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New Variants of the Counter Propagation Network fo Classi�cation

Learning

� A Formal Description of Strategies and Respective Approaches �

T. Villmann*, R. Schubert and M. Kaden

University of Applied Sciences Mittweida

Saxon Institute for Computational Intelligence and Machine Learning (SICIM)

Abstract

In this paper we present new variants of the counter propagation network introduced already in 1987

by Robert Hecht-Nielsen, which is a network consisting of a vector quantization layer and a subsequent

classi�cation layer. In particular, we discuss several vector quantization layers and how to transmit the

information to the classi�cation layer. This is discussed in relation to the information-bottleneck-paradigm

and regarding perspectives for network training are provided. Thereby, both layers are not longer han-

dled independently during training as in the original approach. More precisely, we explain how the vector

quantization layer can be optimized in dependence on the following classi�cation layer. The mathematical

formulations of the models are described in detail.

*corresponding author, email: thomas.villmann@hs-mittweida.de
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1 Introduction and Motivation

The idea of a counter propagation network (CPN), as proposed by R. Hecht-Nielsen [15, 17] in 1987, is to

combine a self-organizing map vector quantizer with a perceptron layer for supervised learning. The perceptron

layer is also denoted as Grossberg-layer (de�ned in [13]) in this context and was later also used in ART networks

[5]. Recently, the idea of this vector quantization combination with perceptron layers was renewed by C. Rudin

for deep multi-layer perceptrons to achieve better robustness [6]. Further, if the vector quantization layer is

interpreted as an data compressing tool, we can take a CPN as realization of the information bottleneck method

proposed by N. Tishby and N. Zaslavsky in [48, 47]. Furthermore, it can be seen as an approach to the

dilemma of representation versus classi�cation as addressed in [34, 36].

The paper �rst brie�y review original CPN. This approach trains the vector quantizer independently from

the later Grossberg-layer, which is responsible for the supervised learning task. The main part of the paper

deals with several approaches to overcome precisely the information gap. In particular, we investigate how to

train the vector quantization layer in dependence of the classi�cation/regression layer. Moreover, we discuss

di�erent vector quatizer models instead of the self-organizing map, which is mathematically inconsistent [10, 7].

This includes the neural gas approach from T. Martinetz [31], the Heskes-variant of SOM [19], as well as

fuzzy variants of c-means proposed by J. Bezdek [3, 23]. Further, we propose to replace the perceptron layer

by variants of learning vector quantizers for classi�cation learning. In fact, we concentrate on classi�cation

learning. However, an extension to regression learning is straight-forward.

In this article, we suppose a vector quantizer with reference vectors W = {w1, . . . ,wK} ⊂ Rn for data

representation and data X ⊆ Rn. These vectors act as local sensors in the data space to detect signals x ∈ Rn

usually by means of a dissimilarity measure d (x,wk). We denote them as sensoric prototypes and W is the

respective the sensor array (set). Further, we assume data classes C = {1, . . . , C} and training data labels

c (x) ∈ C .

2 The Original Counter Propagation Network

As already mentioned, the original CPNs consists of two layers. The �rst one is a self-organizing map (SOM,[26])

layer denoted as in-star layer in this context. The second layer is a perceptron layer called here a Grossberg-

outstar-layer [15]. We will denote the �rst layer as the vector quantization layer and the second layer as the

classi�cation layer to emphasize the more general context later in this paper.

For the SOM we assume that the sensoric prototype set W is related to an external sensoric grid S ⊂ Rp

according to the feature map model for sensoric data processing introduced by T. Kohonen [24]. More speci�c,

we assume W to be consisting of K prototypes wr ∈ W where the index r ∈ S refers to a location in the

external grid and k (r) ∈ {1, . . . ,K} returns the respective index in W . Usually, the projection dimension p is

chosen as p = 2 in agreement to cortical areas in human brain [40]. For a given input x the most appropriate

prototype is determined by the winner-takes-all (WTA) rule

s (x) = argminr∈S dE (x,wr) (1)

with dE (x,wr) being the (squared) Euclidean distance. This WTA-rule is equivalent to the maximum Hebbian

excitation principle

s (x) = argmaxr∈AwT
r · x

for normalized data and prototypes. We suppose a response vector ξ (x,W ) with ξ (x) = (ξ1, . . . , ξK)
T ∈ Ξ

such that the WTA-rule delivers

ξk(r) (x,W ) =





1 r = s (x)

0 r 6= s (x)

(2)
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as stimulus response. We can interpret this mapping x 7→ ξ (x,W ) as an information compressing mapping

realized by a vector quantizer.

The perceptron layer in CPN consists of a single linear perceptron realized as

y (x) = ωT · ξ (x,W ) (3)

with an adjustable perceptron weight vector ω. The aim is to adapt this weight vector to predict the class

label c (x) as best as possible. In fact, due to the WTA-rule realization (2) the prediction value y (x) is simply

obtained according to the weighting y (x) = ωk(s(x)) · ξk(s(x)) (x,W ) by means of the respective weight ωk(s).

We can summarize the CPN scheme as

X −→
SOM

W
ξ(x,W )−→
crisp

Ξ
y(x)−→

perceptron
C (4)

with the vector quantization layer (VQ-layer) X
ξ(x,W )−→
SOM

Ξ and the classi�cation layer (C-layer) Ξ
y(x)−→

perceptron
C .

Training in CPN takes place as in two phases. First, the VQ-layer (SOM) is trained in an unsupervised

manner. Second, for the C-layer, the perceptron weight vector ω is adapted by supervised learning. Thus, the

SOM layer yields a grouping of data whereas the perceptron learns to interpret this grouping for classi�cation

learning.

Two inprovements are discussed in the community so far:

1. Instead of only one perceptron, class-wise perceptrons are taken [12, p. 186], i.e.

yk (x) = f
(
ωTk · ξ (x,W )− βk

)
(5)

with biases βk and an activation function f frequently taken as sigmoid or, currently, promising alternatives

like ReLU, swish or others [9, 38, 51].

