λ1 < 0 or the trivial
stationary solution Ω → 0 with t→∞ for λ1 > 0. In order to take the normalization into
account explicitly, we rewrite Eq. (14) element-wise (omitting the time step t)

Ωij → Ωij − η (C Ω)ij (16)

and assume that the previous Ω was normalized. We obtain∑
ij

Ω2
ij →

∑
ij

Ω2
ij︸ ︷︷ ︸

=1

−2η
∑
ij

Ωij(CΩ)ij + η2
∑
ij

(CΩ)2
ij. (17)

For small learning rate η the last term in Eq. (17) can be neglected. With the abbre-
viation κ ≡

∑
ij Ωij(CΩ)ij =

∑
ij ΩT

ji(CΩ)ij = Tr( ΩTCΩ ), the normalized update of Ω
becomes

Ω → Ω− η C Ω√
1− 2ηκ

≈ (Ω− η CΩ) (1 + η κ) ≈ Ω− η [C Ω− κΩ] (18)

where we neglect terms of order O(η2). Note that the matrix C appears only linearly
in (18). Hence, applying the normalization

∑
ij Ω2

ij before taking the average 〈. . .〉 over
the subset of examples would have lead to the same result in the limit η → 0.

Eq. (18) shows that the stationarity condition for the matrix update is of the form
C Ω = κΩ, implying that each column of the stationary matrix Ω is a multiple of some
eigenvector vj of C. Note that, apart from the specific normalization, the update is
equivalent to a von Mises iteration [13] of the columns of Ω with respect to the matrix
[I−η C]. Hence, the update will display linear convergence and the actual convergence
speed depends on the gap between the two largest eigenvalues of I − η C [13].

As we detail in Appendix A, one can show that all columns of the stationary matrix
Ω are multiples of the eigenvector v1 corresponding to λ1:

Ω =
[
A1 v1, A

2 v1, . . . , A
N v1

]
with

∑
k

(Ak)2 = 1. (19)

The normalization of the coefficients Ak ∈ IR reflects that
∑

ij Ω2
ij = 1.

Finally, we can work out the resulting matrix Λ obtained from the above solution:

Λij =
(
Ω Ω>)

ij
=
∑

k

Ωik Ωjk =
∑

k

(Ak)2 v
(i)
1 v

(j)
1 =

(
v1 v>1

)
ij
. (20)

Hence, the resulting relevance matrix is simply Λ = ΩΩ> = v1v
>
1 , given by the eigen-

vector of C that corresponds to its smallest eigenvalue. Note that, under the assump-
tions made, Λ is indeed unique, despite the freedom in selecting the coefficents Ak

1 in
Ω. Note also that the only non-zero eigenvalue of the resulting Λ is 1.

Machine Learning Reports 7
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3.2 Symmetrized matrix updates

The above considerations have to be modified slightly for the symmetrized update rule,
Eq. (9). The treatment is along the lines of the previous subsection and details are
given in the Appendix B.1.

The stationary symmetric matrix is shown to be Ω = v1 v>1 and the resulting rele-
vance matrix coincides with the result (20) of the non-symmetrized update:

Λ = Ω Ω = v1v
>
1 .

This confirms that the restriction to symmetric Ω does not constitute a limitation of
matrix relevance learning [3]. Here, however, even the stationary Ω is unique due to
the additional symmetry requirement.

4 Regularized matrix update

The reduction to a single, relevant direction can lead to over-simplified classifiers with
poor performance in data sets that do require multi-dimensional representations [10,
11]. Furthermore, singular or nearly singular relevance matrices can lead to numerical
instabilities in practical implementations of the algorithm.

A regularized version of matrix learning which circumvents these problems is ad-
dressed in the following. We extend the analysis to a regularized version of LMRLVQ1
which favors non-singular matrices Λ. Again, unrestricted and explicitly symmetrized
updates can be considered.

