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Abstract

Supervised and unsupervised prototype based vector quantization frequently are pro-
ceeded in the Euclidean space. In the last years, also non-standard metrics became
popular. For classification by support vector machines, Hilbert or Banach space repre-
sentations are very successful based on so-called kernel metrics. In this paper we give
the mathematical justification that gradient based learning in prototype-based vector
quantization is possible by means of kernel metrics instead of the standard Euclidean
distance. We will show that an appropriate handling requires differentiable universal
kernels defining the kernel metric. This allows an prototype adaptation in the original
data space but equipped with a metric determined by the kernel. This approach avoids
the Hilbert space representation as known for support vector machines. Moreover,
we give prominent examples for differentiable universal kernels based on information
theoretic concepts.

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html 2



A Note on Gradient Based Learning in Vector

Quantization Using Di�erentiable Kernels for

Hilbert and Banach Spaces

Thomas Villmann
∗
and Sven Haase

Computational Intelligence Group,
University of Applied Sciences Mittweida,

Technikumplatz 17, 09648 Mittweida, Germany,

Abstract

Supervised and unsupervised prototype based vector quantization fre-

quently are proceeded in the Euclidean space. In the last years, also non-

standard metrics became popular. For classi�cation by support vector ma-

chines, Hilbert or Banach space representations are very successful based on

so-called kernel metrics. In this paper we give the mathematical justi�cation

that gradient based learning in prototype-based vector quantization is pos-

sible by means of kernel metrics instead of the standard Euclidean distance.

We will show that an appropriate handling requires di�erentiable universal

kernels de�ning the kernel metric. This allows an prototype adaptation in

the original data space but equipped with a metric determined by the kernel.

This approach avoids the Hilbert space representation as known for support

vector machines. Moreover, we give prominent examples for di�erentiable

universal kernels based on information theoretic concepts.

∗corresponding author, email: thomas.villmann@hs-mittweida.de

3



1 Introduction

Vector quantization by prototypes is one of the key methods in unsupervised and
supervised machine learning. Prominent examples for unsupervised models ap-
plied in data clustering or visualization are the self-organizing map (SOM,[19]),
neural gas (NG, [25]) as a robust version of the k-means or respective fuzzy variants
like fuzzy-c-means (FCM, [3, 4] ) and alternatives thereof. Supervised prototype
based approaches are mainly in�uenced by the learning vector quantization mod-
els (LVQ, [19]) and support vector machines (SVM,[42]). Whereas LVQ models
generate class typical prototypes SVMs determine prototypes (support vectors)
de�ning the class borders. Both paradigms are margin classi�ers [8]. During the
last years application of non-standard metrics for these models became popular to
improve the classi�er performance for domain speci�c problems like processing of
functional data, e.g. spectra, time series, ...,[18, 28, 48] or better interpretability
of the adapted models (relevance and matrix learning, [13, 43]).

One key idea remaining powerful in classi�cation is the idea of kernel mapping
realized in SVMs. According to this idea, the data as well as the prototypes are
described and handled in a high-dimensional (in�nite) feature mapping Hilbert
space (FMHS) uniquely determined by the kernel, which o�ers frequently a great
�exibility and good separation possibility. Yet, this processing is done only im-
plicitly in the mapping space. This advantage, however, makes it more di�cult to
interpret the model because the prototypes in these models are given as in�nite-
dimensional representations in the FMHS. Moreover, the SVM prototypes are not
typical representers of the classes, as mentioned before. Several variants of LVQ
were established integrating the kernel mapping concept in those models to keep
the idea of class-typical prototypes (Kernel GLVQ, KGLVQ) [41, 36, 35]. However,
these models also have to deal with the problem of the in�nite representation of
prototypes. Usually, the in�nite representation is approximated by a �nite one us-
ing the Nystrøm-approximation approach, which obviously leads to an information
loss in general.

In this paper we provide a way to overcome this circumstance: we want to have
in the new model the topological richness of the FMHS to keep the high classi�-
cation ability and data separability while avoiding the in�nite data and prototype
representation or its necessary approximation. For this purpose we suggest the uti-
lization of universal di�erentiable kernels in vector quantization models de�ning a
new metric in the data space. Now, the di�erentiability ensures that the prototype
adaptation can be processed in this new metric space without any approximation

4



requirements or other Hilbert space representations. Further, we show that this
new metric space is topologically equivalent to the FMHS associated to the univer-
sal kernel, such that the demanded topological richness is kept. More speci�cally,
we show that both spaces are isometric. Additionally, we demonstrate that this
framework can also be applied for a recently proposed variant of kernel feature
mapping, where the feature mapping space is a certain type of Banach spaces with
weaker assumptions than a Hilbert space [49].

