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Abstract

Spectra are typically interpreted by means of their peak lists. Thereby the generation of
a peak list for a single spectrum is done using a peak picking algorithm. Peak lists ob-
tained by multiple spectra which have something in common, e.g. are generated from
similar sample sources, have to be combined to make more complex machine learning
approaches or statistical analysis applicable. Here we present an order insensitive ap-
proach to combine multiple peak lists for mass spectrometric (MS) or nuclear magnetic
resonance (NMR) metabolite measurements. The approach employs a specific batch
variant of a clustering algorithm. Experimental results for MS data are given.
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1 Introduction

The analysis of biological samples is a common task in many life science disciplines.
Prominent techniques to analyse such samples are given by mass spectrometry (MS)
and Nuclear magnetic resonance spectroscopy (NMR). Typical fields where such tech-
niques are applied, are the analysis of small molecules, e.g. metabolite studies or
medium or larger molecules, e.g. peptides and small proteins in case of mass spec-
trometry [SRS+03, KHT+05, PFL+03]. Both techniques have their own specifics but the
common concept of peaks or peak lists, which cover the most relevant information ex-
tracted by the measurement process. Peak lists can be considered as a compressed,
information preserving encoding of the originally measured spectra. While an appro-
priate generation of a peak list is a complex task, here we focus on the combination
of multiple peak lists. The combination of peak lists is relevant if one is interested in
comparisons between multiple spectra - encoded by means of peak lists - or group
comparisons e.g. cancer and control group, which contains huge sets of spectra or
peak lists. The most common approach is, to generate a common peak list at the
beginning of the experiment by e.g. averaging all measured spectra. Subsequently
only one peak list is calculated based on the average spectrum [KHT+05, MCK+05].
Although this approach is easy and frequently sufficient, it has some important draw-
backs. One the one hand side, as pointed out in [MCK+05], the averaging improves the
signal to noise (S/N) ratio of the spectra and therefore makes the application of a peak
picking algorithm easier, such that also small peaks can be easily picked. This ap-
proach works fine, if the spectra belong to a common set or two groups of similar size,
with similar content to be analyzed. However the averaging over multiple imbalanced
and non-similar data may lead to significant prune out effects in the obtained average
spectrum. Hence a peak list generated on the basis of such a spectrum is loosing
significant information. To overcome this problems peak lists on single groups1 or on
single spectra can be generated. This is the best way to preserve the peak informa-
tion obtained by the single spectra. However a peak picking on single spectra reveals
problems with respect to S/N leading to a more complex peak picking. Further, peak
lists obtained from spectra of the same sample show differences. Hence an approach
to combine peak lists with some information overlap is needed.

A possible solution of the above outlines problems would be the application of a
clustering algorithm on the peak lists which combines peaks which are close to each
other. Here it is necessary that the clustering algorithm should be able to generate
order independent clusterings such that small changes on the measurement region
will not strongly interfere to the final peak lists. Such a modification may e.g. happen
if the mass range on a MS measurement is trimmed such that parts of the spectra
are removed. This, of course, will remove peaks from the peak lists and a subse-
quent clustering should not completely dump with respect to the non-pruned spectrum.
Another point is the number of peak lists, which have to be combined. This number
may be quite high e.g. multiple thousand peak lists with at least 100 peaks per peak
lists such that the number of peaks or data points considered in the clustering easily
become a million. Hence a quick optimization is needed, whose complexity scales fa-
vorable with the number of peaks or data points. Further, the number of cluster is not

1This may also result in problems because multiple labellings of the data may have a strong impact
on the final common peak lists.
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known beforehand but only a raw guess can be made. Generic clustering algorithms
tend to represent cluster with large densities and to suppress or ignore clusters with
only few datapoints. This challenge has also to account for by an appropriate peak list
combination algorithm.

The report is organized as follows. First, an introduction to the neural gas algo-
rithm as an appropriate clustering algorithm is given and its batch variant is explained
in more details. Subsequently some remarks on magnification control for batch-NG
and an heuristic of deSieno is explained which gives a better information preserved
encoding of the peak lists such that also peaks with only few representants are still
sufficiently presented. In the experimental section the approach is explained for MS
data in comparison to a standard averaging approach.

