
MACHINE LEARNING REPORTS

Regularization in Matrix Relevance
Learning

Report 02/2008
Submitted: 23.10.2008
Published: 30.10.2008

Petra Schneider1 and Kerstin Bunte1 and Han Stiekema1 and Barbara Hammer2 and
Thomas Villmann3 and Michael Biehl1

(1) University of Groningen, Institute for Mathematics and Computing Science
P.O. Box 407, 9700 AK Groningen - The Netherlands

(2) Clausthal University of Technology, Institute of Computer Science
Julius Albert Strasse 4, 38678 Clausthal-Zellerfeld - Germany

(3) University of Leipzig, Department of Medicine
Semmelweisstrasse 10, 04103 Leipzig - Germany

Machine Learning Reports,Research group on Computational Intelligence,
http://www.uni-leipzig.de/̃compint



Abstract

We present a regularization method which extends the recently introduced Generalized
Matrix LVQ. This learning algorithm extends the concept of adaptive distance mea-
sures in LVQ to the use of relevance matrices. In general, relevance learning can
display a tendency towards over-simplification in the course of training. An overly pro-
nounced elimination of dimensions in feature space can have negative effects on the
performance and may lead to instabilities in the training. Complementing the standard
GMLVQ cost function by an appropriate regularization term prevents this unfavorable
behavior and can help to improve the generalization ability. The approach is first tested
and illustrated in terms of artificial model data. Furthermore we apply the scheme to
a benchmark classification problem from the medical domain. For both data sets, we
demonstrate the usefulness of regularization also in the case of rank limited relevance
matrices, i.e. GMLVQ with an implicit, low dimensional representation of the data.
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1 Introduction

Learning Vector Quantization (LVQ) as introduced by Kohonen is a particularly intuitive
and simple though powerful classification scheme [Koh97, Hel02, BGH07] which is very
appealing for several reasons: The method is easy to implement, the complexity of the
resulting classifier can be controlled by the user, the classifier can naturally deal with
multi-class problems. Unlike many alternative classification schemes such as feed-
forward networks or the Support Vector Machine (SVM), LVQ system is straightforward
to interpret because of the intuitive assignment of data to the class of the closest proto-
type. For these reasons, LVQ has been used in a variety of academic and commercial
applications such as image analysis, bioinformatics, telecommunication, robotics, etc.
Variants of LVQ which can be derived from an explicit cost function are particularly
interesting. Several proposals for cost functions can be found in the literature, one
example being Generalized LVQ (GLVQ) [SY96] which forms the basis for the method
we will consider in this article. However, LVQ and variants often rely on the standard
Euclidean metric which is not necessarily appropriate. This is the case, e.g., for high
dimensional data where noise accumulates and likely corrupts the classification, for
heterogeneous data where the importance and nature of the dimensions differs, and
for data which involves correlations of the dimensions. In these cases, which are quite
common in practice, simple LVQ may fail. So-called relevance learning techniques
[BHST01, HV02, VSH06] aim to optimize the distance measure for the concrete ap-
plication. Generalized Relevance LVQ (GRLVQ) [HV02], is a powerful alternative to
GLVQ which extends the Euclidean distance with scaling or relevance factors for all
features. The weight values are adapted to the data during training in parallel to the
prototypes. The choice of this similarity measure has turned out particularly suitable
in many practical applications since it can account for irrelevant or inadequately scaled
dimensions. At the same time, it allows for straightforward interpretation of the result
because the relevance profile can directly be interpreted as the contribution of the di-
mensions to the classification [HV02]. The recently introduced Generalized Matrix LVQ
algorithm (GMLVQ) [SBH07a, SBH07b, BHS06] constitutes a further generalization of
GRLVQ. The method uses of a full adaptive matrix of relevance factors in the distance
measure which accounts for pairwise correlations of features. By means of an implicit
linear transformation of the data, the algorithm yields a discriminative distance mea-
sure which is particularly suitable for the given classification task. While the flexibility of
the method is widely extended by matrix adaptation, the excellent generalization abil-
ity of matrix LVQ can be guaranteed by means of large margin generalization bounds
[SBH07a, SBH07b, BHS06].
However, metric adaptation techniques may be subject to over-simplification of the
classifier as the algorithms possibly eliminate too many dimensions which makes it im-
possible to reach the best performance (see e.g. [BBL07]).
We develop a regularization scheme for GRLVQ and GMLVQ to prevent the algorithms
from over-simplifying the distance measure. To this end, the original GLVQ cost func-
tion is extended by a penalty term which punishes distinct relevance profiles. We
demonstrate the behavior of the method by means of an artificial data set and one
real world application. It is also applied to GMLVQ with rank limited relevance matri-
ces, i.e. an implicit low-dimensional representation of the data.
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2 Review of Generalized Matrix LVQ