2. Several authors suggested to relax the WTA-rule taking more than a single winning unit [18, p. 248], [12,

p. 189]. For this purpose, N units of the SOM layer surrounding the winning unit s in A are taken with

ξk(r) (x,W ) = 1
N for all these including the winning neuron s.

The CPN approach frequently works very successful although being simple [12, 17, 16, 55, 53, 54, 46, 20, 1].

One can see this also as a historic of incorporation of prototype layers in multi-layer perceptrons as recently

discussed in [6]. Yet, the SOM-training takes place independently from the subsequent classi�cation task and,

hence, might be suboptimal for the later classi�cation learning. Further, original SOM does not optimize any

cost function such that mathematicl guarantees for data grouping behavior are given [10].

In the following we propose new variants and extension of the basic CPN.

3 New Variants of the Basic CPN

3.1 Modi�cations for the Vector Quantization Layer and the Response Vector

ξ (x,W )

3.1.1 Alternatives for the Kohonen-SOM Layer

3.1.1.1 The Heskes-SOM Layer The vector quantization layer in original CPN is realized by standard

SOM according to T. Kohonen [26]. As already mentioned, the optimization of SOM does not follow a gradient

descent scheme of any cost function such that mathematical guarantees cannot be given. Modifying the original

winner determination (1) to

sHeskes = argminr

(∑

r′

hS
λ (r′, r) · d (x,wr)

)
(6)
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yields the Heskes-variant of SOM following a well-de�ned stochastic gradient descent learning [19], where

‖r′ − r‖2S denotes the squared Euclidean distance in the external SOM grid S and

hS
λ (r′, r) = exp

(
−‖r

′ − r‖2S
λ

)
(7)

is the SOM neighborhood function evaluated for the external sensoric grid S . The prototype update for given

input x is obtained as

∆wr ∝ −hS
λ (s (x) , r) · ∂d (x,wr)

∂wr
(8)

as for the original SOM with d (x,wr) usually being the squared Euclidean distance.

The approach is summarized as

X −→
Heskes-SOM

W
ξ(x,W )−→
crisp

Ξ
y(x)−→

perceptron
C (9)

in relation to (4).

3.1.1.2 The Neural Gas layer Another alternative to standard SOM is to keep the winner determi-

nation but replace the neighborhood function: dropping the external grid A we can de�ne a distance based

neighborhood of the prototypes regarding a given input implicitly by the exponential winning-rank-function

hNGλ (k,x,W ) = exp

(
− rk (k,x,W )

λ

)
(10)

of the prototype wk. The rank function rk (k,x,W ) is de�ned in terms of a sum

rk (k,x,W ) =
∑

j

H (d (x,wk)− d (x,wj)) (11)

of Haeviside functions

H (z) =





1 for z > 0

0 eleswere

such that rk (s (x) ,x,W ) = 0 is obtained for the best matching prototype ws(x). Here, the WTA-rule simply is

realized via

s (x) = argminkd (x,wk) (12)

in analogy to the winner determination (1) for SOMs. The prototype dynamic is, similarly as for SOM, obtained

as

∆wk ∝ −hNGλ (k,x,W ) · ∂d (x,wk)

∂wk
(13)

performing a stochastic gradient descent on the cost function

ENG (X,W ) =
1

C (λ)

∫ ∑

k

P (x) · hNGλ (k,x,W ) · d (x,wk) dx (14)

with C (λ) being a normalization constant [31]. In fact, considering the prototypes as gas particles, the dynamic

describe the di�usion of the gas according to the data density P (x) such that the cost function can be interpreted

as the potential function of this gas [31, 30].

The approach can be summarized as

X −→
NG

W
ξ(x,W )−→
crisp

Ξ
y(x)−→

perceptron
C (15)

in relation to (4).
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3.1.2 Modi�cation of the Response Vector ξ (x,W )

3.1.2.1 Modi�cations According to the Vector Quantization Layer In original CPN, the sensoric

response vector ξ (x,W ) contains zeros for all entries except that one for the best matching prototype according

to (1) or (12). As already mentioned, this strict rule was suggested to relax that also those entries ξk(r) (x,W )

are considered to be non-zero, which are neighbored to the winner unit s in the external grid A. This could be

taken over to the NG-approach considering the �rst winning ranks.

A simple generalization of this concept would be to take gradual responses

ξS
k(r) (x,W ) = hS

λ (s (x) , r) (16)

for the SOM-layer or

ξGk (x,W ) = hNGλ (k,x,W ) (17)

in case of a NG-layer. For λ ↘ 0, the gradual responses (16) and (17) realize a winner-takes-all (WTA) rule,

i.e. ξk (x,W ) 6= 0 ⇐⇒ k = s for NG or k = k (s (x)) in case of SOM. The derivative of the gradual responses

are

∂ξS
k(r) (x,W )

∂wl
=

∂hS
λ (s (x) , r)

∂wl

=
∂

∂wl
exp

(
− (s (x)− r)

2

λ

)

= −2 · exp

(
− (s (x)− r)

2

λ

)
· (s (x)− r) · ∂s (x)

∂wl

and

∂ξGk (x,W )

∂wl
=

∂hNGλ (k,x,W )

∂wl

=
∂

∂wl
exp

(
− rk (k,x,W )

λ

)

= − exp

(
− rk (k,x,W )

λ

)
· ∂rk (k,x,W )

∂wl

with remaining derivatives ∂s(x)
∂wl

and ∂rk(k,x,W )
∂wl

, respectively. The �rst one is not feasible whereas the second

one yields

∂rk (k,x,W )

∂wl
=

∂
∑
j H (d (x,wk)− d (x,wj))

∂wl

=
∑

j

∂H (d (x,wk)− d (x,wj))

∂wk

=
∑

j

∂H (d (x,wk)− d (x,wj))

d (x,wk)
· ∂d (x,wk)

∂wl

= δk,l ·
∂d (x,wk)

∂wk
·
∑

j

∂H (d (x,wk)− d (x,wj))

d (x,wk)

= δk,l ·
∂d (x,wk)

∂wk
·
∑

j

δDirac (d (x,wk)− d (x,wj)) (18)

where δk,l denotes the Kronecker symbol, i.e. δk,l = 1⇐⇒ k = l and it is zero else.
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However, these gradual responses ignore the the distance values. Therefore, we suggest to consider the local

responses

ξSOMk(r) (x,W ) = hS
λ (s (x) , r) · d (x,wr) (19)

and

ξNGk (x,W ) = hNGλ (k,x,W ) · d (x,wk) (20)

for SOM- and NG-layer, respectively. These local responses re�ect both the winning rank as well as the

dissimilarity. This is consistent to the winner determination (6) of the Heskes-SOM.

