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Abstract

In this paper we propose a new approach to combine unsupervised and supervised
vector quantization for clustering and fuzzy classification using the framework of neural
gas vector quantizer. For this purpose the original cost function is modified in such a
way that both aspects, vector quantization and classification, are incorporated. The
theoretical justification of the convergence of the new algorithm is given by an ade-
quate redefinition of the underlying dissimilarity measure, which allows a gradient de-
scent learning as known for the original neural gas algorithm. Thus a semi-supervised
learning scheme is obtained, which can be interpreted as an association learning. This
idea can also be applied for semi-supervised learning of self-organizing maps.
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Abstract

In this paper we propose a new approach to combine unsupervised and
supervised vector quantization for clustering and fuzzy classification using
the framework of the neural gas vector quantizer. For this purpose the
original cost function is modified in such a way that both aspects, vector
quantization and classification, are incorporated. The theoretical justifi-
cation of the convergence of the new algorithm is given by an adequate
redefinition of the underlying dissimilarity measure, which allows a gradi-
ent descent learning as known for the original neural gas algorithm. Thus
a semi-supervised learning scheme is obtained, which can be interpreted as
an association learning. This idea can also be applied for semi-supervised
learning of self-organizing maps.



1 Introduction

Unsupervised and supervised vector quantization by neural maps is still an im-
portant issue. Neural maps are prototype based algorithms inspired by biological
neural systems. Prominent models are the self-organizing map (SOM) and the
neural gas network (NG) [5],|7]. These approaches are designed for data cluster-
ing (NG) and visualization (SOM). Supervised learning vector quantization follows
the idea of prototype based classification preserving the concept of data typical
representation in contrast to support vector machines, which emphasize the class
borders to describe data classes. Well known such models are the family of learn-
ing vector quantizers (LVQ) based on a heuristic adaptation scheme [5], or their
cost function based counterpart named generalized LVQ (GLVQ) [10].

There exist only a few approaches to combine unsupervised and supervised
learning in SOM or NG. The most intuitive one is a simple post-labeling after
unsupervised training. An approach based on a modification of the cost function of
NG and SOM (in the HESKES variant, [3]) are the Fuzzy labeled NG (FLNG) and
the Fuzzy Labeled SOM (FLSOM) |14, 16]. Both approaches add an extra term
to the standard cost function judging the classification accuracy of the prototypes,
which are equipped with a class label to be adapted during the learning together
with the prototype positions. Yet, the theoretical justification is tricky.

In this paper we propose a much simpler ansatz: We incorporate the classifica-
tion error in the standard cost functions of NG by a multiplicative factor. Thereby,
this factor evaluates the classification accuracy based on a quasi metric [9]. This
allows a redefinition of the data metric in such a way that the problem can be
handled in this new quasi-metric space analogously to the original NG equipped
with the Euclidean metric. Thus the structural framework of standard neural gas
is preserved and its convergence properties are transferred to the new model. The
new approach can be seen as a kind of association learning known from [8].

This idea can be analogously transferred to the SOM model using the Heskes
variant [3|. Overall, the new approach can be seen as a kind of semi-supervised
learning. Moreover, the model can be applied to both crisp and fuzzy labeled
data.

2 The Fuzzy Supervised Neural Gas Model

The usual neural gas model assumes data points v € V' C R™ with the data density
P (v) and prototypes w; € R", j =1...N. The cost function to be minimized in



NG is
Bxo =3 [ POo) R (s (vow)) d (v ) dv 0

with a differentiable (in the second argument) dissimilarity measure d (v, w;) usu-
ally taken as the Euclidean distance [7]. The function

1 Gy (vyw) = oxp (-5 ) )
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is the neighborhood function depending on the winner rank

kj(v,w;) = Z@ (d(v,w;) —d(v,w;)) (3)
where
] 0 if <0
O) = { 1 else @)

is the Heaviside function. We remark that hY“ (k; (v, w;)) is evaluated in the data
space V. An input vector v is mapped onto a prototype s by the winner-take-all
mapping rule

s = argmin, (d (v, w;)) (5)
and the learning takes place as stochastic gradient descent ‘%fTN? on Ex¢ according
to o ( )

V, W,
Awj = —hJ (k; (v, w;)) - TJ (6)
j

In the following we develop a new variant of standard NG, which integrates
additional class information into the standard model ending up with a (semi-)
supervised variant of standard NG, which is also applicable to fuzzy classification
problems and therefore denoted as Fuzzy Supervised Neural Gas — (FSNG).