2 Reproducing Kernels for Hilbert Spaces

2.1 General Kernels for Hilbert Spaces

In the following we assume a compact metric space (V, dV ) with the vector space
V equipped with a metric dV . A function κ on V is a kernel

κΦ : V × V → C (1)

if there exists a Hilbert space H and a map

Φ : V 3 v 7−→ Φ(v) ∈ H (2)

with
κΦ(v,w) = 〈Φ(v),Φ(w)〉H (3)

for all v,w ∈ V and 〈·, ·〉H is the inner product of the Hilbert space. As a
consequence the kernel is Hermitian, i.e. κΦ (v,w) = κΦ (w,v) and, therefore,
sesquilinear. The mapping Φ is called feature map and H the feature space of
V . Without further restrictions on the kernel κΦ both H and Φ are not unique.
A function f : V −→ C is induced by κΦ if there exists an element g ∈ H with
f (w) = 〈g,Φ(w)〉H.

The following important Lemma is shown in [47]:

Lemma 2.1 Let κΦ be a kernel of a metric space (V, dV ) and Φ a corresponding

feature map into a Hilbert space H. Then κΦ is continuous i� Φ does. In this case

dκΦ
(v,w) = ‖Φ(v)− Φ(w)‖H (4)

de�nes a semi-metric1 on V and the identity map Ψ between the di�erent metric

spaces over the vector space V

Ψ : (V, dV ) −→ (V, dκΦ
) (5)

1Note, for a semi-metric the triangle inequality does not hold [33].
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is continuous. If the feature map Φ is injective dκΦ
is even a metric.

Remark 2.2 In the proof of this lemma the inner product property (3) of the

kernel is never used. Only the norm properties of Hilbert spaces and their com-

pleteness are required. Hence, the lemma is also valid if Φ maps into a Banach

space B.

It turns out from this lemma that for each function f induced by a continuous
kernel κΦ is continuous itself. This property is needed for the de�nition of an
universal kernel:

De�nition 2.3 A continuous kernel κΦ on a compact metric space (V, dV ) is

called universal if the space IκΦ
of all functions induced by κΦ is dense in the

space of continuous functions C (V ) over V , i.e. for all g ∈ C (V ) and ε > 0 exists

a function f ∈ IκΦ
with ‖f − g‖∞ ≤ ε.

Following the explanations from I. Steinwart in [47] we can conclude �rst
that every universal kernel separates all compact subsets. Second, this statement
leads us to the most important result of that publication with respect to the aim
of our paper:

Theorem 2.4 Every feature map Φ of an universal kernel κΦ is injective.

Remark 2.5 Here we have again to emphasize an important observation: In the

proof of this theorem, again, the inner product property (3) of the kernel is never

used. Only its corresponding semi-metric properties are needed, which remain valid

also regarding Banach spaces instead of Hilbert spaces.

2.2 Positive and Universal Kernels for Hilbert Spaces

An important role in feature mapping play the positive de�nite kernels. The kernel
κΦ is said to be positive de�nite if for all �nite subsets Vn ⊆ V with cardinality
#Vn = n, the Gram-Matrix

Gn = [κ (vi,vj) : i, j = 1 . . . n] (6)

is positive semi-de�nite [1]. The kernel is strictly positive de�nite if the Gram-
matrices Gn are strictly positive de�nite. These positive kernels are of special
interest because they uniquely correspond to Hilbert spaces H in a canonical
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manner according to the Mercer-theorem: For each feature map Φ (2) there exists
a canonical, unique positive kernel

κΦ : V × V → R (7)

satisfying (3) and, conversely, each positive kernel κΦ de�nes uniquely a Hilbert
space H and a corresponding mapping Φ such that the equation (3) is valid [1, 26].
In that case, the space H is a Hilbert space of functions on V for which point
evaluations are always continuous linear functions. In particular, it is a so-called
reproducing kernel Hilbert space (RKHS) i.e. κΦ(v, ·) ∈ H such that for each
v ∈ V and all f ∈ H and w ∈ V

f (w) = 〈f, κΦ(w, ·)〉H

is valid according to the Riesz representation theorem [1, 20]. For this case, κΦ

is denoted as a reproducing kernel. Reproducing kernels obviously are symmetric,
real and, hence, bi-linear. The space IκΦ

of induced functions is now given as the
set

IκΦ
= {κΦ(w, ·)|w ∈ V } (8)