Moreover, the expected NG-response is

〈
ξNGk (x,W )

〉
x

=

∫
P (x) · hNGλ (k,x,W ) · d (x,wk) dx (21)

such that the sum
∑
k 〈ξk (x,W )〉x is equivalent to the energy function (14) of the neural gas vector quantizer

[31], if we swap integration and summation.

Yet, for the (non-averaged) gradient we have

∂ξNGk (x,W )

∂wl
=

∂

∂wl

(
hNGλ (k,x,W ) · d (x,wk)

)

=
∂

∂wl

(
hNGλ (k,x,W )

)
· d (x,wk) + δk,l · hNGλ (k,x,W ) · ∂d (x,wk)

∂wk

(10)
= −hNGλ (k,x,W ) · 1

λ
· ∂rk (k,x,W )

∂wl
· d (x,wk) + δk,l · hNGλ (k,x,W ) · ∂d (x,wk)

∂wk

= −hNGλ (k,x,W ) ·
(
d (x,wk)

λ
· ∂rk (k,x,W )

∂wl
+ δk,l ·

∂d (x,wk)

∂wk

)

(18)
= −hNGλ (k,x,W ) ·


d (x,wk)

λ
· δk,l ·

∂d (x,wk)

∂wk
·
∑

j

δDirac (d (x,wk)− d (x,wj)) + δk,l ·
∂d (x,wk)

∂wk


(22)

= −hNGλ (k,x,W ) · δk,l ·


d (x,wk)

λ
· ∂d (x,wk)

∂wk
·
∑

j

δDirac (d (x,wk)− d (x,wj)) +
∂d (x,wk)

∂wk


 (23)

(24)

in prob.
= −hNGλ (k,x,W ) · δk,l ·

∂d (x,wk)

∂wk
· ∂d (x,wk)

∂wk
(25)

supposing a data density P (x) with ∀x : P (x) <∞ to be valid.

The approach is summarized as

X −→
NG/SOM

W
ξ(x,W )−→

NG/SOM-like
Ξ

y(x)−→
perceptron

C (26)

in relation to (4).

3.1.2.2 Modi�cations According to a Fuzzy Vector Quantization Interpretation Another choice

for gradual sensoric responses for a given prototype setW is to evaluate fuzzy assignments of the data. According

to [2, 3], the fuzzy assignment

uk (x) =
1

∑K
j=1

(
d(x,wk)
d(x,wj)

) 2
m−1

(27)

gives the probability that data point x is assigned to prototype wk taken as a local cluster center according to the

fuzzy-c-means approach (FCM,[22]). The parameter m > 1 is the fuzzy�er usually chosen as m = 2. Explicitly
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note that
∑K
j=1 uj (x) = 1 is valid for the fuzzy assignments. Yet, the fuzzy assignments do not re�ect all aspects

of cluster assignments, in particular, if the distance d (x,wk) is large. Therefore, the typicality assignments

tk (x) =
1

1 +
(
d(x,wk)
γk

) 1
m−1

(28)

were proposed [27] with the normalization

γk = γ · Ex [uk (x) · d (x,wk)]

Ex [uk (x)]

and the usual choice γ = 1 [28, 35]. Here, Ex [·] denotes the expectation operator with respect to x.

Both quantities, the fuzzy and the typicality assignments, can be combined by a convex sum

ξFk (x,W ) = α · uk (x) + (1− α) · tk (x) (29)

with α ∈ (0, 1) to obtain fuzzy-based sensoric responses.

The gradient ∂uk(x)
∂wl

of the fuzzy assignments is calculated as

∂uk (x)

∂wl
=

−1
(∑K

j=1

(
d(x,wk)
d(x,wj)

) 2
m−1

)2 ·
∂
∑K
j=1

(
d(x,wk)
d(x,wj)

) 2
m−1

∂wl

=
−1

(∑K
j=1

(
d(x,wk)
d(x,wj)

) 2
m−1

)2 ·
K∑

j=1

∂
(
d(x,wk)
d(x,wj)

) 2
m−1

∂wl

=
−1

(∑K
j=1

(
d(x,wk)
d(x,wj)

) 2
m−1

)2 ·
K∑

j=1


 2

m− 1
·
(
d (x,wk)

d (x,wj)

) 1−m
m−1

· ∂

∂wl

(
d (x,wk)

d (x,wj)

)


with

∂

∂wl

(
d (x,wk)

d (x,wj)

)
=





1
d(x,wj)

· ∂d(x,wl)
∂wl

l = k 6= j

−d(x,wk)

(d(x,wl))
2 · ∂d(x,wl)

∂wl
l = j 6= k

0 else

whereas

∂tk (x)

∂wl
=

−1
(

1 +
(
d(x,wk)
γk

) 1
m−1

)2 ·
∂

∂wl

((
d (x,wk)

γk

) 1
m−1

)

=
−1

(
1 +

(
d(x,wk)
γk

) 1
m−1

)2 ·
1

m− 1
·
(
d (x,wk)

γk

) 2−m
m−1

· 1

γk
· ∂d (x,wk)

∂wl

is obtained for the typicalities. Thus, the derivative

∂ξFk (x,W )

∂wl
= α · ∂uk (x)

∂wl
+ (1− α) · ∂tk (x)

∂wl
(30)

describes gradient of this fuzzy response. Yet, other fuzzy approaches like the application of general t-norms

could also be of interest [11].
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The approach is summarized as

X −→
FCM

W
ξ(x,W )−→
fuzzy

Ξ
y(x)−→

perceptron
C (31)

in relation to (4).