2.1 The FSNNG-Model

First in this section, we shortly mention the earlier approach to deal with fuzzy
labeled data learning in NG - the Fuzzy Labeled Neural Gas (FLNG) and point
out its difficulties. Second, we turn to the new FSNG model, which overcome
some of these problems.



2.1.1 Earlier approaches - the Fuzzy Labeled Neural Gas — FLNG

We start with a brief introduction of FLNG as it was introduced in [14].
suppose C' data classes. Each data vector v is accompanied by a data assignment
vectors ¢, € |0, 1]0 with vector entries taken as class probability or possibility
assignments. Analogously, we also equip the prototypes w; with class labels y;.
The original cost function of NG (1) is extended in FLNG by an additional term
judging the classification ability:

FErine = (1 —7) Exc + vErL (7)

where

By, = Z/P (V) g (v,w;)d (cy,y;)dv

with a dissimilarity measure ¢ (cy,y;) for the class assignment vectors. The pa-
rameter v € [0, 1] determines the influence of the class information with v = 0
yields the standard NG. Hence, the cost function Frpng can be rewritten as

B =3 [P0 [y w0 (v, 9 v 9) 8 ey v

(8)
The neighborhood cooperativeness function g (v,w;) for the label accuracy in
FLNG explicitly takes into account the dissimilarity d (v, w;) between the proto-
type w; and the data vector v but has to be defined differently for discrete and
continuous data distributions. For continuous data the neighborhood function

2
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becomes

Geont (Vv Wj) = €Xp (_

whereas
Gdiscr (V7 WJ) = h(]TVG (kj (V’ W]))

is valid for the discrete setting. In the latter case, the cost function (8) can be
further simplified to

Ering = Z/ hNG kj(v,w;)) D (v,w;)dv

with a new additive distortion measure

D (v,w;) = [(1 =) d(v,w;) + 70 (cv, y;)] - (9)
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The necessary for this distinction in the neighborhood cooperativeness for the
labels is a consequence to assure a valid convergence proof of the algorithm, for
details we refer to [14]. We will see in the following that the new FSNG proposed
here is not affected by such difficulties.

2.1.2 The new Fuzzy Supervised Neural Gas for class association learn-
ing

For the FSNG model, we now consider the cost function
Epsne = ) / P (v)BYC (k; (v, w;)) D. (v, w;, ) dv (10)
J

which is structurally similar to standard neural gas. As for the additive dissimilar-
ity D (v, w;), the new deviation measure D, (v, w;, ), describing the dissimilarity
between data and prototype vectors, takes into account both the usual dissimilar-
ity d (v, w;) between data and prototypes as well as their dissimilarity 0 (cy,y;)
for the class information as introduced for FLNG (9). In the simplest case, both
measures, d (v,w;) and 0 (cy,y;), could be chosen as the Euclidean distance. In
distinction to FLNG, we propose for the FSNG a multiplicative combination

D, (v,w;,7) = (y-0(cy,y;) +e5)- (1 =) -d(v,w;)+£4) — €s&4 (11)

of both dissimilarity measures. Again, the parameter v € [0, 1] determines the
influence of the class information with v = 0 yielding the standard NG. The
additional parameter vector € = (g4,£4) is necessary in D, to prevent unexpected
behavior of the FSNG under certain conditions, which are discussed more detailed
later.