LVQ aims at parameterizing a classification scheme in terms of prototypes. Assume
training data (~ξi, yi) ∈ RN × {1, . . . , C} are given, N denoting the data dimensionality
and C the number of different classes. An LVQ network consists of a number of proto-
types which are characterized by their location in the feature space ~wi ∈ RN and their
class label c(~wi) ∈ {1, . . . , C}. Classification takes place by a winner takes all scheme.
For this purpose, a (possibly parameterized) similarity measure dλ is defined in RN .
Often, the standard Euclidean metric is chosen. A data point ~ξ ∈ RN is mapped to the
class label c(~ξ) = c(~wi) of the prototype i for which dλ(~wi, ~ξ) ≤ dλ(~wj, ~ξ) holds for every
j 6= i (breaking ties arbitrarily). Learning aims at determining weight locations for the
prototypes such that the given training data are mapped to their corresponding class
labels. A very flexible learning approach has been introduced in [HSV05]. It is derived
as a minimization of the cost function

f =
∑

i

φ

(
dλ

J − dλ
K

dλ
J + dλ

K

)
(1)

where φ is a monotonic function, e.g. the logistic function or the identity φ(x) = x which
we use throughout the following, dλ

J = dλ(~wJ , ~ξi) is the distance of data point ~ξi from the
closest prototype ~wJ with the same class label yi, and dλ

K = dλ(~wK , ~ξi) is the distance
from the closest prototype ~wK with any class label different from yi. Taking derivatives
with respect to the prototypes and metric parameters yields gradient based adaptation
rules. Fixing the similarity measure as standard Euclidean metric yields GLVQ [SY96].
The squared weighted Euclidean metric dλ(~w, ~ξ) =

∑
i λi(wi − ξi)

2 where λi ≥ 0 and∑
i λi = 1 constitutes a powerful alternative, Generalized Relevance LVQ [HV02]. It is

particularly suitable for high dimensional data with input dimensions of different (but a
priori unknown) relevance. In Generalized Matrix LVQ [SBH07b, SBH07a], a full matrix
which can account for pair-wise correlations of the dimensions, is used. The metric
has the form

dΛ(~w, ~ξ) = (~ξ − ~w)T Λ (~ξ − ~w) (2)

where Λ is an N × N matrix. The above similarity measure only corresponds to a
meaningful distance if Λ is positive (semi-) definite. We can achieve this by substituting
Λ = ΩT Ω. The matrix Ω can be chosen in several different forms:

(a) Quadratic and symmetric, i.e. Ω ∈ RN×N , Ωij = Ωji

(b) Quadratic and non-symmetric, i.e. Ω ∈ RN×N , Ωij 6= Ωji

(c) Rectangular and non-symmetric, i.e. Ω ∈ RM×N with M < N

Obviously, the quadratic, non-symmetric alternative constitutes a special case of the
rectangular matrix with M = N .
Depending on the shape of Ω, the computation of dΛ in terms of Ω differs. For symmet-
ric matrices Ω we set Λ = ΩΩ and get

dΛ
1 (~w, ~ξ) =

N∑
i,j,k

(ξi − wi)ΩikΩkj(ξj − wj) (3)
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A non-symmetric rectangular (M 6= N ) or quadratic (M = N ) matrix Ω results in

dΛ
2 (~w, ~ξ) =

N∑
i,j

M∑
k

(ξi − wi)ΩkiΩkj(ξj − wj) (4)

