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Abstract

Lately the topic of rejecting decisions in a classification scenario became attention,
e. g. in medical data analysis, since not only the decision itself but also the certainty of
the decision is important. While often a reject option is used on top of a trained model,
recent approaches include it directly in the objective function of the desired model, e. g.
for learning vector quantization. Following this trend, we propose a theoretical frame-
work for probabilistic models, e. g. Gaussian mixture models, which includes costs for
wrong classification as well as costs for rejection in its objective function. Further the
rejection threshold is optimised during the training phase of the model. The proposed
method follows the ideas of C. K. Chows paper: On optimum recognition error and re-
ject tradeoff (1970). This article describes the new model in detail including the deriva-
tives of the objective function. Keywords: classification, probabilistic model, rejection,
adaptive threshold
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1 Introduction

Secure classification is one of the key issues for many classification systems, for

example in medical assistance diagnostic systems or forensic analytic systems. In

this context, also cost-based classification decision systems nowadays get more and

more attention. For those systems misclassification may generate expansive costs.

However, also correct classification may be lead to costs, for example for medical

treatment, which usually are much cheaper than the costs of misclassification.

To avoid misclassification a good idea is to reject those samples, for which the

classification decision shows a valuable uncertainty and feed them to a further

investigation. The respective costs are usually smaller than misclassification costs.

Frequently, for a given classification task, a classifier model is selected or/and

trained first and then applied in practice [1, 2]. Un-secure samples may be rejected

in the application phase due to certain criteria. For example, if the data to be

classified are assumed to be described as real valued feature vectors and the

classification decision is based on distance evaluations in the data space, a data

sample could be rejected if it is detected to be localized between two data classes

[3, 4]. Yet, this approach has at least two drawbacks. First, the reject decision has

to be adjusted to deal with the structure of the data space in that way that it reflects

the assumed uncertainty accordingly by respective data distance decision in the

feature space. Second, the model selection or/and the model training does not take

the reject option into account to adjust the classifier model accordingly. Thus, the

model application task differs from the training objective.

To overcome the latter problem, recently adaptive classifiers were proposed,

which explicitly include reject options during model training [5, 6, 7, 8]. However,

these models base their adaptation on geometric decisions, i. e. distance-based

reject options are adapted to avoid misclassifications. In contrast, Chow proposed

a cost-based classifier based on the expected costs regarding the misclassification,

reject and correct classification costs [9, 10]. This model can be combined with the

learning vector quantization (LVQ) approach yielding a LVQ with self-adjusting

reject option (Reject-LVQ), which provides a robust prototype-based classifier

with good performance [11, 12]. The disadvantage of this LVQ-approach is that

it is not longer a probabilistic model, because the class distributions are in LVQ
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approximately represented by prototype vectors distributed in the data space [13].

Yet, there exists a probabilistic variant of LVQ - the robust soft LVQ (RSLVQ,[14]).

Thus, the aim of this paper is to adopt the ideas for prototype-based RSLVQ for

the Chow-model in case of cost-based reject options. Incorporating further the

idea of self-adjusting reject thresholds from Reject-LVQ, we obtain a probabilistic

classifier model with self-adjusting reject threshold based on costs.

2 Model description

We start with a description of the Chow-approach for a (binary) classifier including

a reject option. It provides an optimal model in the sense of a Bayesian decision [10]

based on expected costs. For this purpose, we assume costs Ce for a misclassified

data point, Cc the cost for a correctly classified sample as well as costs Cr for

a rejected data point. Without loss of generality we can take Cc = 0, which

can be always achieved by rescaling of Ce and Cr accordingly. Further, we do not

consider asymmetric classification costs as discussed in [15]. However, a respective

extension of the approach is straight forward.

Suppose a data set X with elements (x,y) ∈ RM×{1, . . . ,Z} and a data point

x belongs to one of the Z classes. We use a class-wise Gaussian mixture model

consisting of ξ Gaussians

p(x|w j) = K j · exp( fσ (x,w j)) ; fσ (x,w j) =−
‖x−w j‖

2σ2

located at w j ∈ RM to model the data. These play the role of prototypes as known

from RSLVQ and are equipped with class labels c j ∈ {1, . . . ,Z}. The parameter

K j is interpreted as the prior of the Gaussian and the parameter σ > 0 denotes its

constant variance being isotropically for all dimensions. This latter assumption

was made for simplicity. Generalizations towards a covariance matrix Σ instead of

a constant σ are possible.