with IκΦ
⊆ H. For positive kernels the associated inner product implies a norm

‖Φ(v)‖H =
√
〈Φ(v),Φ(v)〉H (9)

and, hence, also a metric

dH (Φ(v),Φ(w)) = ‖Φ(v)− Φ(w)‖H =
√
〈(Φ(v)− Φ(w)) , (Φ(v)− Φ(w))〉H

(10)
in the Hilbert space H, i.e. the positive semi-de�niteness ensures the metric
properties in comparison to the the semi-metric (4) obtained for general kernels.
Because κΦ is a kernel, the metric dH (Φ(v),Φ(w)) can be rewritten as

dH (Φ(v),Φ(w)) =
√
κΦ(v,v)− 2κΦ(v,w) + κΦ(w,w) (11)

using the bi-linearity and the symmetry of the positive kernel.

Remark 2.6 Obviously, for positive kernels the semi-metric dκΦ
from (4) coin-

cides with dH on IκΦ
.

In conclusion we explicitly state the following lemma:
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Figure 1: Visualization of the statement of Lemma 2.7: For universal kernels κΦ

the metric spaces (V, dH) and
(
Iκ⊕ , dH

)
are topologically equivalent and isometric

by means of the continuous bijective mapping Φ ◦Ψ−1.

Lemma 2.7 Let (V, dV ) be a compact metric space, κΦ : V ×V → R a continuous

positive kernel with the feature map Φ : V −→ H, and the kernel determining a

metric dH in H by (11). If the space of the induced functions IκΦ
is dense in the

space of continuous functions C (V ), then the metric space (V, dH) is topologically

equivalent to induced space IκΦ
⊆ H with the metric dH. Moreover, both spaces

are isometric, and, hence, (V, dH) is a Hilbert space, too.

Proof. The kernel κΦ is assumed to be positive, continuous and generating a
space of induced functions IκΦ

, which is dense in the space of continuous functions
C (V ). Hence, κΦ is universal and, therefore, the uniquely corresponding feature
map Φ : V −→ H is injective according to Theorem 2.4. Hence, it is bijective for
Φ : V −→ IκΦ

⊆ H, whereby H is equipped with the Hilbert space metric dH.
Because (V, dV ) is compact and the bijective mapping Φ is continuous it follows
immediately that IκΦ

is a subspace of H and, therefore, a Hilbert space itself.
Moreover, it follows from Lemma 2.1 that Φ is also continuous as well as the
obviously bijective identity map Ψ : (V, dV ) −→ (V, dH) from (5). Hence, the map
Φ (Ψ−1 (v)) = Φ◦Ψ−1 (v) with v ∈ (V, dH) is bijective and continuous. Therefore,
(V, dH) and IκΦ

are isomorphic and, according to the Remark 2.6, also isometric.

The result of the Lemma 2.7 is visualized in Fig.2.2
We now give some examples of universal kernels taken from [44, 47] and [27].
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Example 2.8 The following kernels are universal:

1. The Gaussian kernel κΦ (u,v) = exp
(
−||u−v||2E

2σ2

)
is universal on every com-

pact subset of Rn whereby || · ||E is the stnadard Euclidean distance.

2. The Student-type Gaussian kernel κΦ (u,v) =
(
β +

||u−v||2E
σ2

)−α
with α, β > 0

is universal on every compact subset of Rn.

3. The exponential kernel κΦ (u,v) = exp (〈u,v〉E) is universal on every com-

pact subset of Rn with 〈·, ·〉E being the standard Euclidean inner product.

4. Let V1 = {v ∈ Rn : ||v||E < 1} the open unit ball and α > 0. Then the so-

called in�nite polynomial kernel κΦ (u,v) = (β − 〈u,v〉E)−α is universal on

each compact subset of V1 for an arbitrary constant β > 0.

5. Let P (x) =
∑

k∈Z+
akx

k be power series with convergence radius r < ∞
and all coe�cients ak are positive. Then the so-called dot product kernel
κΦ (u,v) = P (〈u,v〉E) with u,v ∈ Cn is universal on each compact subset

of Cn.

At his point we remark that the above kernels are di�erentiable, which becomes
important in Sect. 4. Another class of kernels are information theoretic kernels

based on divergences [24, 34]. This class is investigated in the light of universality
in the next subsection. The relation of universal kernels to characteristic kernels

is adressed in [46].