To obtain the update rules, the derivatives of (2) with respect to ~w and Ω have to be
computed. The derivative with respect to ~w reads

∂dΛ(~w, ~ξ)

∂ ~w
= −2 Λ (~ξ − ~w) = −2 ΩT Ω (~ξ − ~w) (5)

The different alternatives to formulate dΛ in terms of Ω (Eq. (3) and Eq. (4)) lead
us to two different derivatives of the distance measure with respect to a single metric
parameter Ωlm

∂dΛ
1 (~w, ~ξ)

∂Ωlm

=
∑

j

(ξl − wl)Ωmj(ξj − wj) +
∑

i

(ξi − wi)Ωil(ξm − wm) (6)

∂dΛ
2 (~w, ~ξ)

∂Ωlm

= 2
∑

i

(ξi − wi)Ωli(ξm − wm) (7)

Using Eq. (5), we get the following update rule for the prototypes ~wJ and ~wK

∆~wJ = + α1 · φ′(µ(~ξ)) · µ+(~ξ) · Λ · (~ξ − ~wJ)

∆~wK = − α1 · φ′(µ(~ξ)) · µ−(~ξ) · Λ · (~ξ − ~wK)

with µ(~ξ) = (dΛ
J −dΛ

K)/(dΛ
J +dΛ

K), µ+(~ξ) = 2 ·dΛ
K/(dΛ

J +dΛ
K)2, and µ−(~ξ) = 2 ·dΛ

J /(dΛ
J +dΛ

K)2

The update rule for symmetric Ω results in

∆Ωlm = − α2 · φ′(µ(~ξ)) · (8)(
µ+(~ξ) ·

(
[Ω(~ξ − ~wJ)]m(ξl − wJ,l) + [Ω(~ξ − ~wJ)]l(ξm − wJ,m)

)
−µ−(~ξ) ·

(
[Ω(~ξ − ~wK)]m(ξl − wK,l) + [Ω(~ξ − ~wK)]l(ξm − wK,m)

))

which preserves the symmetry of Ω.
The update rule for non-symmetric Ω yields

∆Ωlm =− 2 α2 · φ′(µ(~ξ)) · (9)(
µ+(~ξ) ·

(
(ξm − wJ,m)[Ω(~ξ − ~wJ)]l

)
− µ−(~ξ) ·

(
(ξm − wK,m)[Ω(~ξ − ~wK)]l

))

After each update, Ω is normalized to prevent the algorithm from degeneration. We set∑
i Λii =

∑
ij Ω2

ij = 1 which fixes the sum of diagonal elements and, thus, the sum of
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eigenvalues of Λ.
Depending on the dimensionality of Ω we term these learning rules Generalized Matrix
LVQ(M ×N ) (GMLVQ(M ×N )) and Generalized Matrix LVQ(N ×N ) (GMLVQ(N ×N )),
respectively.
Note, that Ω realizes a coordinate transformation to a new feature space of dimen-
sionality M ≤ N . The metric dΛ corresponds to the Euclidean distance in this new
coordinate system. This can be seen by rewriting Eq. (2) as follows:

dΛ(~w, ~ξ) = (Ω(~ξ − ~w))2

Thus, the algorithm is not restricted to the original set of features any more to classify
the data. The system is able to detect alternative directions in feature space which
provide more discriminative power to separate the classes. Choosing M < N implies
that the classifier is restricted to a reduced number of features compared to the original
input dimensionality of the data. Consequently, rank(Λ) ≤ M and at least (N − M)
eigenvalues of Λ are equal to zero. Since in many applications, the intrinsic dimension-
ality of the data is smaller than the original number of features, this approach does not
necessarily constrict the performance of the classifier extensively. In addition, it can be
used to derive low-dimensional representations of high-dimensional data.
Note that we can work with one full matrix Λ which accounts for a transformation of
the entire input space, or alternatively, with local matrices attached to the individual
prototypes. In the latter case, the squared distance of data point ~ξ from a prototype ~wj

is computed as dΛj
(~wj, ~ξ) = (~ξ − ~wj)

T Λj(~ξ − ~wj). Localized matrices have the potential
to take into account correlations which can vary between different classes or regions
in feature space. We refer to this general version as Localized GMLVQ (LGMLVQ).