4.1 Non-symmetric, regularized matrices

In analogy to the previous section we investigate the dynamics of a single, local matrix
taking an average over the relevant subset of data. The regularized, average update
without explicit symmetrization reads

Ω ∼ Ω− η C Ω + η µΩ−T (21)

with the regularization parameter µ. Rewriting the update element-wise we obtain∑
ij

Ω2
ij →

∑
ij

Ω2
ij︸ ︷︷ ︸

=1

−2η
∑
ij

Ωij(CΩ)ij︸ ︷︷ ︸∑
j(Ω

>CΩ)jj

+2µη
∑
ij

Ωij(Ω
−>)ij︸ ︷︷ ︸∑

j(ΩΩ−1)jj=Tr(I)=N

+O(η2).

Neglecting terms quadratic in η, the normalized update of Ω reads

Ω → Ω− η C Ω + µ ηΩ−>√
1− 2η

∑
j(Ω

TCΩ)jj + 2µη N

≈ Ω− η
[
CΩ−

(∑
j

(Ω>CΩ)jj − µN
)

Ω− µΩ−>
]
. (22)

With the abbreviation κ =
∑

j(Ω
>CΩ)jj − µN the stationarity condition reads

C Ω − κΩ = µΩ−>.

8 Machine Learning Reports
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Obviously, for µ = 0, this reduces to the same eigenvalue problem for each column of
Ω as discussed above. For µ 6= 0, multiplication with Ω> yields the modified stationarity
condition

(C − κ I) ΩΩ> = µ I, with the formal solution Λ = ΩΩ> = µ (C − κ I)−1. (23)

4.2 Symmetric regularized matrices

The convergence of regularized training in the case of symmetric matrices Ω =
Ω> can be analysed analogously. In Appendix B.2 we show that the corresponding
stationarity condition reads in this case

−κΩ2 +
1

2
(CΩ2 + ΩCΩ) =

1

2

(
(C − κI)Ω2 + Ω(C − κI)Ω)

)
= µ I, (24)

where κ =
∑

j(ΩCΩ)jj − µN. The formal solution is given by the symmetric

Ω =
√
µ (C − κI)−1/2. or, equivalently Λ = Ω2 = µ (C − κI)−1. (25)

In terms of Λ we have obtained the same stationary solution as for the unrestricted
matrix update which confirms, once more, that imposing symmetry does not limit the
flexibility of the adaptative metrics.

4.3 Stationary solution

From both stationarity conditions, Eqs. (23) and (25), we obtain the same solution:

Λ = µ (C − κ I)−1. (26)

The symmetric matrix (C − κ I) is invertible as long as κ does not coincide with one
of the eigenvalues λi of C. Since Λ is strictly positive definite for µ > 0, we can even
restrict the discussion to κ < λ1, where λ1 is the smallest eigenvalue of C.

Note that (C − κ I) has the same eigenvectors vi as C and its eigenvalues are
(λi − κ). Hence, we can construct the inverse explicitly:

Λ =
∑

k

µ

λk − κ
vk v>k with Tr Λ =

∑
i

µ

λi − κ
!
= 1, (27)

where the normalization constraint determines κ, given the parameter µ and the set of
{λk}. Alternatively, Eq. (27) can be solved for µ, given κ, and we obtain

µ =

(∑
i

1

λi − κ

)−1

and Λ =
∑

k

ck vkv
>
k with ck =

(∑
i

λk − κ

λi − κ

)−1

. (28)

For every κ < λ1, the corresponding solution is obtained by using the appropriate
regularization parameter µ as given above.

In order to obtain further insights, we investigate several cases in greater detail: For
positive definite C, i.e. λ1 > 0, we can consider the special solution with κ = 0. We
obtain the corresponding µ and Λ from the normalization constraint as

µ =
1

TrC−1
and Λ =

C−1

TrC−1
. (29)

Machine Learning Reports 9
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Note that this special case can be interpreted as a Mahalonobis distance only for a
well separated cluster which exclusively contains data from one class. Only in such an
extreme setting with w∗ in the cluster mean, C is the corresponding covariance matrix,
see Sec. 3.1.

The case µ = 0 has been treated separately in Sec. 3. There, κ = λ1 and Eq. (27)
can only be considered in the simultaneous limit κ→ λ−1 , µ→ 0+ to recover the results.

