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Abstract

In this technical report we present an extension of the (resolved) mutual

information function, which can be applied to graph structures. In particu-

lar, it can be used to extract information theoretic features to characterize, i.e.

fingerprint biochemical compounds given as structural formulas.
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1 Introduction

Molecular fingerprinting is an essential step in ligand-based virtual screening ap-

proaches which aims at identifying similar compounds from a data set of known active

molecules [6]. These molecules, usually are given as structural formulas in databases

of chemical compounds like DrugBank [40] or ChEMBL [18]. Hence, the compari-

son of molecules for similarity search as well as for advanced data analyses including

machine learning methods requires their characterization by numerical features re-

flecting physico-chemical properties. This feature extraction is known as molecular

fingerprinting in this context.

Several possibilities to categorize fingerprints have been proposed [14, 6, 10]. Ac-

cording to [6] one can distinguish at least three basic principles:

1. noting the presence of certain substructures or features within the compound like

e.g. MACCS (Molecular ACCess System) keys [15] or PubChem fingerprints [5],

2. analyzing the compounds topology in terms of possible paths like e.g. daylight

fingerprints,

3. considering the environment of atoms in terms of a defined radius like e.g. ECFPs

(Extended Connectivity Fingerprints) [33].

Apart from these chemical descriptors, compounds can also be referred to by line

notations [10] such as SMILES (Simplified Molecular Input Line Entry System) [39]

or InChi (International Chemistry Identifier) [22].

Generally, structural formulas can be processed mathematically as planar graphs

such that a comparison can be made in terms of mathematical graph isomorphism.

Respective algorithms are known to be linear in time [25], i.e. the time complexity is

O (|V |) where |V | denotes the number of the vertices in the graphs to be compared.

In general, the graph isomorphism problem neither provides any similarity measure

for graph comparison nor it is solved for weighted graphs. Otherwise, many similarity

measures based on mathematical properties of graphs are known [36].

A promising alternative for molecule graphs is to use information theoretic fea-

tures characterizing molecule inherent relations, context information and topologi-

cal attributes. In [19] an information theoretic concept for fingerprinting individual

molecules based on their topological feature distributions is introduced: The shortest

paths between all nodes of a structural formula graph are calculated, followed by de-

termining the entropy of the path length distribution for each feature pair. Besides the

well-known Shannon entropy, a Rényi variant fingerprint is introduced in a follow-up

publication [12].
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Another information theoretic application in [8] involves use of the point-wise mu-

tual information (PMI) known from computational linguistics [7] to study the inter-

relation between structural features within molecules from a compound set. This

interrelation profiling builds on available structure keys and aims at characterizing

chemical databases, rather then characterizing individual molecules.

In [37] the Shannon entropy-based fingerprint similarity search is introduced. The

idea behind is to transform each compound of a reference set into a binary finger-

print representation and to calculate the sets entropy position-wise. Subsequently, the

entropy is recalculated for individual test compounds added to the set and from the

resulting differences in entropy conclusions about molecule similarity can be drawn.

In nucleotide and protein sequence analysis the mutual information function (MIF)

has gained attraction as an useful tool [11, 20, 26, 29], which originally was introduced

in [28] for general symbolic sequences. The MIF reflects the short and long term

correlations in sequences based on Shannon’s entropic information [23, 3, 35]. In

the bioinformatics context, MIF is also known as average mutual information (AMI)

profile [1]. Recently, the resolved mutual information function (rMIF) was proposed as

a variant of MIF for both the Shannon and the Rényi definition of entropy [4] providing

more fine-grained structure correlation insights than MIF. The above mentioned PMI

is closely related and was applied to molecular sequences, too [32].

The aim of this paper is to extend the rMIF as an information theoretic fingerprint

of chemical compounds, i.e. extracting the correlation information of the corresponding

molecule graphs. For this purpose, a molecule graph is treated as a weighted graph

such that atom correlations are evaluated based on the respective shortest path lengths

between them.

The outline of the paper is as follows: First, we describe the graph-based rMIF

(grMIF). Thereafter, we relate the grMIF to molecule graphs, i.e. to the context of

chemical compounds, followed by implications for future research.

2 Variants of the Mutual Information Function for

Weighted Labeled Graphs

We consider a connected undirected graph G = (V,E) with the set of vertices (nodes)

V = { vi }i∈1...N and the corresponding set E ⊆ V × V of edges. In the view of

molecular graphs we suppose graphs without self-loops.