Using this Gaussian model, the probability of observing a data sample x is

given by

p(x) =
Z

∑
z=1

pz · pz(x)
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whereas pz is the prior of class z and

pz(x) =
ξ

∑
j=1

δ c j
z · p(w j) · p(x|w j)

is the conditional probability that the class z has generated the data point x. Here,

the Kronecker-symbol δ c j
z is used with δ c j

z = 1 if z = c j and 0 otherwise. The

parameter p(w j) is the prior of the corresponding Gaussian.

According to Chow [10], we apply a rejection in dependence on the quantity

m(x,w) =

max
z=1,...,Z

{pz · pz(x)}

p(x)
. (1)

In fact, a data point x has to be rejected if m(x,w)< 1−θ , i. e. θ ∈ (0,1) denotes

a rejection threshold. We introduce

m̃(x,w,θ) = m(x,w)−1+θ (2)

with m̃(x,w,θ) ≥ 0 holds for accepted data points and −m̃(x,w,θ) > 0 is valid

for rejected data. Thus, the Heaviside function H(m̃(x,w,θ)) is used to count the

accepted points while H(−m̃(x,w,θ)) detects the rejected points.

Using these quantities we can calculate the probability for an incorrect classifi-

cation as

E(x,y,w) =
Z

∑
z=1
z 6=y

pz · pz(x), if m̃(x,w,θ)≥ 0 (3)

whereas the probability of a rejected data point reads as

R(x,w) =
Z

∑
z=1

pz · pz(x), if m̃(x,w,θ)< 0 .

Collecting the previous observations, we can write the cost function for the classifi-

cation model according to Chow as

Ecost = ∑
(x,y)∈X

(H(m̃(x,w,θ))·E(x,y,w)·Ce +H(−m̃(x,w,θ))·R(x,w)·Cr)→min

incorporating the costs for misclassification Ce and Cr for a rejected data sample

[10]. It balances the tradeoff between expected misclassification and reject costs
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in dependence on the prototype distribution as well as the reject threshold θ .

Hence, minimization of the cost function is the desired goal. This task can be

performed using a stochastic gradient descend (SGD) thereon with respect to both

the prototypes w j and the rejection threshold θ according to the derivatives

∆wk ∝
∂Ecost

∂wk
∆θ ∝

∂Ecost

∂θ

and keeping in mind that the determined quantities of the cost function Ecost depend

explicitly on the prototypes w j and the rejection threshold θ . However, to calculate

these derivatives, we have to replace the Heaviside and the maximum function by

suitable soft approximations. Doing so, both derivatives can be calculated. The

respective formulae are finally derived in Appendix B2 as (11) and (12).

3 Conclusion

In this technical note we consider a SGD scheme for a Bayes classifier with reject

option according to the Chow-model. It minimizes the expected cost in dependence

on the misclassification and rejection costs. For this purpose, the class distributions

are estimated by Gaussian mixtures. The centers of the Gaussians are adapted

by gradient learning as well as the respective reject threshold. The explicit SGD

learning rules are derived using suitable approximations for the Heaviside and

maximum function, both contained in the original cost function.

In the next step, we will perform numerical simulations to study the numerical

stability of the derived model. This could also include neighborhood cooperative-

ness between the Gaussians for regularization as it is known from the neural gas

algorithm [20].

Furthermore, the replacement of the Gaussian mixture model for the approxima-

tion of the class distribution will be considered, for example, Student-t distributions

are of interest following the inspiration by t-stochastic neighbor embedding [16] or

general similarity measures obeying the probability properties [17].
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Appendix

In this appendix we explain how the formal derivatives ∂Ecost
∂wk

and ∂Ecost
∂θ can be

calculated. For this purpose, first some needed approximations are introduced.

