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Abstract

In this work we propose extensions of the Neural Gas algorithm and its application for
time-series prediction, i.e. more general for function approximation. We consider math-
ematical aspects of respective prototype-based frameworks for regression learning and
provide generalizations of the fuzzy-labeled Neural Gas for this setting.
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Regression Neural Gas: Extension of Standard Neural Gas and its application for function
approximation.

1 Introduction

Learning of complex relations between data is still a challenging task, if the respective
models is required to be interpretable to a great extent. For those task, prototype-
based models for underlying data space partition by vector quantization seems to be
promising and robust methods, which are recommended for use in complex learning
systems to maintain robsutness, stability and interpretability [Li et al. (2018), Rudin
et al. (2022) Lisboa et al. (2023)].

Various methods have been proposed to combine data (vector) representation al-
gorithms like k-means or self-organizing maps (SOM) with approximation or regression
techniques, see for example Moody and Darken (1989) and Hecht-Nielsen (1987), re-
spectively. In particular, the Counterpropagation network (CPN) proposed by Hecht-
Nielsen (1987) consists of a SOM-layer followed by a perceptron layer for classification
or regression predictions. However, the training of the SOM-layer is independent of the
subsequent perceptron-layer. Hence, the unsupervised representation learning is not
adjusted to the following supervised learning for the prediction task. In contrast, the ra-
dial basis function network (RBFN) by Moody and Darken (1989) can be trained in both
modes hybrid or supervised. In this paper, the hybrid mode describes those algorithms
where the representation algorithm is only used for the partitioning of the data space
independently from the subsequent or simultaneously learned regression task. The su-
pervised mode algorithms aim to adjust the representation learning alsi in dependence
of the regression (or classification) problem. In this sense, a supervised extension of
the CPN was proposed by Kaden et al. (2021) and a generalization to RBFN can be
found in Poggio and Girosi (1989). Furthermore, Grbovic and Vucetic (2009) extended
the learning vector quantization algorithm established by Kohonen (1995) for a classifi-
cation learning to a regression approach. In this work, we suggest to apply Neural Gas
network (NG) proposed by Martinetz et al. (1993) for robust ancd accurate representa-
tion learning, which has been used also for time-series prediction. Yet, we extend this
approach allowing on the one hand side polynomial transformations of the data and, on
the other hand, incorporate neighborhood information of the representing prototypes
also into the regression learning scheme.
In section 2 - 3 we provide the necessary mathematical theory and basis for our work
as well as present NG and other related approaches for regression learning. In section
4 we present our new model and 5 concludes this technical report by final remarks.

2 The Neural Gas Network

The Neural Gas Network (NG) is an unsupervised vector quantization method improv-
ing k-means and self-organizing maps [Kohonen (1982), Martinetz et al. (1993)]. The
network consists of artificial neurons N = {1, ..., k} ⊂ N+ equipped with weight vectors
but here interpreted as prototypes (reference vectors) P = {p1, ...,pk} ⊂ Rn for data
representation. To create a network response, we suppose a given data sample (stim-
ulus) x from the data set X ⊆ Rn. The response of the network to the given stimulus
x obeys the winner-takes-all rule (WTA-rule):

ν(x,P) = argmin
j∈N

d(x,pj) , (1)
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with d(x,p) as a differentiable dissimilarity measure, which commonly is chosen as the
squared Euclidean norm, i.e. d(x,p) = ||x − p||2E = (x − p)2. Thus, the stimulus x
gets assigned to the neuron s = ν(x,P) ∈ N also denoted as winner neuron, which
results in the smallest distance d(x,ps) of x to the prototype-set P . Further, the set P
generates a Voronoı̈ decomposition V = {V1, ..., Vk} of the data space X by means of
the WTA-rule (1), i.e.

Vj = {x ∈ X |ν(x,P) = j}

is valid.
To adapt NG to the dataset X , Martinetz et al. (1993) proposed an adaptation rule

for the prototypes P which incorporates a kind of neighbourhood cooperativeness of
the neurons in implicit dependence on the winning neuron s by means of their assigned
prototypes: Particularly, for a stimulus x every prototype pj is updated according to

∆pj = −ϵ · hλ(x,pj,P) ·
∂d(x,pj)

∂pj

. (2)

where the function hλ(x,p,P) realizes the neighbourhood-cooperativeness and is de-
fined as

hλ(x,pj ,P) = exp

(
−rk(x,pj ,P)