For weak regularization, i.e. small but non-zero µ > 0, we expect κ ≈ λ1, resulting
in a dominating contribution of v1v

>
1 , whereas the coefficients of vjv

>
j for j > 1 should

be relatively small. If we make the ansatz κ = λ1 − ε with small ε > 0 for µ → 0 we
obtain from Eq. (28) the relation ε = µ+O(µ2) and coefficients

c1 = 1−
∑
i≥2

µ

λi − λ1

+O(µ2),

ck =
µ

λk − λ1

+O(µ2) for k ≥ 2. (30)

Neglecting terms of order O(µ2) the normalized stationary matrix is given by

Λ =

(
1−

∑
i≥2

µ

λi − λ1

)
v1v

>
1 +

∑
i≥2

µ

λi − λ1

viv
>
i . (31)

As expected, the eigendirection corresponding to λ1 dominates the distance measure.
However, the influence of other eigenvectors vk increases with µ and is inversely pro-
portional to (λk − λ1).

Finally, we consider the limit of strong regularization, µ → ∞. Eq. (27) implies that
κ ∼ −µN which yields

Λ =
1

N

∑
k

vkv
>
k = I/N.

Obviously, all eigenvectors contribute equally in this limit and the distance reduces to
the simple Euclidean measure apart from the normalization factor 1/N .

We would like to point out again that in an actual training process, the stationary
Ω will not be unique. Some symmetric or non-symmetric solution of Eqs. (23) or (24)
will be approached, depending on the variant of the algorithm and on initilization. The
emerging distance measures, however, and the contributions of eigendirections vk are
uniquely described by the above results.

5 Summary and Conclusion

We have analysed the stationary behavior of a class of matrix updates in Relevance
Learning Vector Quantization. We have exemplified the treatment in terms of the ex-
tension of basic LVQ1 by local relevance matrices. Our considerations show that un-
regularized matrix updates tend to select a single relevant direction in feature space.

The matrix C which governs the convergence properties depends, of course, on
the positioning of prototypes and implicitly on the distance measures emerging from
the learning process. As a consequence, our results do not imply the possibility of
obtaining the distance measure beforehand and independent of the LVQ training. In
general, the relevant matrix C and its eigenvectors cannot be directly constructed from
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the data set as they emerge from the complex interplay between prototype positions
and distance measure in the course of training.

For the same reason, the stationary distance measure, as specified by the matrix
Λ, can depend on the initialization of the LVQ system in practical learning. While, given
the matrix C and the learning rate η, the obtained Λ is unique, the stationary winner
configuration and, thus, the matrix C can vary between randomized learning processe
in the same data set.

In the extreme case of a well-separated, pure cluster of data from class s only, C
is the positive definite covariance matrix with respect to w which will be approximately
in the center of the cluster. In such a setting, training singles out the direction of
minimal variance. Clearly, the smallest distances are measured along this direction,
which favors correct classification. In the more general case of separated but mixed
clusters, the eigendirection selected in the training will not directly correspond to its
geometric properties but reflects the cluster composition. Then, the aim of obtaining
small distances for data from class σ = s competes with the objective of achieving
large distances for examples from the other classes.

One can argue that, after successful training of the prototypes, the majority of data
assigned to prototype w should belong to the same class σ = s. For well-behaved data
sets and if only a few examples contribute with ψ(s, σ) = −1, the relevant matrix C will
still be positive definite, typically. Note, however, that it is not necessary to make this
assumption for the above arguments.

In summary, the results indicate that unregularized matrix updates yield matrices Ω
and Λ of small rank. Asymptotically, the distance measure takes into account a single
eigendirection of C, only. This implies that the effective number of degrees of free
parameters reduces drastically from O(N2) in the full matrix to O(N) in the stationary
solution.

On the one hand, the rank reduction explains the observation that over-fitting does
not seem to play a critical role in matrix relevance learning from real world data sets
[3, 4]. On the other hand, over-simplification effects can be due to the selection of a
single relevant direction in feature space.

Within the same formal framework, we have also analysed a regularized version
of matrix updates which overcomes this potential problem. It is shown that a proper
regularization enforces non-singularity of the stationary relevance matrix. For small
regularization parameter µ the resulting matrix is still dominated by the eigenvector v1

corresponding to the smallest eigenvalue of C. By choice of µ one can control the
influence of the other eigendirections continuously.