3 Motivation

The standard motivation for regularization is to prevent a learning system from over-
fitting, i.e. the overly specific adaptation to the given training set. In previous appli-
cations of GMLVQ we observe only weak over-fitting effects. Nevertheless, restricting
the adaptation of relevance matrices as outlined above can help to improve gener-
alization ability in some cases. A more important reasoning behind the suggested
regularization is the following: In previous experiments with different metric adaptation
schemes in Learning Vector Quantization it has been observed, that the algorithms
show a tendency to over-simplify the classifier [BBL07, SBH07a], i.e. the computation
of the distance values is finally based on a strongly reduced number of features com-
pared to the original input dimensionality of the data. In case of matrix learning, this
convergence behaviour can be derived analytically for strongly simplified model situ-
ations. The elaboration of these considerations is onging work and will be topic of a
forthcoming publication. Certainly, the observations desribed above indicate that the
arguments are still valid under more general conditions. Frequently, there is only one
feature remaining at the end of training. Depending on the adaptation of a relevance
vector or a relevance matrix, this results in a single non-zero relevance factor or eigen-
value, respectively. Observing the devolution of the relevances or eigenvalues in such a
situation shows that the classification error either remains constant while the metric still
adapts to the data, or the over-simplification causes a degrading classification perfor-
mance on training and test set. Note that these observations do not reflect over-fitting,
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since training and test error increase concurrently. In case of the cost-function based
algorithms this effect could be explained by the fact that a minimum of the cost function
does not necessarily coincide with an optimum in matters of classification performance.
Note that the term φ((dλ

J − dλ
K)/(dλ

J + dλ
K)) in Eq. (1) is smaller, the larger the difference

of the distance from a correct compared to an incorrect prototype. While this effect is
desirable to achieve a large separation margin, it has unwanted effects when combined
with metric adaptation: it causes the risk of a complete deletion of dimensions if they
contribute only minor parts to the classification. This way, the classification accuracy
might be severely reduced in exchange for sparse, ’over-simplified’ models. But over-
simplification is also observed in training with heuristic algorithms [BBL07]. Training
of relevance vectors seems to be more sensitive to this effect than matrix adaptation.
The determination of a new direction in feature space allows more freedom than the
restriction to one of the original input features. Nevertheless, degrading classification
performance can also be expected for matrix adaptation. Thus, it may be reasonable
to improve the learning behavior of the GMLVQ-algorithm by preventing strong decays
in the eigenvalue profile of Λ.
In addition, extreme eigenvalue settings can invoke numerical instabilities. An example
scenario, which involves an artificial data set, will be presented in the Sec. 5.1. Our
regularization scheme prevents the matrix Λ from becoming singular or, in the gener-
alized case of rank limited GMLVQ, maintains a number of non-zero eigenvalues. As
we will demonstrate, it thus overcomes the above mentioned instability problem.

4 Regularized Cost Function

In order to derive relevance matrices with less distinct eigenvalue profiles, we make use
of the fact that maximizing the determinant of an arbitrary, quadratic matrix A ∈ RN×N

with eigenvalues ν1, . . . , νN suppresses large differences between the νi. Note that
det(A) =

∏
i νi which is maximized by νi = 1/N, ∀i under the constraint

∑
i νi = 1.

Hence, maximizing det(Λ) seems to be an appropriate strategy to manipulate the
eigenvalues of Λ in GMLVQ the desired way, when Λ is non-singular. However, since
det(Λ) = 0 holds for Ω ∈ RM×N with M < N , this approach cannot be applied when the
computation of Λ is based on a rectangular matrix Ω. But note, that the first M eigen-
values of Λ = ΩT Ω are equal to the eigenvalues of ΩΩT ∈ RM×M . Hence, maximizing
det(ΩΩT ) imposes a tendency of the first M eigenvalues of Λ to reach the value 1/M .
Since det(Λ) = det(ΩT Ω) = det(ΩΩT ) holds for M = N , we can use the following cost
function to obtain a relevance matrix Λ with balanced eigenvalues close to 1/N or 1/M
respectively:

f̃ = f − η

2
· (ln (det (ΩΩT ) ) ) (10)

where f is defined in Eq. (1). The regularization parameter η adjusts the importance
of the different goals covered by the two terms in f̃ .
Since the regularization term does not include the prototype positions, the update rules
for wJ and wK do not change due to the regularization. The derivative of the regular-
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ization term with respect to metric parameters yields