Yet, the winner determination rule (5) now becomes

s = argmin, (D; (v, w;,7)) (12)

in this FSNG model during the learning, with the winner rank function now rewrit-

ten as
N

k] (V7Wj> :Z@(Dé (vajufy) — D <V7Wi77>) (13)
i=1
compared to that (3) of the original NG. In the recall phase, when classification
is carried out and, hence, no label information is available, the standard winner
rule (5) of NG is applied.



As in FLNG, the FSNG model leads to a prototype adaptation influenced by
the class agreement 6 (cy,y;):

od (v, w;
Bwy = (1= 7) (6 ew,y,) +25) - BYE (] (v, w,) - 2200y
J
accompanied by a label adaptation
00 (Cy,y;
By; ==y ((1=7)-d (v, w)) +e) - BN (k] (v.w,) - % (15)
J

such that both, protototype vectors and their class assignment vectors, are paral-
lely adapted.

The merging of data and class dissimilarity into a single dissimilarity mea-
sure for learning classification was first proposed in the model Learning of As-
sociations by Self-Organization (LASSO,[8]). In this approach, originally in-
troduced for SOM but analogously applicable to NG, modified data vectors
v = (véc,) € V C R" x RY are generated with @ being the concatenation
operation. The prototypes w; € R™ x R¢ in this model have the same structure.
Learning the associations in the LASSO model takes place as usual SOM learning
using the Euclidean distance but now between the data v and the prototypes w;.
In the recall phase however, when no label information is available, the Euclidean
distance is calculated only with respect to the original data vectors v as in FSNG.
Yet, the FSNG approach offer a greater flexibility for association lerning due to the
possibility of appropriate balancing of unsupervised and supervised information
by means of the balancing parameter . Further, the parameter vector ¢ = (g, £4)
plays an essential role in case of a perfect match for prototype learning but re-
maining insufficient classification accuracy and vice versa, as explained in detail
in the next section.

2.2 Properties of the dissimilarity measure D, (v, w;,7)

We will show later in this paper that FSNG adaptation performs a stochastic
gradient descent learning for the FSNG cost function Ergne (10). This stochastic
gradient descent with respect to the prototypes w; and their class label vectors y;
takes place for a given data vector v and its class assignment c, proportionally to
the partial derivatives

Js Ersna JsErsna 0D (v, wy,7)

ow; B 0D, (Vy Wi, ”Y) ow; (16)
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and
OsPrsna  OsBrsna 0D (v, wy,7)

dy; 0D (v,w;,7) dy;

Therfore, we investigate the partial derivatives of D, (v, w;, ) with respect to w;

(17)

and y; in more detail:

8D5 (Vawiu’}/) _ ) od (Vawi)

T ow, (1—=7)(y-0(cy,yi) +¢5) - “ow, (18)
and

0D, (v, wi,7y) ' d6 (cv,y:)

PEEIY) (=) vy b)Y g

determining the update formula (14) and (15). If the quadratic Euclidean distance
is used for d (v, w;) and ¢ (cy,y;), we immediately find

ad (v, w;) B
Twi =-2(v—w;) (20)
and 95 ( )
Cv,Yi _
St - ey -y 2

for prototype and class assignment adaptation, respectively.

It should be mentioned that D, (v,w;,7) is not a standard (mathematical)
metric since it violates the triangle inequality. However, D, (v, w;,~) fulfills the
requirements of a quasi-metric [9]. In particular, we have D, (v,w;,v) = 0 for a
perfect match of the prototype as well as its label.

For learning in FSNG we have to distinguish the following extreme cases, which
should be of special interest:

1. d(v,w;) =0 and 0 (cy,y;) # 0, i.e. the prototype is perfectly placed but its
label is not adequate: In that case a non-vanishing term

8D6 (Va i?F}/) 86 (Cv7yi>
Wi, 7) NPV A I L) 929
Dy, la(v,wi)=0 = 7 * €4 dy, (22)

remains, which guarantees the label adaptation.
2. d(v,w;) # 0 and § (cy,y;) = 0, i.e. the prototype label perfectly matches
but the prototype itself is not optimally adjusted: In that case

aDa (Vawiaf)/) . 8d (V’Wi)

[stcvy=0 = (1 =7) - & (23)

is non-vanishing such that prototype learning is still possible.