λ

)
, (3)

which depends on the current winning rank rk(x,pj ,P) of the prototype pj for a given
stimulus x and, hence, implicitly depending on the winning prototype ps. Thus, all
prototypes pj are attracted towards x depending on their dissimilarity. Thereby, the
rank function is calculated as

rk(x,pj ,P) =
∑
l∈N

H(d(x,pj)− d(x,pl)) , (4)

where H(z) is the Heaviside step function, i.e. H(z) = 1 ⇐⇒ z > 0 and 0 else holds.
Considering X as a medium (gas) and λ as a viscosity-parameter with the property
λ

t→∞−−−→ 0 supposed to be valid for the training time t, the resulting dynamic resem-
bles Brownian-particles (the prototypes) in a potential. This view is mathematically
described by the energy function of NG:

ENG = E(X ,P , λ) = η(λ)
∑
j∈N

∫
x∈X

P (x) · hλ(x,pj,P) · (x− pj)
2dx , (5)

where P (X ) is the (unknown) data distribution and η(λ) is a normalization constant
depending on λ. It will be omitted in the rest of this paper for simplicity.

2.1 NG for Time-series Prediction

Moody and Darken (1989) as well as Hecht-Nielsen (1987) inspired Martinetz et al. (1993)
to extend the NG to a predictor for time-series data (NGTSP). In this view, given Y ⊆ R,
the goal becomes to approximate the input-output mapping f(x) = yx ∈ Y ,∀x ∈ X
by an ensemble Π = {π1, ..., πk} of local predictors. The resulting model is a hybrid
scheme of a pre-initialized NG and the local predictors. In particular, the predictors πj

are only responsible for the data contained in the corresponding Voronoı̈-cell Vj using
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(1). In this way, each neuron is equipped with an adaptive predictor πj : Rn → Rm.
This strict locality is one of the major differences to RBFN but adopted from Hecht-
Nielsen (1987). According to this latter approach, Martinetz et al. (1993) defined the
local predictors as linear perceptrons

πj(x) = w⊤
j (x− pj) + bj , (6)

depending on the vector difference dj = x − pj and a weight vector wj ∈ Rn together
with a bias bj ∈ R such that πj : Rn → R ∀x ∈ Vj is valid. Thus, the NG dynamic
first determines the placement of the prototypes and afterwards the predictors are op-
timized by using the cost fucntion

ENGP =
∑
j∈N

∫
x∈X

P (x) · hλ̂(x,pj,P) · (πj(x)− yx)
2dx , (7)

which can be considered as the mean squared error of the approximation. Yet, here
the schedule of λ̂ t→∞−−−→ 0 does not necessarily need to match the one of λ.

3 Fuzzy-Labeled Neural Gas

Villmann et al. (2006) adapted the NGTSP for soft classification resulting in Fuzzy-
Labeled Neural Gas (FLNG). In detail this means, that given classes C = {1, ..., L},
each data sample x can be assigned to one of the L classes in an possibilistic manner,
yielding cx = (c1, ..., cL) with cj ∈ [0, 1]. However, other than in NGTSP, where the
local predictors have the range R(πj) ⊆ R, in FLNG R(πj) ⊆ [0, 1]L is assumed. Thus,
following the prediction steps of NGTSP for a stimulus x, the response of FLNG is
obtained as

πs(x) = cps
, (8)

with s = ν(x,P), which results in assigning the possibilistic class vector of the closest
prototype ps to stimulus x.
The resulting cost-function was defined by Villmann et al. (2006) as

CFLNG = β · ENG + (1− β) · EFL , (9)

with β ∈ [0, 1] as a balancing parameter between the energy function ENG of NG and
the error caused by the fuzzy-labeling term EFL. This term can be defined either in a
discrete manner by

EFL = EFLD =
1

2

∑
j∈N

∑
x∈X

hλ(x,pj,P) · (πj(x)− cx)
2 , (10)

with hλ(·) determining the neighbourhood-cooperativesness or as

EFL = EFLC =
1

2

∑
j∈N

∫
x∈X

P (x) · gγ(x,pj) · (πj(x)− cx)
2dx , (11)

for the continuous case. In (11) the neighbourhood-cooperativeness of NG is replaced
by gγ(·) which is a smooth function depending on the stimuli, as well as on the proto-
types. It was considered to be a Gaussian-kernel depending on the dissimilarity of the
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prototypes and the stimulus, as well as a sigmoidal approximation of the rank-function
rk(·) in (4).

In consequence, the prototypes during training receive an update which is depen-
dent on the error caused by the fuzzy classification, which is in addition to the prototype
update of the unsupervised NG. Hence, this scheme yields a representation in terms
of a supervised scenario controlled by the weighting factor β.