The fact that the rank of Λ remains N prevents numerical instabilities and over-
simplified classification. Which choice of µ gives the best learning and generalization
behavior depends, of course, on the problem at hand and properties of the data set.
Standard validation procedures could be applied to optimize the parameter in practice.

In forthcoming studies we will investigate the precise stationarity conditions for sev-
eral prototype based algorithms, including cost-function oriented variants of LVQ and
schemes for unsupervised learning. Since the mathematical structure of various pre-
scriptions is similar, low rank stationary distance measures constitute a wide-spread
phenomenon in similarity based learning. Also, the regularization strategy discussed
here is not specific to LVQ relevance learning and provides a universal tool for the
prevention of over-simplification effects.

Machine Learning Reports 11
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A Stationarity of unrestricted matrix updates

In order to obtain the stationary solution of the matrix update given in Eq. (18) we use
the following ansatz for the columns of Ω:

Ω = [z1, z2, . . . , zN ] with zk =
∑

j

ak
jvj. (32)

This is possible because the vj provide an orthonormal basis of IRN . Inserting this
ansatz into Eq. (18) allows us to read off an update scheme for the column zk(t) =
(Ω(t))(k): ∑

j

ak
j (t+ 1)vj︸ ︷︷ ︸

(Ω(t+1))k

=
∑

j

ak
j (t)vj︸ ︷︷ ︸

(Ω(t))(k)

−η
[∑

j

ak
j (t)λjvj︸ ︷︷ ︸

(CΩ(t))(k)

−κ(t)
∑

j

ak
j (t)vj︸ ︷︷ ︸

(Ω(t))(k)

]
. (33)

Due to the orthogonality of eigenvectors, this corresponds to the following evolution of
coefficients ak

j :
ak

j (t+ 1) = ak
j (t) [1− η (λj − κ(t))] . (34)

Now let κ̃ and Ak
j be the stationary values of κ and ak

j , respectively. Since a unique
value of κ̃ has to satisfy 0 = Ak

j (λj−κ̃) for all j, the only non-trivial solutions correspond
to κ̃ = λm for one particular m with Ak

m 6= 0, but Ak
j = 0 for all j 6= m.

Then, Eq. (34) reads close to stationarity

ak
j (t+ 1) ≈ ak

j (t) · [1− η(λj − λm)] . (35)

Now let us assume that m > 1. In this case, the factor [1 − η(λj − λm)] > 1 for
all j < m. Small deviations of the corresponding ak

j from Ak
j = 0 would grow in the

iteration, indicating an instability. Hence, the only stable, consistent solution is

m = 1, κ̃ = λ1, Ak
1 6= 0, Ak

j = 0 for all j > 1.

This leads immediately to Eq. (19) where we omit the subscript 1 of the Ak
1 for

brevity.

B Stationarity of symmetrized updates

B.1 Unregularized matrix learning

For the symmetrized update (9) we obtain, instead of Eqs. (16) and (17),

Ωij ∼ Ωij −
1

2
η
(
(CΩ)ij + (CΩ)ji

)
(36)

and ∑
ij

Ω2
ij →

∑
ij

Ω2
ij︸ ︷︷ ︸

=1

− η
∑
ij

Ωij(CΩ)ij︸ ︷︷ ︸
Tr(ΩCΩ)≡κ

− η
∑
ij

Ωij(CΩ)ji︸ ︷︷ ︸
κ

+O(η2). (37)
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Terms of order O(η2) are neglected and the two term terms linear in η are equal. The
update of Ω taking the normalization into account reads

Ω →
Ω− 1

2
η(CΩ + ΩC)
√

1− 2ηκ
≈

(
Ω− 1

2
η (CΩ + ΩC)

)
(1 + η κ)

≈ Ω− 1

2
η [CΩ + ΩC − 2κΩ ] +O(η2). (38)

Here, the stationarity condition for symmetric Ω becomes CΩ + ΩC = 2κΩ.
Now we exploit the fact that a symmetric Ω can be written as a linear combination

of the matrices vlv
T
m constructed from eigenvectors of C:

Ω =
∑
lm

almvlv
T
m with alm = aml. (39)

Inserting the ansatz in Eq. (38) we can re-write the update scheme for Ω as∑
jk

ajk(t+ 1)vjv
>
k =

∑
jk

ajk(t)vjv
>
k

− η

2

[∑
jk

ajk(t)λjvjv
>
k +

∑
jk

ajk(t)λkvjv
>
k − 2κ(t)

∑
jk

ajk(t)vjv
>
k

]
.