3.2 Modi�cations of the Classi�cation Layer

As mentioned in the beginning, in original CPN, the classi�cation layer consists of one or several perceptrons

taking the sensoric reponse vector ξ (x,W ) as input. It is optimized after vector quantization training and does

not �ne-tune the vector quantization layer. Hence, no backward information is considered. In the following

we propose several modi�cations of that scheme. To keep in mind that the sensoric response vector ξ (x,W )

depends on the

3.2.1 Multilayer Perceptron Layer

An obvious way to generalize the CPN is to replace the perceptron(s) in the classi�cation layer by a (deep) multi-

layer perceptron architecture with cross-entropy loss as cost function. This would realize the idea to incorporate

vector quantization layers into deep networks as suggested in [6]. Considering the response determination as a

mapping x 7→ ξ (x,W ) realized by a vector quantizer (SOM/NG/FCM), one can think to �ne-tune the response

mapping ξ (x,W ) by means of the gradients ∂ξ(x,W )
∂wl

for stochastic gradient learning with respect to the cross

entropy. However, because of the deep architecture, the problem of vanishing gradients becomes apparent for

this approach and has to be tackled carefully. Further, the interpretability of the vector quantization layer

is destroyed by the subsequent deep network, which counter-acts to one of the central paradigms of vector

quantization models.

The approach can be summarized as

X −→
NG/FCM

W
ξ(x,W )−→

NG-like/fuzzy
Ξ

y(x)−→
deep network

C (32)

in relation to (4).

3.2.2 LVQ Layers

3.2.2.1 Non-probabilistic LVQ classi�er We suggest to replace the perceptron layer of CPN by a gener-

alized learning vector quantization classi�er (GLVQ, [44]) as cost function based variant of the heuristic learn-

ing vector quantizer (LVQ) introduced by T. Kohonen [25]. LVQ-models are interpretable prototype-based

classi�ers relying on an attraction-repulsing scheme for the prototypes [52]. Originally, LVQ was established to

approximate Bayesian learning in supervised vector quantization learning for classi�cation [26]. GLVQ is known

to be interpretable [4, 50, 21], robust [42, ?] and implicitly optimizes the hypothesis margin during classi�cation

learning [8, 43].

Taking the sensoric responses ξ as input, the GLVQ assumes prototypes ωj ∈ RK with class labels c (ωj).

We denote the set W = {ω1, . . . ,ωM} as GLVQ-prototypes to distinguish them from the sensoric prototype set

W . The cost function optimized by GLVQ-training in our setting is

EGLVQ (W) =
∑

x

f (µ (ξ (x,W )))

where f is a di�erentiable sigmoid function with range [0, 1] and and the classi�er function W-dependent

µ (ξ (x,W ) ,W) =
δ (ξ (x,W ) ,ω+)− δ (ξ (x,W ) ,ω−)

δ (ξ (x,W ) ,ω+) + δ (ξ (x,W ) ,ω−)
(33)

with the dissimilarity measure

δ (ξ (x,W ) ,ω) = (Ω (ξ (x,W )− ω))
2

(34)
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known from the matrix GLVQ (GMLVQ) [45] anf relevance GLVQ (GRLVQ) [14]. Thereby, ω+ is the best

matching prototype ωj according to the WTA-rule (1) known from SOM with the constraint of class label

agreement c (ωj) = c (ξ (x,W )). Analogously, ω− is the best matching prototype among all prototypes respon-

sible for other classes than c (ξ (x,W )). Thus, the classi�er function µ (ξ (x,W ) ,W) ∈ [−1, 1] becomes negative

for correct classi�cation. After training the network response is the label c (ωs) of the overall best matching

prototype ωs according to the WTA-rule (1).

Stochastic gradient descent learning on the cost function EGLVQ (W) takes place as prototype updates

according to the derivative of the local errors

EGLVQ (x,W,W ) = f (µ (ξ (x,W ) ,W))

i.e.

∆ω± ∝ −∂EGLVQ (x,W,W )

∂ω±

has to be considered. In the following, we omit for ξ (x,W ) the dependencies on x and W for simplicity if it is

not necessary to refer explicitly to the dependencies. Thus, the gradient formally read as

∂EGLVQ (x,W,W )

∂ω±
=
∂f (µ)

∂µ (ξ)
· ∂µ (ξ)

∂δ (ξ,ω±)
· ∂δ (ξ,ω∓)

∂ω±
(35)

with

∂µ (ξ)

∂ξ
=

∂µ (ξ)

∂δ (ξ,ω+)
· ∂δ (ξ,ω+)

∂ξ
+

∂µ (ξ)

∂δ (ξ,ω−)
· ∂δ (ξ,ω−)

∂ξ
(36)

for ω+,ω−. Further, we get
∂µ (ξ)

∂δ (ξ,ω±)
=

∓2 · δ (ξ,ω∓)

(δ (ξ,ω+) + δ (ξ,ω−))
2

as derivatives for µ (ξ) depending on ω+ and ω−. The gradients

∇ξδ (ξ,ω) =
∂δ (ξ,ω)

∂ξ
= 2 ·ΩTΩ (ξ − ω)

and

∇ωδ (ξ,ω) =
∂δ (ξ,ω)

∂ω
= −2 ·ΩTΩ (ξ − ω)

re�ect the contribution of the dissimilarity measure δ (ξ,ω).