Thereafter, we carry out the derivatives applying the product rule and the chain

rule for derivations. This is done step by step for all quantities contributing to the

cost function Ecost. The final results of these calculation are given in Appendix B2

by the formulae (11) and (12) as the respective update rules.

Appendix A - Approximations

Since we want the derivatives of Ecost we need differentiable approximations for

both the Heaviside function H(·) and the maximum function in (1).

A common smooth approximation of the Heaviside function is the sigmoid

function

H (x)≈ sigζ (x) =
1

1+ exp( x
ζ )

(4)

with its derivative
∂ sigζ (x)

∂x
=

1
ζ
· sigζ (x) ·

[
1− sigζ (x)

]
.

The parameter ζ > 0 determines the slope. In the limit ζ ↘ 0 the sigmoid sigζ (x)

converges to the Heaviside function H (x).

An approximation of the maximum function is given with the α-softmax

function discussed in [18]:

max
z=1,...,Z

{xz} ≈ α -softmax
z=1,...,Z

{xz}= Sα JxzK =
∑Z

z=1 xz · exp(α · xz)

∑Z
z=1 exp(α · xz)

(5)

with α > 0 as an approximation parameter and JxzK= {x1, . . . ,xZ}. The greater the

α-value the better is the approximation of the maximum function. The derivative

of Sα (x) is obtained as

∂Sα JxzK
∂xk

=
exp(α · xk)

∑Z
z=1 exp(α · xz)

[1−α (xk−Sα JxzK)] (6)

as demonstrated in [19, 18].

The explained approximations (4) and (5) allow to calculate the required deriva-

tions of the cost function.
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Appendix B1 - Derivatives of the cost function with respect to θ
and wk (first part)

When considering the derivatives for the cost function, we are looking for

∂Ecost

∂θ
= ∑

(x,y)∈X

[
Ce ·E(x,y,w) · ∂ m̃(x,w,θ)

∂θ
+Cr ·R(x,w) · ∂H(−m̃(x,w,θ))

∂θ

]

∂Ecost

∂wk
= ∑

(x,y)∈X

(
Ce

[
∂H(m̃(x,w,θ))

∂wk
·E(x,y,w)+H(m̃(x,w,θ)) · ∂E(x,y,w)

∂wk

]

+Cr

[
∂H(−m̃(x,w,θ))

∂wk
·R(x,w)+H(−m̃(x,w,θ)) · ∂R(x,w)

∂wk

])
.

The following paragraphs contain the derivations of the single parts needed for

the derivatives of the cost function. The final result is collected in Appendix B2,

formulae (11) and (12).

Derivatives of E(x,y,w), R(x,w) with respect to wk

Since the contribution of a prototype with the same label as the original class y of

a data point x is excluded in the sum of E(x,y,w) (3), the derivative of E(x,y,w)

with respect to wk has two parts:

∂E(x,y,w)

∂wk
=





pck ·
∂ pck (x)

∂wk
, ck 6= y

0, else
(7)

and for R(x,w) we get:

∂R(x,w)

∂wk
=pck ·

∂ pck(x)
∂wk

.

In both equations the term
∂ pck (x)

∂wk
has to be clarified.
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Derivatives of p(x), pz(x) with respect to wk:

∂ pz(x)
∂wk

= δ ck
z · p(wk) ·

∂ p(x|wk)

∂wk

= δ ck
z · p(wk) ·Kk · exp( fσ (x,wk)) ·

∂ fσ (x,wk)

∂wk

= δ ck
z · p(wk) ·Kk · exp(−‖x−wk‖

2σ2 ) · (− 1
σ2 ) · (x−wk)

∂ p(x)
∂wk

= pck ·
∂ pz(x)

∂wk

Derivatives of the Approximation of the Heaviside function with respect to θ
and wk:

Note that we use H(±m̃(x,w,θ)) ≈ sigζ (±m̃(x,w,θ)). Then we derive the fol-

lowing derivatives with respect to θ :

∂H(m̃(x,w,θ))
∂θ

≈
∂ sigζ (m̃(x,w,θ))

∂θ

=
∂ sigζ (m̃(x,w,θ))