2 Clustering by Batch Neural Gas

Neural gas is an unsupervised prototype based vector quantization algorithm. It maps
data vectors v from a (possibly high-dimensional) data manifold V ⊆Rd onto a set A of
neurons i formally written as ΨV→A : V → A. Inputs are denoted by v and V ⊆ RDV

is a finite set of inputs v. Neural Gas (NG) uses a fixed number of prototypes (weight
vectors, codebook vectors). Let W = {wr} be the set of all codebook vectors. The
step of vector quantization is implemented by the map Ψ as a winner-take-all rule,
i.e. a stimulus vector v ∈ V is mapped onto that neuron s ∈ A the pointer ws of which
is closest to the presented vector v,

ΨV→A : v 7→ s (v) = argmin
r∈A

d (v,wr) (1)

with d (v,w) being an arbitrary distance measure, usually the squared euclidean met-
ric. The neuron s is called winner or best matching unit. The subset of the input space
Ωr = {v ∈V : r = ΨV→A (v)}, which is mapped to a particular neuron r according to
(1), forms the (masked) receptive field of that neuron. Standard NG training adapts the
prototypes to represent the data as accurately as possible.

During the adaptation process a sequence of data points v ∈ V is presented to the
map with respect to the data distribution P (D). Each time the current most proximate
neuron s according to (1) is determined. The vector ws as well as all vectors wi of
neurons in the neighborhood of ws are shifted towards v, according to

4wi = −εhσ (v,W, i)
∂d (v,wi)

∂wi

. (2)

The property of “being in the neighborhood of ws” is captured by the neighborhood
function

hσ (v,W, i) = exp

(
−ki (v,W)

σ

)
, (3)

with the rank function

ki (v,W) =
∑

j

θ
(
d (v,wi)− d

(
v,wj

))
(4)

counting the number of pointers wj for which the relation ‖v −wj‖ < ‖v −wi‖ is valid
[MBS93]. θ (x) is the Heaviside-function. It should be mentioned that the neighborhood
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function is evaluated in the input space. The adaptation rule for the weight vectors
follows in average a potential dynamic according to the potential function [MBS93]:

ENG =
1

2C (σ)

∑
j

∫
P (v) hσ (v,W, j) d

(
v,wj

)
dv (5)

with C (σ) being a constant. It will be dropped in the following. It was shown in many
applications that the NG shows a robust behavior together with a high precision of
learning. Recently a batch variant of NG has been proposed in [CHHV06] which gives
similar results, whereby for each update step of the prototypes all data points are con-
sidered into one step. This variant of NG is very efficient [CHHV06]. It can be extended
to an information optimal variant by means of a magnification control scheme [HHV07].
This approach gives an improved coding also for cluster sets with a small number of
items by magnification control, but is quite complex due to multiple density estimations.
Here we consider a one dimensional problem (only mass positions) and a simple but
effective alternative: the rule of deSieno [DeS88], will be investigated which approxi-
mates the magnification control effect for low dimensional data in the light of information
optimal coding. The corresponding extension for NG is presented in the next section.

2.1 Magnification Control for Batch Neural Gas

We now briefly review the concepts of magnification control for Batch NG as given in
[HHV07]. A characteristic property of vector quantizers consists in a selective mag-
nification of regions of interest. This corresponds to a specific connection between
the density of prototypes and stimuli. Usually, regions with high data density attract
more prototypes than regions which are only sparsely covered by the data. An infor-
mation theoretic optimum magnification factor corresponds to an exact adjustment of
the prototypes according to the underlying data distribution i.e. α = 1. That means,
the amount of data is the same for the receptive field of every prototype. In this case,
the information, which is conserved substituting the points in a receptive field by its
prototypes, is maximized. For a variety of popular alternatives, however, the magnifi-
cation follows a power law with exponent different from one.Popular methods include
local learning, where the learning rate of the training algorithm is adjusted according to
the local data density; winner relaxing strategies where the learning rate of the winner
is enlarged by an additional correction to achieve optimum information transfer; and
convex and concave learning where an exponent is added to the adaptation vector of
the prototypes into the direction of the actual data point. In all cases, magnification
control changes the learning scheme and allows to achieve a magnification factor one
or beyond. An explicit control is particularly interesting for application areas where
rare events should be suppressed or, contrarily, emphasized. A magnification factor α
larger or smaller than one, respectively, allows to achieve this goal. Explicit magnifi-
cation control has proven beneficial in several tasks in robotics and image inspection.
In this paper the task of peak lists combining is a 1-D problem and a magnification for
data space regions with sparse distributed data points (e.g. rare but relevant peaks)
may be desired.