∂ ln(det(ΩΩT ))

∂Ω
=

∂ ln(det(ΩΩT ))

∂ det(ΩΩT )

∂ det(ΩΩT )

∂ΩΩT

∂ΩΩT

∂Ω

= 2 · (Ω+)T

where Ω+ denotes the Moore-Penrose pseudo-inverse of Ω. For the proof of this deriva-
tive we refer to [PP08]. Hence, using the modified cost function, the parameters Ωlm

are updated as

∆Ωlm = −α2 ·
∂f

∂Ωlm

+ α2 · η · Ω+
ml (11)

where the first term of the update rule is derived in equations (8) and (9) respectively.
The idea can easily be transfered to GRLVQ: the penalty term in Eq. (10) yields
ln(
∏

i λi), since the weight factors λi in the scaled Euclidean metric correspond to the
eigenvalues of Λ in GMLVQ.

5 Experiments

In the following experiments we use different methods to initialize Ω, depending on the
symmetry of the matrix. A diagonal matrix is chosen as initial state, when Ω is sup-
posed to be symmetric. The matrix elements are initialized with uniformly distributed
values in the interval [−1, 1] in case of non-symmetric Ω ∈ RN×N or Ω ∈ RM×N , fol-
lowed by an adequate normalization to guarantee that the eigenvalues of Λ sum up
to one. To initialize the prototypes we choose the mean values of random subsets of
training samples selected from each class.
The learning rates are continuously reduced in the course of training. We implement a
schedule of the form

α1,2(t) =
α1,2

1 + c (t− τ1,2)
(12)

where t counts the number training epochs and τ1,2 denote the starting epoch of proto-
type and metric adaptation. The settings c = 10−4 and τ1 = 1 hold for all experiments.