2.3 Universal Kernels Based on Divergences

Information theoretic kernels based on divergences are considered in many appli-
cations [5, 21, 24, 34]. Here we relate them to universal di�erentiable kernels,
such that the diagram in Fig.2.2 holds also for those kernels. For this purpose,
we introduce the class of radial kernels κr : Rm × Rm −→ R [16, 42, 44]. These
kernels are de�ned as

κr (u,v) = g (d (u,v)) (12)

where d (u,v) is a metric and g is a function on R+
0 = {x ∈ R|x ≥ 0}. Equivalently,

d (u,v) could be a norm of the di�erence (u− v). One important point to be
emphasized here is that the argument of a radial kernel is required to be a metric
or, equivalently, a norm. Radial kernels stand out due to its close relation to
universal kernels. The following lemma holds for radial kernels [46]:
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Lemma 2.9 If the radial kernel is strictly positive de�nite then it is also universal.

Following this lemma, if we want to obtain a di�erentiable universal kernel
based on divergences, we have to ensure that the divergence is

• di�erentiable

• metric

• and that the corresponding radial kernel is positive de�nite.

Generally, divergences are not symmetric and, therefore, not serving as a metric
[7, 6, 12]. Yet, there exist some special divergences for vectorized data, which are
metrics at the same time under the assumption that the data vectors represent
probability densities or at least positive functions [48]. For example, the Euclidean
distance is a so-called η-divergence belonging to the class of Bregman-divergences
with parameter η = 2 [29]. Österreicher and Vajda considered a subset of
Csiszár's f -divergences to be metric [32, 48]. To this class belongs the subclass
of fβ-divergences. A prominent member of this subclass is the squared Hellinger

distance

DH (u‖v) =
m∑

i=1

(
√
ui −

√
vi)

2 (13)

obtained for the value β = 1
2
. Another example obtained for β = 1 is the Jensen-

Shannon-divergence

DJS (u‖v) =
DKL (u‖w) +DKL (v‖w)

2
(14)

with w = u+v
2

and

DKL (u‖w) =
m∑

i=1

ui log
ui
vi

(15)

being the Kullback-Leibler-divergence [22]. It can be calculated based on the
Shannon-entropy [45]

H (v) = −
m∑

i=1

vi log vi (16)

as

DJS (u‖v) = H

(
u + v

2

)
−
(
H (u) +H (v)

2

)
(17)

as shown in [24].
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An analog divergence can be installed using the Rényis α-entropy

Hα (v) =
1

1− α log

(
m∑

i=1

(vi)
α

)
(18)

de�ned for α > 0 [37, 38]. In the limit α → 1 Hα (v) converges to the Shannon-
entropy H (v) from (16). Based on the Rényi-entropy (18) the Jensen-Rényi-α-

divergence is de�ned as

Dα
JR (u‖v) = Hα

(
u + v

2

)
−
(
Hα (u) +Hα (v)

2

)
(19)

in complete analogy to (17) [2]. It turns out that both,
√
DJS (u‖v) and√

Dα
JR (u‖v), are metric [24] or, more precisely, they are Hilbertian metrics [14].

Moreover it is shown in the paper [24] by Martin et al. that the following
lemma holds:

Lemma 2.10 The kernels

1. κ1
JS (u,v) = exp (−t ·DJS (u‖v)), t > 0,

2. κ1
JR (u,v, α) = exp (−t ·Dα

JR (u‖v)), t > 0,

3. κ2
JS (u,v) = (t+DJS (u‖v))−1, t > 0 and

4. κ1
JR (u,v, α) = (t+Dα

JR (u‖v))−1, t > 0

are strictly positive de�nite. For the kernels κ1
JR and κ2

JR the additional condition

of q ∈ [0, 1] has to be ful�lled for positive de�nitness.

Therefore we can �nally state the following corollary for divergence based ker-
nels:

Corollary 2.11 The kernels given in Lemma 2.10 based on the Jensen-Shannon-

divergence (17) and the Jensen-Rényi-α-divergence (19) are universal.

Proof. This property follows immediately from Lemma 2.10 together with the
Lemma 2.9.

Last but not least we remark again that the kernels de�ned in Lemma 2.10 are
di�erentiable [48], which relates them to the considerations in Sect. 4.
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3 Reproducing Kernels for Banach Spaces

Banach spaces are the generalization of Hilbert spaces in such a way that the exis-
tence of an inner product is not assumed. Therefore, a straight forward de�nition
of reproducing kernels as for Hilbert spaces is not possible. However, under cer-
tain assumptions an analog approach can be established. We adopt the following
explanations from Zhang et al. [49].