4 Regression Neural Gas

For our contribution we will combine the supervised ideas of FLNG and the approxima-
tion approach of NGTSP, while keeping the advantage of parameter reduction and per-
formance maintenance towards RBFN (Martinetz et al. (1993)). However, when consid-
ered for regression tasks, NGTSP shows several flaws, which result from the predictor
definition in (6). These flaws are mostly related to the distance vector dj = (x− pj). In
particular,

1. for dense clusters in X it is likely that dj → 0, yielding:

πj(x)
dj→0
= bj , (12)

showing that the prediction for stimuli which are close to the prototype, is likely to
be estimated as the offset.

2. prototype-based linear regression models defined in a WTA-scheme (1) induce
a symmetry, that is assuming x1,x2 ∈ Vj and xl = pj + αl · t for l ∈ {1, 2}, i.e.
we can draw a line through the prototype pj connecting x1 and x2. However,
due to the definition in (6) dj causes the prediction for such a case to be mainly
compensated by the offset bj. Thus, considering the prediction of xl, we obtain

πj(xl) = w⊤
j (xl − pj) + bj (13)

= w⊤
j

[
(pj + αl · t)− pj

]
+ bj (14)

= αl ·w⊤
j t+ bj . (15)

Now, since x1,x2 are connected by a line going through pj, we can consider the
case −α1 ≈ α2, yielding for the respective predictions

πj(x1) = α1 ·w⊤
j t+ bj , (16)

and for x2

πj(x2) = α2 ·w⊤
j t+ bj (17)

≈ −α1 ·w⊤
j t+ bj , (18)

showing that such predictions are nearly (depending on ≈) symmetric at the point
bj and differ in sign for bj = 0. However, combining 1. and 2. gives that an good
estimate for bj is crucial for the performance of NGTSP, which when considered
for regression tasks must not be sufficient, taking into account, that the placement
of the prototypes is not influenced by the approximation.
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Following the above considerations, we drop the defintion in (6) for a regression model
and define instead

π̃j(x) = w⊤
j x̃+ bj , (19)

where x̃ can be the stimulus x itself or any transformation x̃ = T (x) (e.g. a polynomial
transformation) allowing also for non-linear regression architectures and thus for more
flexibility.
Note, that in the trivial case x̃ = x, the symmetry consideration can still be applied,
however expressing x = pj + αx · t, yields

πj(x) = w⊤
j pj + αx ·w⊤

j t+ bj , (20)

where we find that a differing sign is further compensated by pj itself.
Furthermore, note that d̃j = T (dj) is also possible, however care needs to be taken
when chosing T (·), since d̃j → 0 in 1. might be aggravated.

Moving on with the definition in (19) and combining this with the supervised ap-
proach of FLNG, we arrive at the outline of the cost function for a model we call Re-
gression Neural Gas (RegNG)

ERegNG = β · ENG + (1− β) · EReg , (21)

with EReg as the regression error caused by the current prototype placement, which is
defined as

EReg =
∑
j∈N

∫
x∈X

P (x) · gγ(x,pj) · (π̃j(x)− yx)
2dx . (22)

Which can be interpreted as an supervised alternative to NGTSP.
Yet another approach is to additonally modify the NG dynamic in terms of the prediction.
For this we alternate the rank function (4) of NG to be dependent on the predictors
than on the prototypes, which we call regression-sensitive ranking rkRS. Considering
an arbitrary π̃r yields

rkRS(x, π̃r,Π) =
∑
j∈N

H (ρr(x)− ρj(x)) , (23)

with
ρj(x) = (π̃j(x)− yx)

2 . (24)

Consequently, we replace the function hλ(·) in (3) by

hRS(λ,x, π̃r,Π) = exp

(
−rkRS(x, π̃r,Π)

λ

)
. (25)

We will refer to this model as Regression-Sensitive Neural Gas (RegSeNG) describing
the cost function

ERegSeNG = β · ERSNG + (1− β) · EReg (26)

where ERSNG describes the NG energy function (5) in which the neighbourhood-function
(3) is replaced by (25).

6 Machine Learning Reports



Regression Neural Gas: Extension of Standard Neural Gas and its application for function
approximation.

5 Conclusion

In this work we provided new techniques to combine regression related tasks with
prototypical frameworks. Such models are often more sparse in terms of number of
weights, since the approximation task is subdivided into smaller problems, due to the
locality of vector quantization models.
Subsequent work will rely on experiments as well as further extensions like the consid-
eration of relevance learning.
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