The magnification factor of online NG is α = D/(D + 2) [MBS93], D being the
intrinsic (Hausdorff) dimension of the data manifold of stimuli. Thus, it is different from
α = 1 in general. It approaches 1 only for very large intrinsic dimensionality, which
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is usually not the case. The magnification factor can be controlled using e.g. local
learning, as already mentioned above. Local learning changes the learning rate by a
factor depending on the local data density [Vil00]. It constitutes an intuitive learning
scheme which is plausible from a biological point of view. We will focus on the local
learning method in the following using Batch-NG. For Batch-NG the same magnification
factor as for the online NG: D = D/(D +2) can be observed [HHV07]. Here, we review
magnification control for batch NG by including local learning into the update formulas.
The link becomes possible because local learning can be related to a modified cost
function which can be optimized in the batch mode. Intuitive update formulas arise
where the new prototype locations are determined as the average of the data points
weighted according to the rank and the local data density. As for standard batch NG,
one can prove the convergence of batch optimization of this altered cost function.

For low intrinsic dimensionality D, which is often the case in concrete settings, the
magnification factor is considerably smaller than 1. This has the consequence that re-
gions of the input space with low data density are emphasized. Local learning extends
the learning rate by a factor which depends on the local data density:

δwi = ε0 · P (ws(vj))
m · hλ(ki(vj,W)) · (vj − wi)

where ε > 0 is the learning rate and s(vj) is the winner index for stimulus vj. P is the
data density, m > 0 is a constant which controls the magnification exponent. The factor
P (ws(vi))

m vanishes for m = 0 leading to standard NG. For this online learning rule, the
power law p(wi) ≈ P (wi)

α results where

α′ = (m + 1) · α = (m + 1) ·D/(D + 2)

as shown in [Vil00]. The information theoretic optimum factor is obtained for m = 2/D.
Larger values emphasize input regions with high density, whereas smaller values focus
on regions with rare stimuli. To apply the learning rule, the distribution P as well as the
effective data dimensionality D have to be estimated from the data (using e.g. Parzen
windows resp. the box counting dimension). Here, we consider the similar learning
rule

δwi = ε0 · P (vj)
m · hλ(ki(vj,W)) · (vj − wi)

where the local density of the location of the stimulus is taken instead of the winner.
The average of this learning rule can be formulated as an integral

< δwi >≈
∫

P (v)m · hλ(ki(vj,W)) · (vj − wi) · P (v)dv

In the limit of a continuum of prototypes, ws(vi) = v holds. Thus, this average update
yields exactly the same result as the original one proposed in [Vil00]. Since the magni-
fication factor of local learning has been derived under the assumption of a continuum
of prototypes with ws(vi) = v, the same magnification factor (m + 1) · α′ results for this
altered learning rule. It has the benefit that it constitutes a stochastic gradient descent
of the cost function

Em(W) =
1

2C(λ)

n∑
i=1

∫
P (v)m · hλ(ki(v,W))× ||v − wi||2 · P (v)dv

as shown in [HHV07].
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Figure 1: Three plots of clustered peak data. Clusterings are generated by Batch-NG
with magnification control using different values for the magnification factor m. Data
are shown as blue ? and prototypes as red ◦ the x-axis shows the mass position of
the peaks in Da whereas the y-axis gives intensity values for the corresponding peaks
mapped to the respective mass position. All plot show a specific region showing the
effect of magnification by means of information optimal coding of prototypes. The left
plot is obtained with a magnification factor m = 0.3 which is close to the regular NG
algorithm with m = 0, subsequent plots have increasing magnification factors of m =
1.0 and m = 2.0 respectively. One can clearly observe that the increasing value of
m leads to a change of the number of prototypes spend for a cluster such that also
regions with lower data density are reliable representable.