Each vertex vi is equipped with a label l (vi) ∈ A by the label function l : V → A,

where A is as discrete finite label set. This set can be seen as available class labels for

the object to be considered, e.g. the classes of molecular units for molecule graphs.

A weight w (ei) ∈ R is assigned to each ei ∈ E by means of the weighting function
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w : E → R.1 Unweighted graphs can be taken as weighted graphs with equal weights

for all edges usually set to be one. Thus, the graph is taken as a tuple GV,E,A
l,w =

(V,E,A, l, w).

The calculation of the rMIF for molecular sequences assumes discrete spatial dis-

tances between the contained molecular units (object classes). This is achieved by

determination of shortest paths with corresponding shortest path lengths, which may

be followed by an explicit discretization and normalization. Afterwards, the resulting

discretized distances are used for the calculation of the joint and marginal probability

distributions of unit pairs in dependence on their spatial relation. Finally, the result-

ing probabilities serve as input for the calculation of the rMIF, which is denoted as

graph resolved mutual information function (grMIF) in this context. In the following

subsections we explain these steps.

2.1 Identification of shortest paths between nodes in graphs

A path is an alternating series of vertices and edges of G, starting and ending with

a vertex, in which each edge is incident with the vertices immediately preceding and

immediately following it and each vertex is traversed only once. A shortest path is a

path between two vertices minimizing the sum of its edge weights.

Here, we are faced with the all-pairs shortest paths problem, i.e. the shortest path

determination between every two nodes. The resulting matrix S ∈ RN×N contains the

minimum lengths sij between the nodes vi and vj.

For unweighted graphs, the value sij is just the number of edges nij separating the

nodes vi and vj, which can be determined using a breadth-first search algorithm (BFS)

[31, 9]. This strategy fails for weighted graphs.

For those graphs, depending on the weight values determined by the weight function

w and the topological properties of the considered graph, restrictions for efficient

calculation of the matrix S apply: The Dijkstra algorithm is popular because of its

simplicity [13]. If runtime is a major concern, the A* algorithm should be considered

as an heuristic extension of Dijkstra [21]. If negative weights are to be considered,

the slower Bellman-Ford algorithm has to be applied, which can even detect negative

cycles [2, 17, 34], while the Floyd-Warshall algorithm fails at the latter [16, 38].

Note that the the value sij in weighted graphs is sometimes denoted as flow.

1In case of directed graphs, a second weighting function is necessary to weight edges in dependence

on their direction. Note that for molecular graphs only undirected graphs are considered.
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2.2 Dicretization of shortest paths lengths in weighted graphs

The calculation of the rMIF for molecular sequences takes discrete spatial distances

between the contained molecular units (in terms of the label set A), e.g. nucleotides

or amino acids. Thus, the utilization of rMIF for weighted graphs requires a respec-

tive discretization of the shortest path lengths sij. This can be achieved by various

strategies explained in the following without any claim to completeness but motivated

by the biochemical applications in mind.

• Number of edges corresponding to a least flow: A simple approach is

to define the discretized distances dij ∈ N as the minimum number of edges in

a shortest path corresponding to the flow value sij. All distances dij form the

discretized distance matrix D.

• Dominating distance of shortest path: Let smax = maxij(sij) and smin =

minij(sij) be the maximum and the minimum flows in G, respectively.

A partition Pn of the closed interval [smin, smax] is determined by a set P =

{ ζ0, ζ1, ζ2, . . . , ζn } of values ζi < ζj for i < j such that smin = ζ0 and smax = ζn.

Consequently, the interval [smin, smin] can be seen as the union

∪n
k=1Ik = [ζ0, ζ1] ∪ (ζ1, ζ2] ∪ . . . ∪ (ζn−1, ζn]

of the intervals Ik.

We define the discrete distance dij regarding the flow sij as the dominating

distance with respect to Pn, i.e. dij takes the value ζk for which sij ∈ Ik holds.

As before, all dij generate the discretized distance matrix D.

The granularity of the partition taken as the number n of intervals Ik is subject to

choice as well as the distribution of the boundary values ζi under the constraints

of ζi < ζj for i < j being valid. Frequently, equi-distances are used.

We remark at this point that D is symmetric with zero diagonals in case of undi-

rected graphs. Further, it is worth to be mentioned that the final calculation of

the (discretized) distances based on the flow values may incorporate explicit domain

knowledge of the application in mind.

Let the set T (D) = {τ1, . . . , τM} be the minimum ordered set of values τk with

τk < τk+1 such that all matrix entries dij of the distance matrix D are contained in

T (D), i.e. dij ∈ T (D) holds. We denote T (D) as the support of D.