5.1 Artificial Data

In a first illustrative experiment, the technique is applied to a two-dimensional artificial
data set which constitutes a binary classification problem. The classes correspond
to cigar-shaped clusters with equal prior weights. Raw data is generated according
to axis-aligned Gaussians with mean µ1 = [1.5, 0.0] for class 1 and µ2 = [−1.5, 0.0]
for class 2 data, respectively. In both classes the standard deviations are σ11 = 0.5
and σ22 = 3.0. These clusters are rotated independently by the angles ϕ1 = π/4 and
ϕ2 = −π/6 so that the two clusters intersect. To verify the results, we perform the ex-
periments on five different independently generated data sets. One of these data sets
is visualized on Fig. 1(a).
The initial learning rates are set to α1 = 0.05 and α2 = 0.005 in all experiments. We
choose τ2 = 30 in Eq. (12). Hence, the learning process starts with a phase of pure
prototype training, before the metric adaptation begins. Running the GMLVQ- and
LGMLVQ-algorithm on these data sets we observe that the different global and local
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relevance matrices become singular already after very few sweeps through the train-
ing set. In all experiments the data has to be presented for approximately five times
until the matrices reach the eigenvalue settings one and zero. In case of global ma-
trix adaptation, the resulting classifiers always show substantially different class-wise
classification accuracies. The system determines a 1-dimensional subspace in which
the samples belonging to one class spread only slightly around their prototype. Due
to the nature of the data set, this leads to a very poor representation of the samples
belonging to the second class by the respective prototype and in consequence to a
weak classification performance for this class. This issue is illustrated in Fig. 1(b) and
Fig. 1(e).
The optimization of individual metrics for both prototypes allows to realize that the
distances dJ to the correct prototype are lying in a small range for both classes. Con-
currently, the distances dK obtain very large values for the great majority of data points,
since class 1 samples show a very large variance in the space detected for the class
2 prototype and vice versa (see Fig. 1(f), Fig. 1(g)). The only samples causing mis-
classifications are the data points lying in the overlapping region of the two clusters.
However, since they yield very small values for both distances dJ and dK , they cause
abrupt, large parameter updates for the prototypes and the matrix elements of Ω1 and
Ω2. This leads to instable training behavior and peaks in the learning curve as can
be seen in Fig. 2. In [SBH07a] the problem is corrected manually using a heuristic
approach.
Applying the proposed regularization technique prevents the matrices Λ1,2 from becom-
ing singular and achieves a much smoother learning behavior. Choosing η = 0.01 is
already sufficient to eliminate the peaks in the learning curve (see Fig. 3). The out-
coming relevance matrices exhibit the eigenvalues eig(Λ1,2) ≈ (0.99, 0.01). Comparing
the minimum values of the error plots in Fig. 2 and Fig. 3 depicts that under these pa-
rameter settings, the regularization does not have negative impact on the classification
performance.
An increasing number of misclassifications can be observed for η > 0.1. Fig. 1(d), Fig.
1(j) and Fig. 1(k) visualize the results of running LGMLVQ on the example data set with
the new cost function and η = 0.15. The eigenvalue profiles of the relevance matrices
obtained in these experiments are eig(Λ1) ≈ (0.8, 0.2) and eig(Λ2) ≈ (0.84, 0.16). The
mean test error at the end of training saturates at εtest ≈ 20%.
The problem of singular relevance matrices can also be observed when Λ1,2 are derived
from rectangular matrices Ω1,2. To construct an appropriate test case, we embed the
two-dimensional data set from the previous experiment into R5 by adding 3 dimensions
of uniformly distributed noise in [−1, 1]. We train individual matrices Ω1,2 ∈ R2×5 which
realize coordinate transformations to R2, since the relevant information to discriminate
the classes is lying in a two-dimensional subspace. Fig. 4 depicts the learning curves
for several data sets without regularization and η = 0.05. Due to the additional noise,
the instabilities are not as pronounced as in the two-dimensional space. But it can also
be observed that the regularization clearly reduces fluctuations and prevents numerical
instabilities in the learning phase.

5.2 Diabetes Data Set

In our second experiment, we apply the algorithm to the Pima Indians Diabetes data
set provided by the UCI-Repository of Machine Learning [NHBM98]. The underlying
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Figure 1: (a) Artificial data set, (b) - (d) Prototypes and receptive fields, (b) GMLVQ with
η = 0, (c) LGMLVQ with η = 0.01 (d) LGMLVQ with η = 0.15 (e) Training set transformed
by global matrix Ω (f), (g) Training set transformed by local matrices Ω1, Ω2 obtained with
η = 0 (h), (i) Training set transformed by local matrices Ω1, Ω2 obtained with η = 0.01
(j), (k) Training set transformed by local matrices Ω1, Ω2 obtained with η = 0.15.
In (e) - (k) the dotted lines correspond to the eigendirections of Λ1 and Λ2, respectively.

classification task consists of a two class problem in an 8-dimensional feature space.
It has to be predicted, whether an at least 21 years old female of Pima Indian heritage
shows signs of diabetes according to the World Health Organization criteria. The data
set contains 768 instances, 500 class 1 samples (diabetes) and 268 class 2 samples
(healthy). For our simulations we split the data set randomly into 2/3 for training and
1/3 for testing and average the results over 30 such random splits. As a preprocessing
step, a z-transformation is applied to the data to normalize all features to zero mean
and unit variance.
The initial learning rates are chosen as follows: α1 = 1 · 10−3, α2 = 1 · 10−4 and we set
τ2 = 50 in Eq. (12). Each class is represented by one prototype. We use the weighted
Euclidean metric (GRLVQ) as well as GMLVQ(8× 8) with symmetric Ω, GMLVQ(8× 8)
with non-symmetric Ω and GMLVQ(2 × 8). Here the outcome of training is also a 2-
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Figure 2: Left: Evolution of test set errors during LGMLVQ-Training on three artificial
data sets with η = 0. Right: Coordinates of the class 2 prototype during LGMLVQ-
Training on one data set with η = 0.
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Figure 3: Left: Evolution of test set errors during LGMLVQ-Training on three artificial
data sets with η = 0.01. Right: Coordinates of the class 2 prototype during LGMLVQ-
Training on one data set with η = 0.01.
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Figure 4: Evolution of test set errors during LGMLVQ-Training with Ω1,2 ∈ R2×5 on
three artificial data sets with three additional noise dimensions. Left: Training with
η = 0. Right: Training with with η = 0.05.
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Figure 5: Diabetes data set: Evolution of the relevance values and eigenvalues during
training with GRLVQ and the different GMLVQ-variants without regularization. All ex-
periments are based on the same training data. The plots for GRLVQ, GMLVQ(8 × 8,
sym, non-sym. reflect the weighting of 8 features. GMLVQ(2 × 8) is restricted to 2
features. The effect of regularization is displayed in Fig. 7.