∂ m̃(x,w,θ)
· ∂ m̃(x,w,θ)

∂θ

=
∂ sigζ (m̃(x,w,θ))

∂ m̃(x,w,θ)
·1

=
1
ζ
· sigζ (m̃(x,w,θ)) ·

[
1− sigζ (m̃(x,w,θ))

]

and

∂H(−m̃(x,w,θ))
∂θ

≈
∂ sigζ (−m̃(x,w,θ))

∂θ

=
∂ sigζ (−m̃(x,w,θ))

∂ (−m̃(x,w,θ))
· ∂ (−m̃(x,w,θ))

∂θ

=
∂ sigζ (−m̃(x,w,θ))

∂ (−m̃(x,w,θ))
· (−1)

=− 1
ζ
· sigζ (−m̃(x,w,θ)) ·

[
1− sigζ (−m̃(x,w,θ))

]
.
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Further we can obtain the following derivatives of the Heaviside function with

respect to wk:

∂H(m̃(x,w,θ))
∂wk

≈
∂ sigζ (m̃(x,w,θ))

∂wk

=
∂ sigζ (m̃(x,w,θ))

∂ m̃(x,w,θ)
· ∂ m̃(x,w,θ)

∂wk

=
1
ζ
· sigζ (m̃(x,w,θ)) ·

[
1− sigζ (m̃(x,w,θ))

]
· ∂ m̃(x,w,θ)

∂wk

and

∂H(−m̃(x,w,θ))
∂wk

≈
∂ sigζ (−m̃(x,w,θ))

∂wk

=
1
ζ
·

∂ sigζ (−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

· ∂ (−m̃(x,w,θ))
∂wk

=sigζ (−m̃(x,w,θ))
[
1−sigζ (−m̃(x,w,θ))

] ∂ (−m̃(x,w,θ))
∂wk

.

The terms ∂ m̃(x,w,θ)
∂wk

and ∂ (−m̃(x,w,θ))
∂wk

are calculated in the next step.

Derivatives of m̃(x,w,θ) with respect to θ and wk: Remember, we introduced

the quantity m̃(x,w,θ) =m(x,w)−1+θ in (2). Hence, we get for their derivatives

with respect to θ

∂ m̃(x,w,θ)
∂θ

= 1 and
∂ (−m̃(x,w,θ))

∂θ
=−1 .

For the calculation of the derivative of m̃(x,w,θ) with respect to wk we first

observe that
∂ m̃(x,w,θ)

∂wk
=

∂m(x,w)

∂wk

is valid. Now we approximate in (1) the maximum function by the α-softmax

function (5) such that

m(x,w)≈ Sα Jpz · pz(x)K
p(x)

where

Jpz · pz(x)K = {pz · pz(x)}z=1,...Z .
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In this way we obtain

∂m(x,w)

∂wk

≈ ∂
∂wk

[
Sα Jpz · pz(x)K

p(x)

]

=

∂Sα (pz·pz(x))
∂wk

· p(x)−Sα Jpz · pz(x)K · ∂ p(x)
∂wk

(p(x))2

=

∂SαJpz·pz(x)K
∂ (pz·pz(x)) ·

∂ (pz·pz(x))
∂wk

· p(x)−Sα Jpz · pz(x)K · pck ·
∂ pck (x)

∂wk

(p(x))2

=

∂SαJpz·pz(x)K
∂ (pz·pz(x)) · pck ·

∂ (pck (x))
∂wk

· p(x)−Sα Jpz · pz(x)K · pck ·
∂ pck (x)

∂wk

(p(x))2

=
pck

(p(x))2 ·
∂ (pck(x))

∂wk
·
(

∂Sα Jpz · pz(x)K
∂ (pz · pz(x))

· p(x)−Sα Jpz · pz(x)K
)

(6)
=

pck

(p(x))2 ·
∂ (pck(x))

∂wk
·

(
exp(α·pck ·pck(x))

∑Z
z=1 exp(α·pz·pz(x))

[1−α (pck pck(x)−Sα Jpz · pz(x)K)]−Sα Jpz · pz(x)K

)

Further, it is obvious that

∂ (−m̃(x,w,θ))
∂wk

=−∂ (m̃(x,w,θ))
∂wk

holds.