Because the sensoric inputs ξ (x,W ) depend on the sensoric prototypes wk, we can optimize the classi�cation

performance of the GLVQ model also with respect to these quantities. Thus we have to consider the derivative

∂µ (ξ (x,W ))

∂wk
=

∂µ (ξ (x,W ))

∂δ (ξ (x,W ) ,ω+)
· ∂δ (ξ (x,W ) ,ω+)

∂ξ (x,W )
· ∂δ (ξ (x,W ) ,ω+)

∂wk
+

+
∂µ (ξ)

∂δ (ξ (x,W ) ,ω−)
· ∂δ (ξ (x,W ) ,ω−)

∂ξ
· ∂δ (ξ (x,W ) ,ω−)

∂wk
(37)
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using (36). For the NG-like responses we calculate

∂δ
(
ξNG (x,W ) ,ω

)

∂wk
= (∇ξδ (x,ω))

T · ∂ξ
NG

∂wk

=
K∑

l=1

(∇ξδ (ξ (x,W ) ,ω))l ·
∂ξNGl (x,W )

∂wk

(22)
= −

K∑

l=1

(∇ξδ (ξ (x,W ) ,ω))l · exp

(
− rk (k,x,W )

λ

)

·δk,l ·


d (x,wk)

λ
· ∂d (x,wk)

∂wk
·
∑

j

δDirac (d (x,wk)− d (x,wj)) +
∂d (x,wk)

∂wk


(38)

(39)

= − (∇ξδ (ξ (x,W ) ,ω))k · exp

(
− rk (k,x,W )

λ

)

(40)

·


d (x,wk)

λ
· ∂d (x,wk)

∂wk
·
∑

j

δDirac (d (x,wk)− d (x,wj)) +
∂d (x,wk)

∂wk


 (41)

in prob. (25)
= − (∇ξδ (ξ (x,W ) ,ω))k · exp

(
− rk (k,x,W )

λ

)
· ∂d (x,wk)

∂wk
(42)

to be used in (37).

For the fuzzy responses ξFk (x,W ) from (29) we similarly get (30)

∂δ
(
ξF (x,W ) ,ω

)

∂wk
= (∇ξδ (x,ω))

T · ∂ξ
F

∂wk

=

K∑

l=1

(∇ξδ (ξ (x,W ) ,ω))l ·
∂ξFl (x,W )

∂wk

(30)
=

K∑

l=1

(∇ξδ (ξ (x,W ) ,ω))l ·
(
α · ∂ul (x)

∂wk
+ (1− α) · ∂tl (x)

∂wk

)
(43)

This GMLVQ-approach (and its variants) can be summarized as

X �
NG/FCM

W
ξ(x,W )

�
NG-like/fuzzy

Ξ
c(ωs)−→

GMLVQ
C (44)

in relation to (4).

3.2.2.2 Probabilistic LVQ classi�er Probabilistic LVQ (PLVQ,[49]) uses information theoretic concepts

to estimate the model probabilities pW (c|ξ). Let p (ξ) = (p1 (ξ) , . . . , pC (ξ)) be the class probability vector for

sample ξ and

pW (ξ) = (pW (1|ξ) , . . . , pW (C|ξ)) (45)

the respective predicted class probability vector provided by the probabilistic classi�er model depending on

PLVQ-prototype set W = {ω1, . . . ,ωM} as before. The target labels for trainng data are denoted by t (ξ) ∈
[0, 1]

C
describing a probabilistic class assignment according to tc (ξ) ∈ [0, 1], i.e.

∑
c tc (ξ) = 1. For a possibilistic

assignment, the latter constraint has to be dropped.
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The mutual information between t (ξ) and pW (ξ) has to be maximized, and, hence, the corresponding KLD

DKL (p (ξ) ||pW (ξ)) has to be minimized for the probabilistic setting, which is equivalent to maximize the

cross-entropy

Cr (t (ξ) ||pW (ξ)) =
∑

c

tc (ξ) · log (pW (c|ξ)) (46)

as shown in [37, p. 221�]. For PLVQ, the cross-entropy Cr (t (ξ) ||pW (ξ)) plays the role of a local cost such

that

LPLV Q (X,W) = −
∑

k

Cr (t (ξk) ||pW (ξk)) (47)

has to be minimzed [49]. Alternatively, the loss

LαPLV Q (X,W) =
∑

k

Dα (t (ξk) ||pW (ξk)) (48)

based on the Rényi divergence [39]

Dα ((ξk) ||pW (ξk)) =
1

1− α log

(∑

c

(tc (ξk))
α · (pW (c|ξk))

1−α
)

(49)

could be taken as cost function. For the cross-entropy Cr (t (ξ) ||pW (ξ)), the conditional class probability

pW (c|ξk) depends on p (ξ|wj) via the class prediction probabilities

pW (c|ξ) =
PW (ξ, c)

PW (ξ)

=

∑
j:c(ωj)=c

p (ξ|ωj) · p (ωj)
∑N
k=1 p (ξ|ωk) · p (ωk)

=
∑

j:c(ωj)=c

SW (j, ξ) (50)

with

SW (j, ξ) =
p (ξ|ωj) · p (ωj)∑N
k=1 p (ξ|ωk) · p (ωk)

(51)

as so-called local quantities. For the possibilistic setting we refer to [32].

The gradient of the cross-entropy Cr (t (x) ||pW (ξ)) from (46) with respect to the PLVQ-prototypes ωl

reads as

∂Cr (t (ξ) ||pW (ξ))

∂ωl
=

∂

∂ωl

(∑

c

tc (ξ) · log (pW (c|ξ))

)

=
∑

c

tc (ξ)

pW (c|ξ)
· ∂pW (c|ξ)

∂ωl

(50)
=

∑

c

tc (ξ)

pW (c|ξ)
· ∂

∂ωl


 ∑

j:c(wj)=c

SW (j, ξ)




=
∑

c

tc (ξ)

pW (c|ξ)
·


 ∑

j:c(wj)=c

∂SW (j, ξ)

∂ωl



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with

∂SW (j, ξ)

∂ωl
=

∂

∂ωl

(
p (ξ|ωj) · p (ωj)∑N
k=1 p (ξ|ωk) · p (ωk)

)

=
δkl∑N

k=1 p (ξ|ωk) · p (ωk)
− p (ξ|ωj) p (ωj)




∂p(ξ|ωl)·p(ωl)
∂ωl(∑N

k=1 p (ξ|ωk) · p (ωk)
)2




=
δkl∑N

k=1 p (ξ|ωk) · p (ωk)
− SW (j, ξ) ·

(
∂p(ξ|ωl)p(ωl)

∂ωl∑N
k=1 p (ξ|ωk) · p (ωk)

)

=
δkl − SW (j, ξ) · ∂p(ξ|ωl)p(ωl)

∂ωl∑N
k=1 p (ξ|ωk) · p (ωk)

=
δkl − SW (j, ξ) ·

(
p (ωl) · ∂p(ξ|ωl)

∂ωl
+ p (ξ|ωl) · ∂p(ωl)

∂ωl

)

∑N
k=1 p (ξ|ωk) · p (ωk)

according to (51).