dimensional, discriminating representation of the data. The system is trained for 1200
epochs in total.
Using the standard cost function without regularization, we observe that the metric
adaptation with GRLVQ and the different GMLVQ-methods leads to an immediate se-
lection of a single feature to classify the data. Fig. 5 visualizes examples of the evolu-
tion of relevances and eigenvalues in the course of relevance and matrix learning based
on one specific training set. GRLVQ bases the classification on feature 2: Plasma glu-
cose concentration, which is also a plausible result from the medical point of view.
However, the strong feature selection results in an unstable learning behavior, as can
be seen in Fig. 6, left panel. The learning curves show a distinct minimum and the
error increases when training is continued. The mean test error finally saturates at
εtest = 25.9%.
Fig. 7 (upper left panel) illustrates how the regularization parameter η influences the
performance of GRLVQ. Using small values of η reduces the mean rate of misclassi-
fication on training and test sets compared to the non-regularized cost function. We
observe the optimum classification performance in the training set for values around
η ≈ 0.02. The minimal test error εtest = 24.8% is obtained with η = 0.024. However, the
range of regularization parameters which achieve a comparable performance is quite
small. The classifiers obtained with η > 0.07 already perform worse compared to the
original GRLVQ-algorithm. Hence, the system is very sensitive with respect to to the
parameter η.

In case of GMLVQ-training based on the original cost function, the strong feature se-
lection does not result in a non-monotonic learning curve (Fig. 6, right panel). Re-
markably, no significant differences in the learning behavior can be observed for the
alternative settings of Ω. As depicted in Fig. 7, restricting the algorithms with the pro-
posed regularization method can improve the test error. Note that this mild over-fitting
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Figure 6: Diabetes data set: Evolution of averaged training and test error using the
different considered algorithms without regularization. Left: GRLVQ-Training Right:
GMLVQ(8× 8), sym. (solid line), GMLVQ(8× 8),non-sym. (dashed line), GMLVQ(2× 8)
(dash-dot line).