Since the vectors vj are orthonormal, the evolution of the coefficients alm reads

alm(t+ 1) = alm(t)− η

2
alm (λl + λm − 2κ(t))

= alm(t)
[
1− η

2
(λl + λm − 2κ(t))

]
. (40)

which preserves, of course, the symmetry alm = aml. Consequently, the stationary
condition for non-zero alm becomes κ̃ = 1

2
(λl + λm). Since κ̃ has to be unique for all

pairs (l,m), all coefficients except one have to become zero in the stationary state.
Here we neglect potential degeneracies in the eigenvalue spectrum, as before.

We conclude by the same argument as in the non-symmetrized case that the sta-
tionary value is

κ̃ = λ1, A11 > 0, Ajk = 0 for (j, k) 6= (1, 1).

with λ1 the smallest eigenvalue of matrix C. Consequently, Ω converges to the normal-
ized matrix v1v

T
1 .

B.2 Regularized matrix learning

In analogy to Sec. 4.1, we derive here the stationary behavior for the regularized train-
ing of a symmetric matrix Ω = Ω>. The corresponding versions of Eqs. (16) and (17)
read

Ωij → Ωij −
η

2

(
(CΩ)ij + (ΩC)ij

)
+ µ ηΩ−1

ij

and∑
ij

Ω2
ij →

∑
ij

Ω2
ij︸ ︷︷ ︸

=1

−η
∑
ij

Ωij(CΩ)ij︸ ︷︷ ︸∑
j(ΩCΩ)jj

−η
∑
ij

Ωij(ΩC)ij︸ ︷︷ ︸∑
i(ΩCΩ)ii

+2µη
∑
ij

Ωij(Ω
−1)ij︸ ︷︷ ︸∑

j(ΩΩ−1)jj=N

+O(η2).
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Consequently, the normalized update of Ω becomes

Ω →
Ω− η

2
(CΩ + ΩC) + µηΩ−1√

1− 2η
∑

j(ΩCΩ)jj + 2µηN

≈ (Ω− η

2
(CΩ + ΩC) + µηΩ−1)(1 + η

∑
j

(ΩCΩ)jj − µηN)

≈ Ω− η

2

[
(CΩ + ΩC)− 2

(∑
j

(ΩCΩ)jj − µN
)

︸ ︷︷ ︸
κ

Ω− 2µΩ−1
]

+ O(η2). (41)

Eq. (41) yields the stationarity condition

− κΩ +
1

2
(CΩ + ΩC) = µΩ−1 (42)

which leads to Eq. (24) after multiplication with Ω.

C Global Metrics Adaptation

In global matrix relevance LVQ1, one unique matrix Ω defines the distance measure
employed for all data. Formally, the update is identical with (3) or (3′), respectively,
replacing Ω∗ by the one and the same Ω independent of the winning prototype. Again,
we can write the matrix C as an empirical average, but now every example contributes
to the update of Ω:

Cglobal =
1

P

P∑
µ=1

M∑
k=1

φ(ξµ,wk) ψ(sk, σµ) (ξ −wk) (ξ −wk)>. (43)

The respective winner is singled out by the indicator function φ with φ(ξ,w) = 1 if w is
the prototype closest to ξ and φ(ξ,w) = 0 else. As above, ψ(s, σ) = +1 (−1) if the class
label s = σ (s 6= σ), respectively.

Note that C depends on Ω via the assignment of data to the winning prototype.
Assuming stationarity of the prototypes and the winner configuration we can follow
the lines of the analysis for local matrix updates and obtain analogous results. Here,
the eigendirections of C reflect the geometry of clusters, their position relative to each
other, and the cluster composition. While the mathematical structure of the stationary
state is the same as for local distance measures, its interpretation is less obvious. In
particular, C is defined with respect to several centers and does not resemble a simple
covariance matrix, in general.
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