Now, we assume an arbitrary non-negative dissimilarity measure δ (ξ,ω) according to [33] such that δ :

Rn × Rn −→ D ⊆ R+, where D is the data dissimilarity space. Further, let the conditional probability p (ξ|ω)

be only depending on the measure δ (ξ,ω), i.e.

p (ξ|ωj) = πD (δ (ξ,ωj)) . (52)

is an one-dimensional di�erentiable density function representing PD . We denote PD (δ (ξi,ωk)) as a dissimi-

larity density model. Then we get

∂p (ξ|ωk)

∂ωl
=
∂πD (δ (ξ,ωk))

∂δ (ξ,ωk)
· ∂δ (ξ,ωk)

∂ωl
(53)

as the derivative with respect to ωl.

To combine the PLVQ with the CPN approach, we again assume ξ (x,W ) to pe the sensoric response from

the vector quantizer layer where the label is simply obtained t (ξ) = t (x) from the original data x. Now, the

cross-entropy (46) reads as

Cr (t (x) ||pW (ξ (x,W ))) =
∑

c

tc (x) · log (pW (c|ξ (x,W ))) (54)

and we obtain

∂Cr (t (x) ||pW (ξ (x,W )))

∂wl
=

∂

∂wl

(∑

c

tc (x) · log (pW (c|ξ (x,W )))

)

=
∑

c

tc (x)

pW (c|ξ (x,W ))
· ∂pW (c|ξ (x,W ))

∂wl

(50)
=

∑

c

tc (x)

pW (c|ξ (x,W ))
· ∂

∂wl


 ∑

j:c(ωj)=c

SW (j, ξ (x,W ))




=
∑

c

tc (x)

pW (c|ξ (x,W ))
·


 ∑

j:c(ωj)=c

∂SW (j, ξ (x,W ))

∂wl




as derivative of the cross-entropy with respect to the sensoric prototype wl. For the derivative ∂SW(j,ξ(x,W ))
∂wl
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we calulate

∂SW (j, ξ (x,W ))

∂wl
=

∂

∂wl

(
p (ξ (x,W ) |ωj) · p (ωj)∑N
k=1 p (ξ (x,W ) |ωk) · p (ωk)

)

=
p (ωj) · ∂p(ξ(x,W )|ωj)

∂wl∑N
k=1 p (ξ (x,W ) |ωk) · p (ωk)

− p (ξ (x,W ) |ωj) · p (ωj) ·




∑N
k=1 p (ωk) · ∂p(ξ(x,W )|ωk)

∂wl(∑N
k=1 p (ξ (x,W ) |ωk) · p (ωk)

)2




=
p (ωj) · ∂p(ξ(x,W )|ωj)

∂wl∑N
k=1 p (ξ (x,W ) |ωk) · p (ωk)

− SW (j, ξ (x,W )) ·
( ∑N

k=1 p (ωk) · ∂p(ξ(x,W )|ωk)
∂wl∑N

k=1 p (ξ (x,W ) |ωk) · p (ωk)

)

=
p (ωj) · ∂p(ξ(x,W )|ωj)

∂wl
− SW (j, ξ (x,W )) ·∑N

k=1 p (ωk) · ∂p(ξ(x,W )|ωk)
∂wl∑N

k=1 p (ξ (x,W ) |ωk) · p (ωk)

which includes the derivatives
∂p(ξ(x,W )|ωj)

∂wl
. Using the dissimilarity density model (52) we have

∂p (ξ (x,W ) |ωk)

∂wl
=
∂πD (δ (ξ (x,W ) ,ωk))

∂δ (ξ (x,W ) ,ωk)
· ∂δ (ξ (x,W ) ,ωk)

∂wl
(55)

with the derivative ∂δ(ξ(x,W ),ωk)
∂wl

according to (42) or to (43) for NG-based responses or fuzzy responses, re-

spectively.

This PLVQ-approach (and its variants) can be summarized as

X �
NG/FCM

W
ξ(x,W )

�
NG-like/fuzzy

Ξ
pW(ξ)−→
PLVQ

C (56)

in relation to (4).

4 Discussion

In this paper we describe formal extensions of counter propagation networks, which should make the original

approach more �exible. In particular, we discussed several possibilities to transfer the data knowledge acquired

by the vector quantization layer to the classi�cation layer. Moreover, we considered several possibilities to

replace the perceptron layer by alternative classi�cation approaches. In the context of this we also studied

how to realize a vector quantizer adaptation depending on the subsequent classi�cation process realized in the

second layer. Although this increases the complexity of the model, it could bene�cial for certain applications.

At this point we did not discuss so far regularization aspects to achive model stability during learning and to

control the �exibility. This should be done also in the context of the information bottleneck paradigm [47, 48]

as well as re�ecting the dilemma between information optimum data representation in the vector quantization

layer and the demanded classi�cation or regression performance [34, 36, 29].

An extension of the approach to the recently developed classi�cation-by-components network (CbC, [41]) as

alternative for LVQ variants should be investigated next.

Acknowledgement

M. K. was supported by a ESF grant for a Young Researcher Group.

New Variants of the Counter Propagation Network for Classification Learning - A Formal
Description of Strategies and Respective Approaches

Machine Learning Reports 15



References

[1] B. Bajºelj and V. Drgan. Hepatotoxicity modeling using counter-propagation arti�cial neural networks:

Handling an imbalanced classi�cation problem. Molecules, 25(3):481, 2020.