Appendix B2 - Derivatives of the cost function with respect to θ
and wk (second part)

Since we derived all necessary terms, the derivative ∂Ecost
∂θ of the cost function with

respect to θ can be written as:

∂Ecost

∂θ
=

1
ζ ∑

(x,y)∈X

(
Ce ·E(x,y,w) · sigζ (m̃(x,w,θ)) ·

[
1− sigζ (m̃(x,w,θ))

]
(8)

−Cr ·R(x,w) · sigζ (−m̃(x,w,θ)) ·
[
1− sigζ (−m̃(x,w,θ))

])
.
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For the derivative ∂Ecost
∂wk

we have to consider two cases. In the case of ck 6= y, we

obtain the following formula:

∂Ecost

∂wk
= ∑

(x,y)∈X
ck 6=y

([
∂H(m̃(x,w,θ))

∂ m̃(x,w,θ)
· ∂ m̃(x,w,θ)

∂wk
·E(x,y,w)

+H(m̃(x,w,θ)) · pck ·
∂ pz(x)

∂wk

]
·Ce

+

[
∂H(−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

· (−1) · ∂ m̃(x,w,θ)
∂wk

·R(x,w)

+ H(−m̃(x,w,θ)) · pck ·
∂ pz(x)

∂wk

]
·Cr

)

= ∑
(x,y)∈X

ck 6=y

(
∂ m̃(x,w,θ)

∂wk
·
[

∂H(m̃(x,w,θ))
∂ m̃(x,w,θ)

·E(x,y,w) ·Ce

− ∂H(−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

·R(x,w) ·Cr

]

+pck ·
∂ pck(x)

∂wk
· [Ce ·H(m̃(x,w,θ))+Cr ·H(−m̃(x,w,θ))]

)
(9)

In case of ck = y it follows that ∂E(x,y,w)
∂wk

= 0 in (7) and, hence,

∂Ecost

∂wk
= ∑

(x,y)∈X
ck=y

([
∂H(m̃(x,w,θ))

∂ m̃(x,w,θ)
· ∂ m̃(x,w,θ)

∂wk
·E(x,y,w)+0

]
·Ce

+

[
∂H(−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

· (−1) · ∂ m̃(x,w,θ)
∂wk

·R(x,w)

+ H(−m̃(x,w,θ)) · pck ·
∂ pz(x)

∂wk

]
·Cr

)

= ∑
(x,y)∈X

ck=y

(
∂ m̃(x,w,θ)

∂wk
·
[

∂H(m̃(x,w,θ))
∂ m̃(x,w,θ)

·E(x,y,w) ·Ce

− ∂H(−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

·R(x,w) ·Cr

]

+pck ·
∂ pck(x)

∂wk
·Cr ·H(−m̃(x,w,θ))

)
(10)

holds. Both derivatives can be combined to generate a batch update.

Summarizing, we can also write down the online-learning updates for a given
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single data sample (x,y). In this case the prototype update rewrites as

∆wk ∝
(

∂ m̃(x,w,θ)
∂wk

·
[

∂H(m̃(x,w,θ))
∂ m̃(x,w,θ)

·E(x,y,w) ·Ce

−∂H(−m̃(x,w,θ))
∂ (−m̃(x,w,θ))

·R(x,w) ·Cr

]
(11)

+pck ·
∂ pck(x)

∂wk
·
(
δ ck

y ·Ce ·H(m̃(x,w,θ))+Cr ·H(−m̃(x,w,θ))
))

as a single step update related to (9) and (10) whereas the threshold online update

becomes

∆θ ∝
1
ζ

(
Ce ·E(x,y,w) · sigζ (m̃(x,w,θ)) ·

[
1− sigζ (m̃(x,w,θ))

]
(12)

−Cr ·R(x,w) · sigζ (−m̃(x,w,θ)) ·
[
1− sigζ (−m̃(x,w,θ))

])

according to (8). Thus all derivatives are available using the approximations (4)

and (5) for the Heaviside and sigmoid function, respectively.
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