3.1 Semi-inner Products for Vector Spaces

We need some preliminary de�nitions, facts and notations in the beginning. We
start with the fact that to each vector space V exists a dual space V ∗ of linear real
functions, which itself is again a vector space. A normed vector space V taken as
a vector space is called re�exive if (V ∗)∗ = V . Further, the normed vector space
V is said to be Gâteaux-di�erentiable, if for all elements v,w∈V \ {0} and t ∈ R
the Fréchet derivative

∂F (v,w) = lim
t→0

‖v + t ·w‖V − ‖v‖V
t

(20)

exists [17]. The space V is denoted as uniformly di�erentiable or uniformly Fréchet-

di�erentiable, if the limit is approached uniformly on S (V )× S (V ) with S (V ) =

{v ∈ V, ‖v‖V = 1} is the unit sphere. Additionally, we need the de�nition of the
concept of uniform convexity: A normed vector space V is uniformly convex if
for all ε > 0 there exists a δ > 0 such that ‖v + w‖X ≤ 2 − δ is valid for all
v,w ∈ S (V ) with ‖v−w‖V ≥ ε. The uniform convexity is closely related to the
Fréchet di�erentiability: A normed vector space is uniformly Fréchet di�erentiable
i� its dual space is uniformly convex [9]. Just a last de�nition is required in
advance:

De�nition 3.1 Let V be a vector space and [·, ·]V : V × V −→ C a function such

that for all u,v,w ∈ V and α ∈ C the conditions

1. [u + v,w]V = [u,w]V + [v,w]V

2. [αu,v]V = α [u,v]V and [u, αv]V = ᾱ [u,v]V

3. [v,v]V > 0 for v 6= 0

4. | [u,v]V |2 ≤ [u,u]V · [v,v]V (Cauchy-Schwarz inequality)
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are valid. Then this function is called a semi-inner product (s.i.p.).

This de�nition was introduced by G. Lumer in [23] and nourished by J.R.
Giles in [11]. The semi-inner product di�ers from an usual inner product in that
way that one can always �nd u,v,w ∈ V such that

[u,v + w]V 6= [u,v]V + [u,w]V

which is equivalent to the property [u,v]V 6= [v,u]V of the conjugate asymmetry.
The following lemma was presented in [49]:

Lemma 3.2 A semi-inner product on a complex vector space V is an inner prod-

uct i� for all u,v,w ∈ V

[u,v + w]V = [u,v]V + [u,w]V

holds.

Although not being an inner product, the semi-inner product induces a norm
for a vector space. The following theorem was proofed in [11] and [23]:

Theorem 3.3 A vector space V equipped with a semi-inner product [·, ·]V is a

normed space with the induced norm

‖v‖V =
√

[v,v]V (21)

and, conversely, for a normed vector space always a semi-inner product can be

de�ned, which induces the norm via (21).

According to this theorem we denote a vector space V with a semi-inner prod-
uct [·, ·] a s.i.p. space. Obviously, it de�nes a metric, too. Yet, the determination
of a semi-inner product for a given norm is in general not unique. The uniqueness
is ensured if the vector space is Fréchet di�erentiable.

Theorem 3.4 If a s.i.p. space V is Gâteaux di�erentiable, then the semi-inner

product is uniquely de�ned for all v,w ∈ V and v 6= 0 by

Re ([w,v]V ) = ‖v‖V · ∂F (v,w)

with the Fréchet derivative ∂F (v,w) from (20).

The proof of this theorem can be found in [49].
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3.2 Banach Spaces as Semi-inner Product Spaces

With the above preliminary de�nitions and results we are now able to characterize
Banach spaces more precisely re�ecting semi-inner product properties for these
spaces. In particular, we are able to determine kernel functions and respective
feature maps for so-called reproducing kernel Banach space (RKBS) comparable
to those known from RKHS. Again we follow the argumentation by Zhang et

al. [49].
The �rst statement is that an uniformly convex Banach space B is re�exive, i.e.

B = (B∗)∗. Together with the property of di�erentiability a Riesz-representation-
theorem can be stated [11]:

Theorem 3.5 Let B be uniformly convex and uniformly Fréchet-di�erentiable Ba-

nach space with its dual B∗. Then there exists for each f ∈ B∗ an unique g ∈ B
such that f ∗ = g with

f (h) = [h, g]B (22)

for all h ∈ B. Moreover, ‖f‖B∗ = ‖g‖B

By means of the last theorem a norm preserving bijection f → f ∗ is established
between uniformly convex, uniformly Fréchet-di�erentiable Banach space B and
its dual B∗. The object f ∗ is called the dual element of f . This duality mapping,
however, is in general non-linear. Otherwise, because B∗ is uniformly Fréchet-
di�erentiable, by means of Lemma 3.2 it is equipped with an unique semi-inner
product

[h∗, g∗]B∗ = [h, g]B (23)

induced by that of the Banach space B.