[2] J.C. Bezdek. A convergence theorem for the fuzyy ISODATA clustering algorithm. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2(1):1�8, 1980.

[3] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York, 1981.

[4] M. Biehl, B. Hammer, and T. Villmann. Prototype-based models in machine learning. Wiley Interdisci-

plinary Reviews: Cognitive Science, (2):92�111, 2016.

[5] Gail A. Carpenter and Stephen Grossberg. The ART of adaptive pattern recognition by a self-organizing

neural network. IEEE Computer, 21(3):77�88, 1988.

[6] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J.K. Su. This looks like that: Deep learning for

interpretable image recognition. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages 8930�8941.

Curran Associates, Inc., 2019.

[7] M. Cottrell, J. C. Fort, and G. Pagès. Two or three things that we know about the Kohonen algorithm.

Technical Report 31, Université Paris 1, Paris, France, 1994.

[8] K. Crammer, R. Gilad-Bachrach, A. Navot, and A.Tishby. Margin analysis of the LVQ algorithm. In

S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing (Proc. NIPS

2002), volume 15, pages 462�469, Cambridge, MA, 2003. MIT Press.

[9] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function approxi-

mation in reinforcement learning. Neural Networks, 107:3�11, 2018.

[10] Ed Erwin, Klaus Obermayer, and Klaus Schulten. Self-organizing maps: Ordering, convergence properties

and energy functions. Biol. Cyb., 67(1):47�55, 1992.

[11] T. Geweniger, F.-M. Schleif, and T. Villmann. Probabilistic prototype classi�cation using t-norms. In

T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps and

Learning Vector Quantization: Proceedings of 10th International Workshop WSOM 2014, Mittweida, vol-

ume 295 of Advances in Intelligent Systems and Computing, pages 99�108, Berlin, 2014. Springer.

[12] D. Graupe. Principles of Arti�icial Neural Networks, volume 8 of Advanced Series in Circuits and Systems,

chapter Counter Propagation, pages 185�201. World Scienti�c, 3rd edition, 2019.

[13] S. Grossberg. Some networks that can learn, remember, and reproduce any number of complicated space-

time patterns. Journal of Mathematics and Mechanics, 19(1):53�91, 1969.

[14] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-

9):1059�1068, 2002.

[15] R. Hecht-Nielsen. Counter progagation networks. Appl. Opt., 26(23):4979�4984, December 1987.

[16] R. Hecht-Nielsen. Review of `self-organizing maps'. IEEE Transactions on Neural Networks, 7(6):1549�

1550, November 1996.

[17] Robert Hecht-Nielsen. Applications of counterpropagation networks. Neural Networks, 1(2):131�139, 1988.

New Variants of the Counter Propagation Network for Classification Learning - A Formal
Description of Strategies and Respective Approaches

16 Machine Learning Reports



[18] John A. Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of Neural Computation,

volume 1 of Santa Fe Institute Studies in the Sciences of Complexity: Lecture Notes. Addison-Wesley,

Redwood City, CA, 1991.

[19] T. Heskes. Energy functions for self-organizing maps. In E. Oja and S. Kaski, editors, Kohonen Maps,

pages 303�316. Elsevier, Amsterdam, 1999.

[20] X. Hou. Research on hyperspectral data classi�cation based on quantum counter propagation neural

network. Advanced Materials Research, 546�547:1377�1381, 2012.

[21] M. Kaden, M. Lange, D. Nebel, M. Riedel, T. Geweniger, and T. Villmann. Aspects in classi�cation

learning - Review of recent developments in Learning Vector Quantization. Foundations of Computing and

Decision Sciences, 39(2):79�105, 2014.

[22] N. B. Karayiannis and J. C. Bezdek. An integrated approach to fuzzy learning vector quantization and

fuzzy c-means clustering. IEEE Transactions on Fuzzy Systems, 5(4):622�8, 1997.

[23] Nicolaos B. Karayiannis and Pin I. Pai. Fuzzy algorithms for learning vector quantization. IEEE Transac-

tions on Neural Networks, 7(5):1196�1211, 1996.

[24] Teuvo Kohonen. Self-organizing formation of topologically correct feature maps. Biol. Cyb., 43(1):59�69,

1982.

[25] Teuvo Kohonen. Learning Vector Quantization. Neural Networks, 1(Supplement 1):303, 1988.

[26] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer,

Berlin, Heidelberg, 1995. (Second Extended Edition 1997).

[27] R. Krishnapuram and J. Keller. A possibilistic approach to clustering. IEEE Transactions on Fuzzy

Systems, 1(4):98�110, 1993.

[28] R. Krishnapuram and J. Keller. The possibilistic c-means algorithm: insights and recommendations. IEEE

Transactions on Fuzzy Systems, 4(3):385�393, 1996.

[29] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information loss minimization.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7):1294�1309, 2009.

[30] Thomas Martinetz and Klaus Schulten. Topology representing networks. Neural Networks, 7(2), 1994.

[31] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten. 'Neural-gas' network for vector

quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558�569,

1993.

[32] S. Musavishavazi, M. Kaden, and T. Villmann. Possibilistic classi�cation learning based on contrastive

loss in learning vector quantizer networks. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,

R. Tadeusiewicz, and J.M. Zurada, editors, Proceedings of the 20th International Conference on Arti�cial

Intelligence and Soft Computing - ICAISC, Zakopane, LNCS XXXXX, page in press, Cham, 2021. Springer

International Publishing, Switzerland.

[33] D. Nebel, M. Kaden, A. Villmann, and T. Villmann. Types of (dis−)similarities and adaptive mixtures

thereof for improved classi�cation learning. Neurocomputing, 268:42�54, 2017.

[34] Karen L. Oehler and Robert M. Gray. Combining image compression and classi�cation using vector quan-

tization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:461�473, 1995.