2.3 The FSNG algorithm as a stochastic gradient

We show in this section that the adaptation dynamic of prototypes (14) and labels
(15) of FSNG follows a stochastic gradient descent on the cost function given in
(10). Thus it overcomes the difficulties in the convergence proof of FLNG, where
we have to distinguish discrete and continuous data distributions [14].

Following the original work of MARTINETZ ET AL. [7| we have to investigate
for convergence of FSNG the derivatives 6%FSNG and aEaF;NG

We start with consideration of the prototype dynamic. We have

OFrsnG ID. (v, w;,7)

Dw, e dv (24)

_ Rt / P (v) b (k] (v, w;))

ODc(v,w;,y) -

w1 is taken from (18). The term R; is obtained as

and the derivative

a NG Y v, W
R, = Z/ i kw(z- J)) D, (v,wj,7y)dv (25)

with
oG (k;;’ (v, Wj))

Gwi
and [hf,VG]/ (o) denotes the derivative of hlY (e). If R; is vanishing, then the

derivative (24) yields the prototype learning rule (14) of FSNG. We decompose R;
into R; = R; ;1 + R, 2 such that

ok} (v, w;)

8W1‘

— [WY] (k] (v, W) -

R = /P(v) (WY1 (kY (v, w2) - D- (v,wi,y)MZG(Aﬂ)dv

awi

and
aDE Vv, Wi,
_RzZ = Z/ hNG k (Vawj)) - D, (V7Wj7’7) ’ M

aWi

with A, = De (V, Wy, ¥) — De (v, Wg,7y). Thereby we have used the fact that the
derivative of the Heaviside function © (x) from (4) is the Dirac distribution 6 (x),
which is zero iff # # 0 and [0 (z) dz = 1. We emphasize at this point again that
the rank function &; (v, w;) depends on the new dissimilarities D, (v, w;,7).

For R; 2 we can interchange integration and summation. Further, R; is non-
vanishing only for A;; = 0 according to the Dirac functional 6, which is equivalent
to D. (v,w;,7y) = D. (v,w;j,7). For those v’s obviously the equation

S 0000 =S 0(a



holds implying immediately the equivalence k] (v, w;) = k] (v, w;). At this end,
we obtain
’ 0D, (v, w;,7)
—Riyo= | P WG (kY ) - D, ; e N e 1T 0 (L) d
2= [ PO 0 (vow) ey TR S0 (B

which leads to R;; = —R;» paying attention to the fact that 6 (x) is symmetric:
0(z) =0(—x).

Further, using the derivative W from (18), the gradient 2EESNS in (24)

finally reduces to

od (v, w;)

OBesne _ (1 _ 4 /P(V) he'© (ki (v, wo)) (76 (ev, yi) +€6) - —5

d
8Wi v

(26)
which is exactly the averaged prototype dynamic (14). This completes the proof
for the prototype dynamic.

It remains to investigate the dynamic for the class labels y;. We have

a-E‘FSNG _ RZ + ’V/P(V) h(]TVG (k;/ (V,WZ‘)) aDE (VawiafY)

d
Jy; Jy; v

with o (k” ( ))
. > T (v, w;
A=Y [ P =D (v ws ) av.

In complete analogy we find R; vanishing, too. Thus, we obtain

Ty [ PR (s (vow)) (1= 7) - d (v w) 420

65 (CV7 yz)
Jy;

for the averaged label dynamic corresponding to (15). This completes the proof
for the desired FSNG dynamic.

dv

2.4 Semi-supervised learning — balancing between unsuper-
vised and supervised learning by the parameter ~

The quasi-metric D, (v, w;,~y) depends on the balancing parameter v weighting
the unsupervised and supervised aspects. Experiences from earlier models (Fuzzy
Label Neural Gas — FLNG, [14]) suggest a careful control of this parameter begin-
ning with v (0) = 0 and later (adiabatic) increase up to a final value Yyax, which
should be chosen as y,.x < 1 to avoid instabilities as known from FLNG. This can
be interpreted as a remaining influence of unsupervised learning in the supervised
learning phase of FSNG.