2.3 Calculation of the joint and marginal probabilities and

the mutual information function variants

Let G = GV,E,A
l,w be a given graph. The quantity
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pτ (li, lj) = p (li = l (vk) , lj = l (vm) |dkm = τ, k,m = 1, . . . , N)

denotes the joint probability of co-occurence of the labels li, lj ∈ A at distance τ ∈
T (D) regarding the graph G with the corresponding discretized distance matrix D

and its support T (D), as defined previously. Let p (li) be the overall probability of

the label li ∈ A in the graph G. Further, let p (li, τ) =
∑

j pτ (li, lj) be the marginal

probability of the label li in front of a node pair with distance τ between the nodes.

Analogously, the marginal probability q (lj, τ) =
∑

i pτ (li, lj) is the probability of label

lj in the back of a node pair with distance τ .

Using the τ -dependent marginals p (li, τ) and q (lj, τ) the Shannon Mutual infor-

mation function (MIF) is given as

F (G, τ) =
∑

li∈A

∑

lj∈A
pτ (li, lj) · log

(
pτ (li, lj)

p (li, τ) · q (lj, τ)

)

whereas the Rényi mutual information function (RMIF) is obtained as

FR
α (G, τ) =

∑

li∈A

∑

lj∈A

(pτ (li, lj))
α

(p (li, τ) · q (lj, τ))α−1

in agreement with [4]. The resolved mutual information function (rMIF) is defined as

F (li, τ) =
∑

lj∈A
pτ (li, lj) · log

(
pτ (li, lj)

p (li, τ) · q (lj, τ)

)

and the resolved Rényi mutual information function (rRMIF)

FR
α (li, τ) =

∑

lj∈A

(pτ (li, lj))
α

(p (li, τ) · q (lj, τ))α−1

is calculated accordingly.

If the τ -dependence is dropped, one has to replace p (li, τ) by p (li) and q (lj, τ) by

p (lj), respectively.

Further, we can consider the quantities

F (li, lj, τ) = pτ (li, lj) · log

(
pτ (li, lj)

p (li, τ) · q (lj, τ)

)

and

FR
α (li, lj, τ) =

(pτ (li, lj))
α

(p (li, τ) · q (lj, τ))α−1

which are just the point-wise mutual informations proposed in [7] and used by [8, 32]

in other contexts.

For a deeper derivation of the rMIF concepts and a placement in the larger context

of information theory we refer to the paper [4].
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3 Adaptation of grMIF to Structural Formulas

We consider a structural formula represented by the graph GV,E,A
l,w = (V,E,A, l, w)

where the label function l : V → A assigns IUPAC (International Union of Pure and

Applied Chemistry) atom types to each node in the graph and w : E → R is an edge

weighting function incorporating domain knowledge. For the pure structural formula

it is just a numerical representation of the bonding types (order), e.g. single (1),

aromatic (1.5) and double (2). Alternatively, different weightings could be applied

reflecting other relationships between the atoms. The label alphabet A has to be

chosen in dependence on the given task. For example, investigations of simple organic

compounds may use atoms from A = { S,C,H,N,O,P }. Otherwise, the hydrogen

atoms could be dropped because respective bounding information may be derived

from the molecule graph. Alternatively, we could label the nodes of the molecule

graph according to the atom’s physico-chemical properties, e.g. as hydrophobic (H),

aromatic (R), acceptor (A) and donor (D). These were used in [19, 12].

4 Conclusion and Future work

In this report, we have introduced a technique to extend the use of the mutual infor-

mation function to graph-like entities with potential (real-world) applications in both,

the chem- and bioinformatics domain.

The interaction information is a promising concept for deeper investigations. It

is a generalization of the mutual information for more than two variables [24, 30]. In

contrast to the MI, it can take on negative and positive values. Further, a value of

zero does not correspond to no interaction, making the interpretation at least difficult

[27]. However, in the graph context this might help to better capture more intricate

correlations within molecules.

If a connectivity relation is ensured that includes spatial interrelations, the grMIF-

approach can also be adapted to the application on 3D structures such as proteins.

Of course, the provided grMIF can be used for characterization of graphs in contexts

other than chem- or bioinformatics. In particular, it would be interesting to investigate

social networks in terms of those information theoretic features.

An open question is, whether it is possible to extend the grMIF-approach to the

multi-labeling case for the nodes in a meaningful manner.
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