New Variants of the Counter Propagation Network for Classification Learning - A Formal
Description of Strategies and Respective Approaches

Machine Learning Reports 17



[35] N.R. Pal, K. Pal, J.M. Keller, and J.C. Bezdek. A possibilistic fuzzy c-means clustering algorithm. IEEE

Transactions on Fuzzy Systems, 13(4):517�530, 2005.

[36] Keren O. Perlmutter, Sharon M. Perlmutter, Robert M. Gray, Richard A. Olshen, and Karen L. Oehler.

Bayes risk weighted vector quantization with posterior estimation for image compression and classi�cation.

IEEE Trans. on Image Processing, 5(2):347�360, February 1996.

[37] J.C. Principe. Information Theoretic Learning. Springer, Heidelberg, 2010.

[38] P. Ramachandran, B. Zoph, and Q.V. Le. Searching for activation functions. Technical Report

arXiv:1710.05941v1, Google Brain, 2018.

[39] A. Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, 1961. University of California Press.

[40] Helge Ritter, Thomas Martinetz, and Klaus Schulten. Neural Computation and Self-Organizing Maps: An

Introduction. Addison-Wesley, Reading, MA, 1992.

[41] S. Saralajew, L. Holdijk, M. Rees, E. Asan, and T. Villmann. Classi�cation-by-components: Probabilis-

tic modeling of reasoning over a set of components. In Proceedings of the 33rd Conference on Neural

Information Processing Systems (NeurIPS 2019), pages 2788�2799. MIT Press, 2019.

[42] S. Saralajew, L. Holdijk, M. Rees, and T. Villmann. Robustness of generalized learning vector quantization

models against adversarial attacks. In A. Vellido, K. Gibert, C. Angulo, and J.D.M. Guerrero, editors,

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization �

Proceedings of the 13th International Workshop on Self-Organizing Maps and Learning Vector Quantization,

Clustering and Data Visualization, WSOM+2019, Barcelona, volume 976 of Advances in Intelligent Systems

and Computing, pages 189�199. Springer Berlin-Heidelberg, 2019.

[43] S. Saralajew, L. Holdijk, and T. Villmann. Fast adversarial robustness certi�cation of nearest prototype

classi�ers for arbitrary seminorms. In Proceedings of the 34th Conference on Neural Information Processing

Systems (NeurIPS 2020), page in press. MIT Press, 2020.

[44] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and

M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995

Conference, pages 423�9. MIT Press, Cambridge, MA, USA, 1996.

[45] P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quantization.

Neural Computation, 21:3532�3561, 2009.

[46] W. Sygnowski and B. Macukow. Counter-propagation neural network for image compression. Optical

Engineering, 35(8):2214�17, 1996.

[47] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Proc. of the 37-th Annual

Allerton Conference on Communication, Control and Computing, 1999.

[48] N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. IEEE Information

Theory Workshop (ITW), 2015. invited talk.

[49] A. Villmann, M. Kaden, S. Saralajew, and T. Villmann. Probabilistic learning vector quantization with

cross-entropy for probabilistic class assignments in classi�cation learning. In L. Rutkowski, R. Scherer,

M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J.M. Zurada, editors, Proceedings of the 17th Interna-

tional Conference on Arti�cial Intelligence and Soft Computing - ICAISC, Zakopane, LNCS 10841, pages

736�749, Cham, 2018. Springer International Publishing, Switzerland.

New Variants of the Counter Propagation Network for Classification Learning - A Formal
Description of Strategies and Respective Approaches

18 Machine Learning Reports



[50] T. Villmann, A. Bohnsack, and M. Kaden. Can learning vector quantization be an alternative to SVM and

deep learning? Journal of Arti�cial Intelligence and Soft Computing Research, 7(1):65�81, 2017.

[51] T. Villmann, J. Ravichandran, A. Villmann, D. Nebel, and M. Kaden. Investigation of activation functions

for Generalized Learning Vector Quantization. In A. Vellido, K. Gibert, C. Angulo, and J.D.M. Guerrero,

editors, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visual-

ization � Proceedings of the 13th International Workshop on Self-Organizing Maps and Learning Vector

Quantization, Clustering and Data Visualization, WSOM+2019, Barcelona, volume 976 of Advances in

Intelligent Systems and Computing, pages 179�188. Springer Berlin-Heidelberg, 2019.

[52] T. Villmann, S. Saralajew, A. Villmann, and M. Kaden. Learning vector quantization methods for in-

terpretable classi�cation learning and multilayer networks. In C. Sabourin, J.J. Merelo, A.L. Barranco,

K. Madani, and K. Warwick, editors, Proceedings of the 10th International Joint Conference on Compu-

tational Intelligence (IJCCI), Sevilla, pages 15�21, Lissabon, Portugal, 2018. SCITEPRESS - Science and

Technology Publications, Lda. ISBN: 978-989-758-327-8.

[53] M. Vracko. Kohonen arti�cial neural network and counter propagation neural network in molecular

structure-toxicity studies. Current Computer-Aided Drug Design, 1(1):73�78, 2005.

[54] C. Wu, H.-L. Chen, and S.-C. Chen. Counter-propagation neural networks for molecular sequence classi�-

cation: Supervised LVQ and dynamic node allocation. Applied Intelligence, 7:27�38, 1997.

[55] J. Zupan, M. Novic, and I. Ruisanchez. Kohonen and counterpropagation arti�cial neural networks in

analytical chemistry. Chemometrics and Intelligent Laboratory Systems, 38:1�23, 1997.

New Variants of the Counter Propagation Network for Classification Learning - A Formal
Description of Strategies and Respective Approaches

Machine Learning Reports 19



MACHINE LEARNING REPORTS

Report 01/2021

Impressum
Machine Learning Reports ISSN: 1865-3960
5 Publisher/Editors

Prof. Dr. rer. nat. Thomas Villmann
University of Applied Sciences Mittweida
Technikumplatz 17, 09648 Mittweida, Germany
• http://www.mni.hs-mittweida.de/

Dr. rer. nat. Frank-Michael Schleif
University of Bielefeld
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