De�nition 3.6 A re�exive Banach space B of functions on a vector pace V for

which B∗ is isometric to a Banach space B# of functions on V and the point

evaluation is continuous on both B∗ and B# is denotes as a reproducing kernel

Banach space (RKBS) on V .

For RKBS now it is possible to identify a reproducing kernel [49]:

Theorem 3.7 Suppose B to be a RKBS on V . Let further be (·, ·)B be a bi-linear

form on (B × B∗). Then there exists an unique function κ : V ×V −→ C satisfying

the following conditions:

14



1. for each v ∈ V the function κ (·,v) ∈ B∗ and

f (v) = (f, κ (·,v))B for all f ∈ B (24)

2. for each v ∈ V the function κ (v, ·) ∈ B and

f ∗ (v) = (κ (v, ·) , f ∗)B for all f ∗ ∈ B∗ (25)

3. the linear span of Bκ = {κ (v, ·) : v ∈ V } is dense in B, i.e.

spanBκ = B (26)

4. the linear span of B∗κ = {κ (·,v) : v ∈ V } is dense in B∗, i.e.

spanB∗κ = B∗ (27)

5. for all u,v ∈ V
κ (u,v) = (κ (u, ·) , κ (·,v))B (28)

The introduced function κ is called the reproducing kernel for the RKBS B.
It is unique for a given RKBS but it turns out that several RKBS may have the
same reproducing kernel. By the following theorem it is possible to generate a
reproducing kernel and their corresponding RKBS using the concept of feature
maps:

Theorem 3.8 Let W be a re�exive Banach space on V with its dual space W∗.
Assume that there exist feature mappings Φ : V −→ W and Φ∗ : V −→ W∗ such
that

spanΦ (V ) =W and spanΦ∗ (V ) =W∗ (29)

holds. Let further be (·, ·)W be a bi-linear form on (W ×W∗). Then B =

{(w,Φ∗ (·))W |w ∈ W} with the norm

‖ (w,Φ∗ (·))W ‖B=‖ w ‖W (30)

is a RKBS on V with the dual space B∗ = {(Φ (·) ,w∗)W |w∗ ∈ W∗} equipped with

the norm

‖ (Φ (·) ,w∗)W ‖B∗=‖ w∗ ‖W∗ (31)

and the bi-linear form

((w,Φ∗ (·))W , (Φ (·) ,w∗)W)B = (w,w∗)W (32)
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with w ∈ W and w∗ ∈ W∗. Further, for the unique reproducing kernel κΦ :

V × V −→ C on B corresponding to the feature map Φ the relation

κΦ (u,v) = (Φ (u) ,Φ∗ (v))W (33)

is valid for u,v ∈ V .

Remark 3.9 It turns out that for a re�exive Banach spaceW on V and a function

κΦ : V × V −→ C it is necessary and su�cient to be a reproducing kernel that κΦ

is of the form (33) and the mappings Φ : V −→ W and Φ∗ : V −→ W∗ satisfy
(29), see [49].

In the next step we relate RKBS to semi-inner product spaces. We denote a
uniformly convex, uniformly Fréchet-di�erentiable RKBS B on a vector space V a
s.i.p. reproducing kernel Banach space (s.i.p. RKBS). As a consequence of Lemma
3.2, we immediately have that a RKHS is a s.i.p. RKBS. Obviously, also the dual
B∗ of a s.i.p. RKBS B is a s.i.p. RKBS itself. Hence, the unique s.i.p. [·, ·]B∗
characterizes the relation between the s.i.p. RKBS B and its dual B∗ according
to the Riesz-Theorem 3.5. This observation leads to the following more speci�c
representer theorem presented by Zhang et al. in [49]:

Theorem 3.10 Let B be a s.i.p RKBS on a vector space V and κΦ its reproducing

kernel determined by the feature map Φ : V −→ B. Then there exist an unique

function γ : V × V −→ C such that {γ (v, ·) : v ∈ V } ⊆ B and

f (u) = [f, γ (u, ·)]B (34)

for all f ∈ B and u ∈ V . The function γ is denoted as s.i.p. kernel, which is

related to the reproducing kernel by

κΦ (·,v) = (γ (v, ·))∗ (35)

and

f ∗ (v) = [κΦ (v, ·) , f ]B (36)

for all f ∈ B and v ∈ V .