3 Fuzzy Supervised SOM

In this section we extend the above semi-supervised learning ideas to the Heskes
variant of SOMs, which also performs a gradient descent learning.

For a SOM we assume in the following that the index r of a prototype w, refers
to a neuron r € A, whereby A is equipped with a underlying topological structure
usually chosen as a regular grid. We denote the grid distance between nodes r and
r’ by d4 (r,r’). The original SOM introduced by T. KOHONEN, which is based of
the same mapping rule (5) as NG, does not follow a stochastic gradient of a cost
function [1]. Yet, a slight modification of this rule allows this desired result [3]:

s (v) = argmin, 4 (Z h3OM (r ') d (v, wr,)> (27)

r'eA
with 4 .
REOM (v, 1) = exp (—A (r, x )> (28)

202
as neighborhood function, but now determined on the neuron grid A. Following
the ansatz from T. Heskes, we denote

er (V) = Z hEOM (v v') d (v, Wy) (29)

r'eA

as local costs for neuron r given the input v such that (27) can be rewritten as

s (v) = argmin, .4 (ex (Vv)) . (30)
Then a cost function for SOM can be defined by

Esom = /P(V) es(v) (V) dv (31)

which leads to the stochastic gradient learning

Aw, ~ — Z hSOM (r, 1)

r'eA

od (v, wy)

oWy

(32)

in complete analogy to the NG. The subtle but essential distinction of the Heskes-
SOM compared to the original SOM is the mapping based on local costs, which
have to be the basis of the cost function as defined in (31): The derivation of the
gradient descent learning is only valid iff the local costs in the cost function (31)
are exactly the same as those used for the mapping.

10



Hence, we can replace the dissimilarity measure d (v, w,) by D, (v,w;,7) in
the local costs (29) an feed these into the cost function (31). This change we have
to apply also to the mapping rule (30) to avoid the violation of necessary condition
of gradient descent learning for Heskes-SOMs. Thus we obtain

8Ds y Wr,
AW, ~ — Z thM (I', I‘l) g’%’y) (33)
r'eA
and oD, ( )
SOM e \V, Wy, 7Y
Ay~ = ST SO (o) e (34)

r'eA

in complete analogy to FSNG. We refer to this fuzzy supervised SOM as FSSOM.

4 Conclusion

We provide in this paper a new approach for semi-supervised learning in neural gas
and self-organizing maps. The new approach combines into one single dissimilarity
measure both the dissimilarity between data and prototypes as well as their class
dissimilarity in a multiplicative manner. This mixture is balanced using a control
parameter 7. We show for NG that the mathematical structure of the underlying
cost function is the same than for the original NG, if an adequate redefinition of
the dissimilarity measure takes place. In consequence, the theoretical framework
of the original algorithm also justifies the new approach. The approach can aslo be
transferred to SOMs. However, the theoretical assumptions of stochastic gradient
descent learning for an analog SOM modification are only valid for the Heskes
variant of SOM.

Obviously, the new approach allows a broad variability of dissimilarity mea-
sures d in the data space and 0 for the fuzzy labels. Surely, the Euclidean distance
is a good choice. However, interesting alternatives are under discussion for differ-
ent data types at least for the data dissimilarity measures. Prominent examples
are the scaled Euclidean metric for relevance learning |2| and their functional
counterpart |4], or the Sobolev distance [15] and other functional norms [6], if the
data are supposed to be representations of functions. Generalization of the scaled
Euclidean metric are quadratic forms used in matrix learning [12]|. Divergences
are proposed for spectral data as suitable data dissimilarity measures [13], whereas
the utilization of differentiable kernel also seems to be a new promising alternative
for data dissimilarity judgment [11].
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