Thus, learning schemes which optimize the cost function Em(W) yield a map for-
mation with magnification factor a′. As further pointed out in [HHV07] the cost function
with magnification control for batch NG becomes

Em(W, K) =
1

2C(λ)

n∑
i=1

p∑
j=1

hλ(kij) · ||v − wi||2 · P (vj)
m

with hidden variables kij as in the original batch NG. Thus, a fast batch adaptation
scheme is offered with magnification coefficient (m+1) ·D/(D +2) which can explicitly
be controlled by the quantity m. As beforehand, the local data density P (vj) has to
be estimated e.g. using Parzen windows. The intrinsic data dimensionality D can be
estimated using e.g. a Grassberger-Procaccia analysis such that a value m which
yields optimum information transfer can be determined. The effect of magnification
control in the analysis of peaklists is depicted in Figure 1.
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2.2 Extended Neural Gas by the DeSieno Rule

Vector quantization distributes prototypes at representative positions of the data space,
approximating the data density. Ideally every neuron should win the competition for an
input with the same probability. However popular VQ schemes such as k-means do
not find such an allocation, but tend to overrepresent regions with high data density,
while ignoring regions with rare examples. Subsequently a simple approach presented
by deSieno [DeS88] is reviewed. Magnification describes the relation of the input den-
sity P (w) and the neuron density p(w). This relation is usually expressed by a power
law P (w) ≈ p(w)α. The magnification factor for standard Neural Gas or k-Means is
D/(D + 2) and hence for 1 dimensional data just 1/3. This low factor indicates thats
rare samples are potentially underrepresented by the algorithm. A magnification factor
of 1 corresponds to a perfect match of prototype allocation and data distribution. Dif-
ferent methods have been proposed to control the magnification factor of an algorithm,
thereby the conscience approach of deSieno has been found to be promising with re-
spect to learning time and magnification efficiency. Frequent winners get a penalty
whereas rare winners are boosted. This approach has not been applied to alterna-
tive VQ schemes such as k-means or batch SOM. Here we show the effectiveness of
conscience learning for (batch) neural-gas clustering.

Each neuron wi is equipped with a conscious term bi depending on how often it has
won in competitions. The conscious term bi is subtracted from the distances in the rank
determination (4) such that a bonus or penalty with respect to the winner frequency is
available with:

bi = C ·
(

1

N
− pi

)
and

p′i = pi + B(yi − piold) with 0 < B << 1

Thereby pi ∈ R is a winner count for the neuron wi, B a small learning rate constant
for the winner count update usually B = 0.0001 and C the bias constant provided by
deSieno. C is a constant which is related to the distance of a data point effecting the
solution. The value yi is the winner frequency of each prototype.

The conscience increases for the winner and decreases for all other neurons. For
mass spectrometry data the user defined constant C has been fixed to C = 10000
which is necessary due to the unnormalized data space of mass positions with masses
in the range of 1 − 10kDa and B was chosen as B = 0.0001. Updates of pi are made
after each complete run of the batch Neural Gas such that all samples have been
considered exactly one time. Frequent losers get a huge bonus subtracted from their
distance, frequent winners get a smaller bonus or even a penalty. Thereby the winner
counts are evaluated for all prototypes in the Neural Gas and normalized with respect
to the number of neurons. After a careful long training every neuron wins about the
same number of training inputs and has about the same probability of winning. Here
the de Sieno approach is used only, to improve the current behavior of the standard
batch Neural Gas and long runs are avoided, further a prototype is a proxy for a peak.
Items matched to the peak, or which are in its receptive field, have to be in close
proximity. Due to this constraint an equal winning probability is not desirable for all
prototypes. However even under this limitation an improvement of the magnification
can be observed compared to the standard approach and the representation of sparse
data regions is improved.
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3 Peak aggregation by Batch Neural Gas