For RKHS the s.i.p. kernel is identical with the reproducing kernel. In general,
if for a s.i.p. RKBS κΦ ≡ γ holds, we call it a s.i.p. reproducing kernel denoted
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by γΦ to keep in mind its connection to the feature map Φ. From (34) it becomes
clear that

γΦ (u,v) = [γΦ (u, ·) , γΦ (v, ·)]B (37)

which shows the formal equivalence to reproducing kernels for RKHS.
Analogously to the Theorem 3.8 and the Remark 3.9 the following theorem is

valid for s.i.p. reproducing kernels:

Theorem 3.11 Let W be an uniformly convex, uniformly Fréchet-di�erentiable

Banach space on V and Φ a map Φ : V −→W such that

spanΦ (V ) =W and spanΦ∗ (V ) =W∗ (38)

holds. Then B = {[w,Φ (·)]W |w ∈ W} with the semi-inner product

[[w,Φ (·)]W , [z,Φ (·)]W ]B := [w, z]W (39)

and B∗ = {[Φ (·) ,w]W |w ∈ W} equipped with the semi-inner product

[[Φ (·) ,w]W , [Φ (·) , z]W ]B∗ := [z,w]W (40)

are uniformly convex and uniformly Fréchet-di�erentiable Banach spaces. The

space B∗ is the dual of B with the bi-linear form

([w,Φ (·)]W , [Φ (·) , z]W)B := [z,w]W for z,w ∈ W . (41)

Further, the unique s.i.p. reproducing kernel γΦ : V × V −→ C of B is given by

γΦ (u,v) = [Φ (u) ,Φ (v)]W (42)

with u,v ∈ V , i.e. the s.i.p. reproducing kernel coincides with the reproducing

kernel κΦ under this conditions, which legitimates the notation γΦ instead of simple

γ.

Remark 3.12 We observe that

||v||W =
√
γΦ (v,v) (43)

de�nes a metric dW according to the Theorem 3.3.

Again, we can state the following characterization:
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Remark 3.13 A function γΦ on V ×V is a s.i.p. reproducing kernel i� it is of the

form (42) with the feature map Φ : V −→W from a vector space V to a uniformly

convex, uniformly Fréchet-di�erentiable Banach W satisfying (38), see [49]. The

s=\left\{ \mathbf{}\right\} pace W is also denoted as the feature space.

It follows from the duality relationship (35) and the density condition (27) that
for a s.i.p. kernel γ of a s.i.p. RKBS B on V the equivalence

span {(γΦ (v, ·))∗ : v ∈ V } = B∗ (44)

is valid. According to the above Remark 3.13 the relation κΦ ≡ γΦ between the
reproducing and the s.i.p. reproducing kernel only holds i�

span {γΦ (v, ·) : v ∈ V } = B (45)

and the duality mapping from B to B∗ become non-linear if B is not a Hilbert
space, i.e. (44) does not always implies (45).

3.3 Some Properties of S.i.p. Reproducing Kernels and

their S.i.p. RKBS

In this section we will consider some properties of s.i.p. reproducing kernels, which
are interesting in the context of machine learning.

Let γΦ : V ×V −→ C be a s.i.p. reproducing kernel such that (38) and (42) are
satis�ed. From the De�nition 3.1 properties 3 and 4 it follows that γΦ (v,v) ≥ 0

for all v ∈ V and the s.i.p.-Cauchy-Schwarz-inequality

γΦ (u,v) ≤ |γΦ (u,u) | · |γΦ (v,v) | (46)

for all u,v ∈ V is still valid. However, we can not generally assume a complex
s.i.p. kernel to be positive de�nite. For an example we refer to [49] and Example
3.18.

Let the sequence of fn ∈ B converge to f in s.i.p. RKBS B over the vector
space V with the s.i.p. kernel γΦ. As a consequence of the s.i.p.-Cauchy-Schwarz-
inequality (46) for all v ∈ V the limes

fn (v) −→ f (v)

is valid and the limit is uniform if γΦ (u,v) is bounded. This property is called
point-wise convergence.

In analogy to the universality of kernels for RKHS, we now characterize the
concept universality for s.i.p. kernels.
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De�nition 3.14 Suppose, (V, d) is a compact metric space and γΦ : V ×V −→ C
is a s.i.p. reproducing kernel on V . The s.i.p. kernel γΦ is called weakly universal

if it is continuous and bounded and the space of induced functions

IγΦ
= {γΦ(v, ·)|v ∈ V } (47)

is dense in C (V ).