effect could not be overcome by an early stopping of the unrestricted learning proce-
dure.
We first discuss the results obtained with the matrix adaptation schemes based on
Ω ∈ R8×8. As can be seen in Fig. 7, symmetric and non-symmetric matrices Ω show
a similar response to the regularization. The two curves also share common prop-
erties with the plots obtained for GRLVQ. The classifiers performance increases for
small values of η. Similar to the GRLVQ-experiments, the mean performance on the
test sets reaches an optimum for η ≈ 0.02. Training of symmetric matrices Ω achieves
εtest = 23.4% with η = 0.02 (εtest = 23.9% with η = 0.0). The best performance with
non-symmetric Ω constitutes εtest = 23.4% obtained with η = 0.025 (εtest = 23.8% for
η = 0). The improvement is weaker compared to GRLVQ, but note that the parameter
range of η to achieve this performance becomes wider. Furthermore, for η < 0.02, the
decreasing test errors are accompanied by increasing training errors. Hence, applying
the regularization technique reduces the specificity of the classifier with respect to the
training data and consequently helps to prevent over-fitting.
Fig. 8 (left panel) depicts how the values of the largest relevance factor and the first
eigenvalue depend on the regularization parameter. With increasing η, the values con-
verge to 1/N . Remarkably, the curves are very smooth. GRLVQ shows a stronger
decay for small values of η and reaches the minimum 1/N faster compared to GMLVQ.
Since the penalty term in the cost function becomes much larger for matrix adaptation
with Ω ∈ R2×8, larger values for η are necessary in order to reach the desired effect on
the eigenvalues of ΩΩT . In our experiments, we find η = 2.0 to be necessary to achieve
eig(ΩΩT ) ≈ (0.5, 0.5) (see Fig. 8, right panel). Fig. 7 (lower right panel) shows that
the error on the test set reaches a stable optimum for η > 0.8 (εtest = 23.4% compared
to εtest = 23.8% with η = 0). The increasing test set performance is also accompanied
by a decreasing performance on the training set. The plots depict, that training and
test performance get closer for increasing η. Hence, the regularization supports the
generalization ability of the algorithm.
As explained in Sec. 2, the coordinate transformation defined by Ω ∈ R2×8 allows to
obtain a two-dimensional representation of the data set which is particularly suitable
for visualization purposes. After applying the transformation Ω to the data, the sam-
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Figure 7: Diabetes data set: Mean training errors (circles) and mean test errors (trian-
gles) after training the algorithms with different regularization parameters η.
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Figure 8: Diabetes data set: Dependency of the largest relevance value λ̂ in GRLVQ
and the largest eigenvalue ν̂ in GMLVQ on the regularization parameter η. The figure is
based on the mean relevance factors and mean eigenvalues obtained with the different
training sets after 1200 epochs. Left: Comparison between GRLVQ and GMLVQ(8×8)
with symmetric and non-symmetric Ω. Right: GMLVQ(2× 8).
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Figure 9: Diabetes data set: Two-dimensional representation of the complete data set
found by GMLVQ(2 × 8) with η = 0 (left) and η = 1.5 (right) using one specific training
set. The dotted lines correspond to the eigendirections of ΩΩT .

ples are scaled along the coordinate axes according to the relevances of the newly
detected features, since dΛ corresponds to the Euclidean distance in the new feature
space. Due to the fact that the relevances are given by the eigenvalues of ΩΩT applying
the regularization technique allows to obtain visualizations which separate the classes
more clearly. This property of the regularization method is illustrated in Fig. 9, which
visualizes the prototypes and receptive fields which are obtained in one run. Due to the
over-simplification with η = 0 the samples are projected onto a one-dimensional sub-
space. Visual inspection of this representation does not provide further insight into the
nature of the data. On the contrary, for η = 1.5 the data is almost equally scaled in both
dimensions, resulting in a discriminative visualization of the classes. In addition, we
compute the error on the whole data set using these parameter settings. We observe
that the performance increases in comparison to the unregularized GMLVQ(2×8). The
rates of misclassification are εη=0 = 23.8% and εη=1.5 = 22.4%.

6 Discussion

In this paper we propose a regularization scheme to improve the performance of metric
adaptation techniques in Learning Vector Quantization. We focus on the adaptation of
relevance vectors and relevance matrices by GRLVQ and GMLVQ, respectively. The
standard GLVQ cost function is modified in order to prevent overly strong feature selec-
tion, since this effect may have negative impact on the learning behavior and classifica-
tion performance. Training the prototype positions and the metric parameters is done
by means of gradient descent steps with respect to the regularized cost function. The
method can be applied to the original formulation of GMLVQ as well as to variants which
realize a low-dimensional representation. In several experiments with artificial and real
world data we observe the desired effects on the distance measure. By means of a
regularization parameter it is possible to control the complexity of the relevance profile
which is employed in the distance measure. We demonstrate how our regularization
scheme improves the classification performance, prevents over-simplification and elim-
inates instabilities in the learning dynamics. Among other extensions, future projects
will concern the application of the regularization method in very high-dimensional data.
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There, the computational costs of the matrix inversion which is required in the rele-
vance updates can become problematic. However, efficient techniques for the iteration
of an approximate inverse can be developed which make the method also applicable
to classification problems in high dimensional spaces.
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