The full approach used to combine multiple peak lists comprises the following steps:

1. Calculate single peak lists and an average peak list by analyzing the average
spectrum

2. Remove very common peaks which are already represented by peaks identified
on the average spectrum

3. On the remaining number of peaks the peak aggregation using Batch NG is ap-
plied

4. The obtained reference peaks are analyzed with respect to user constraints

5. The process of peak aggregation is repeated multiple times (5)

6. The final peak list is reported and merged with the initial average peak list.

The calculation of the peak lists on an average spectrum is presented in [KHT+05] and
[MCK+05]. Thereby common peaks are peaks or in this case mass positions which are
already detected on the average spectrum. The average peak list is taken as an initial
reference list and all peaks are matched with respect to this list. Peaks which can be
sufficiently represented by this list (e.g. within a small tolerance in ppm) are removed
from the set of peaks. The remaining peaks are used for batch-NG. Unrepresented
peaks Rp are processed by Batch-Neural-Gas with Magnification control either in the
variant of [HHV07] or using the deSieno approach as presented above. The user can
define a minimal cluster size Mc, this value is used to determine a initial guess for the
number of prototypes Np needed in Batch Neural Gas in accordance to:

Np = Rp/Mc;

if the number of clusters exceeds a predefined threshold e.g. 500 we limit the Np to
this value. The Batch Neural Gas algorithm is applied with at least 1 prototype. After
the clustering the receptive fields are checked and the set of unrepresented items is
reduced by the peaks which are in close proximity of a prototype by means of a minimal
tolerance, such as a peak shift in PPM. Subsequently the obtained peak list is analyzed
with respect to the minimal cluster size such that underloaded prototypes are removed,
also the clarity of the aggregated peak such that only one peak of a single spectrum
is mapped to the receptive field of the prototype is checked. In a post processing
step prototypes can be merged which maybe to close to each other. This process
is iterated multiple times on the remaining unrepresented peaks until all peaks are
sufficiently represented or a upper number of iterations is reached. Finally only those
items are not represented which could not be assigned to a prototype due the the PPM
constrained or which lead to underloaded prototypes. In the last step the obtained peak
list is combined with the initial peak list from the average spectrum and again all peak
positions are analyzed with respect to the above mentioned user constraints. The final
summarized list is reported as the final peak list.
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4 Experimental results

Here we present initial results for peak list aggregation using the presented approach
in comparison to a standard variant as given in [KHT+05]. Thereby we explicitly include
the approach of magnification control by means of magnification control for batch NG
or the simpler approach of deSieno [DeS88] extended for batch neural gas as shown
above. The effectiveness of both approaches on multiple data sets was already shown
in [HHV07] and [DeS88], therefore we are focusing on the application of the methods
in the context of peak list aggregation. In the considered scenario the peaks constitute
a one dimensional data space of mass positions obtained from peak lists of multiple
spectra. They aim is to obtain a common peak list, which is representative for typical
peaks observed in the data. This task has to be realized by a clustering approach - in
this case batch NG, which allows an order independent generation of the aggregated
peak list. For the considered data it can be expected that some mass ranges are dense
filled with peaks and some other are sparse. This is the motivation to incorporate mag-
nification control to get an improved, ideally information optimum coding of the mass
positions by means of prototype locations, forming the final aggregated peak list. It
can be expected that magnification control improves the convergence of the aggrega-
tion procedure and improves the representation properties, such that also peaks which
are rare but sufficiently common are still represented and dense regions are not over
represented by a large number of prototypes.

In the first experiment we consider a synthetic data set of two classes of spiked
and non-spiked proteom data measured by MALDI-MS with 25 spectra for each class.
For each spectrum a peak list is generated. A common peak list should be determined.
For the standard approach this common list is obtained by averaging all present spectra
and the application of a peak picking on the mean spectrum. Due to the averaging the
average spectrum shows a better signal to noise (s/n) ratio such that only peaks with a
S/N ≥ 5 are kept. The data are depicted in a (top view) in Figure 2. The obtained ag-
gregated peak list of the standard approach with respect to a batch-NG variant without
magnification control leads to exactly the same number of 41 peaks, which is a random
effect. However, a closer inspection shows that the lists are in fact not identical. For
the single peak list approach using batch NG three peaks in the lower mass range
1707Da, 1773Da, 1954Da are listed which are not part of the standard peak list but are
correct detected. For the standard list three optional peaks 2721Da, 2744Da, 2764Da
are detected which have very low intensities and are not detected in the batch ap-
proach because there S/N ratio was to bad such that they have been screened out in
advance. These results show that the batch-NG can be successfully applied for this
task and is able to generate an aggregated list of peaks.

In a subsequent analysis the batch-NG with magnification control and the batch-NG
with the deSieno rule where applied. In both cases we obtain again very similar peak
lists to the already obtained lists. For the batch-NG with magnification we observed
quite long runtimes which can be related back to the integrated density estimations
needed for magnification control, which has to be calculated once at the beginning of
the batch NG algorithm. As pointed out in the iterative aggregation algorithm (IAA) the
used aggregation method is applied multiple times, hence this additional computational
effort is a not neglectable. Considering the runtime of the single NG run, without the
costs for density estimations, the NG achieved a fast convergence and the obtained
lists did already fit quite well the additional constraints stated in the IAA. Hence, a
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Figure 2: Gel view of synthetic data of proteom spectra. The data set consists of 25
spiked and 25 non spiked spectra.

smaller number of iterations was needed to obtain a sufficient representation of the
peaks by means of an aggregated peak list. Nevertheless the computational effort was
still quite high, due to the density estimation. Considering the approach of deSieno
for batch-NG the following results were obtained. The peak lists generated in a single
run were in general less perfect with respect to information optimal coding than those
obtained by batch-NG with magnification control but in average better than the peak
lists without any magnification control method. This again improved the convergence
of the overall IAA method. The finally obtained peak list was again similar to the already
obtained lists using batch-NG with magnification control but the procedure was faster
also with accounting of the additional effort of the deSieno rule.

5 Conclusions

A method for the combination of multiple peak lists has been presented. This task is
relevant in multiple fields where group comparisons are made. Here a common peak
list is necessary to make more complex data analysis approaches applicable which
typically rely on a feature matrix.

The presented approach gives an efficient and information optimal way to aggre-
gate multiple peak lists. Thereby multiple constraints such as minimal occurrence
frequency of a peak or peak shift tolerance can be dealed with. Further the chosen
variant of Batch-NG allows a fast less order independent peak aggregation in a newton
optimization scheme.

To obtain an information optimal representation of the peaks in the codebook model
and to improve the convergence performance of the aggregation method, two kinds of
magnification control have been tried. Thereby the best coding was obtained by use
of the magnification control based batch-NG, followed by batch-NG with deSieno. The
most computational effective approach is given by the standard approach. Thereby all
spectra are average and the final peak list is obtained by considering the peak picking
results on the average spectrum. This however is not optimal in case of multiple very
dissimilar classes and hence a more generic approach is desirable. Taking this fact into
account a single peak picking approach is needed and thereby the computational most
effective, by means of runtime and optimal coding, approach was found to the one of
batch-NG using the deSieno rule. This is due to the fact that the necessary modification

10 Machine Learning Reports



Aggregation of multiple peaklists by use of an improved Neural Gas Network

of the batch-NG scheme are relatively simple but the effect on the magnification is still
sufficient to improve the overall performance of the IAA scheme. Hence the following
suggestions can be made. If only two class of approximately the same number of
spectra is analyzed, the average spectrum approach is the most effective one. In
case of multiple classes and/or very unbalanced spectra sets, a single peak picking
approach with an IAA aggregation scheme should be used. Thereby the incorporation
by means of the deSieno rule is most effective with respect to runtime and a reliable
good information coding. For information optimal coding in an IAA scheme the batch-
NG with magnification control is preferable on the drawback of a higher computational
effort.
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