We can state the following proposition [49]:

Proposition 3.15 Let (V, d) be a compact metric space and Φ be a feature map

from V to a Banach space W such that both Φ : V −→W and Φ∗ : V −→W∗ are
continuous. Then the s.i.p. kernel γΦ : V ×V −→ C de�ned by (42) is continuous

and, there holds in C (V ) the equality

span (IγΦ
) = span {[w,Φ (·)]W |w ∈ W} .

Consequently, the s.i.p. kernel γΦ is weakly universal i�

span {[w,Φ (·)]W |w ∈ W} = C (V ) .

Remark 3.16 Obviously, for weakly universal kernels the metric dγΦ
from (4)

coincides with dW de�ned in Remark 3.12 on IκΦ
.

In conclusion we explicitly state the following lemma which is the complement
of the Lemma 2.7 for RKHS:

Lemma 3.17 Let (V, dV ) be a compact metric space, γΦ : V × V → R a contin-

uous weakly universal s.i.p. kernel with the feature map Φ : V −→ B and B being

an uniformly convex, uniformly Fréchet-di�erentiable Banach space. Let dB be the

metric determined by the norm via (42) induced by the kernel γΦ. If the space of

induced functions IγΦ
de�ned in (47) is dense in the space of continuous functions

C (V ), then the metric space (V, dB) is topologically equivalent to induced space IγΦ

with the metric dB. Moreover, both spaces are isometric.

Proof. The kernel γΦ is assumed to be continuous and weakly uniform. Hence,
the space of induced functions IγΦ

is dense in the space of continuous functions
C (V ) with the metric dB determined by the norm (43). According to the Remark
2.5 we can apply the Steinwart-Theorem 2.4 for universal kernels in RKHS al-
though we have only the weak universality of a s.i.p. kernel. Hence, the uniquely
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Figure 2: Visualization of the statement of Lemma 2.7: For s.i.p.-universal ker-
nels γΦ the metric spaces (V, dB) and (IγΦ

, dB) are topologically equivalent and
isometric by means of the continuous bijective mapping Φ ◦Ψ−1.

corresponding feature map Φ : V −→ B is injective and, together with the conti-
nuity ensured by the Remark 2.2, it is bijective for Φ : V −→ IγΦ

⊆ B, whereby B
is equipped with the Banach space metric dB. Moreover, it follows from Lemma
2.1 again together with the Remark 2.2 that the identity map

Ψ : (V, dV ) −→ (V, dB)

is also continuous and, therefore, bijective. Hence, the map Φ (Ψ−1 (v)) = Φ ◦
Ψ−1 (v) with v ∈ (V, dB) is bijective and continuous. Therefore, (V, dB) and IγΦ

are isomorphic and, according to Remark 3.16, also isometric.
The result of the Lemma 3.17 is visualized in Fig.3.3
We now give examples of universal s.i.p. kernels [49]:

Example 3.18 We assume that V ⊆ R.

1. Let be V = R, then γΦ = exp (−|u− v|) is an universal s.i.p. kernel.

2. Let be V = (0, 1), then γΦ = exp (−|u− v|) is an universal s.i.p. kernel.

3. Let be V = [0,∞), 1 < p < ∞ and B = lp (N2). Further, suppose Φ (x) =

(1, v) : V −→ B. Then
Φ∗ (v) =

(1, vp−1)

(1 + vp)
p−2
p

,
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holds and

γΦ (u, v) =
(1 + u · vp−1)

(1 + vp)
p−2
p

is an universal s.i.p. kernel. However, it is only positive de�nite i� p = 2.

4 Di�erentiable Kernel and Gradient Based Vec-

tor Quantization

Vector quantization can be distinguished into unsupervised and supervised ap-
proaches. The main task for unsupervised models is to minimize some reconstruc-
tion error E for a given data set V ⊆ Rn of vectors v with respect to set of
prototypes W = {wk}k∈A, where A is a �nite index set. Prominent examples are
the self-organizing map (SOM,[19]), neural gas (NG, [25]), whereby for the SOM
the variant of Heskes is taken [15]. For those models, the reconstruction error is
given in terms of the dissimilarity measure d (v,wk) between data and prototypes,
which is assumed to be di�erentiable. In that case, the gradient ∂E/∂wk contains
the derivative ∂d (v,wk) /∂wk originating from the chain rule of di�erentiation.

Prototype based classi�cation in the context of learning vector quantization
models (LVQ, [19]) was renewed by the idea of Sato&Yamada to approximate
the non-di�erentiable classi�cation error C by a di�erentiable function EC [40, 39].
As in unsupervised vector quantization, EC depends on the underlying dissimilar-
ity measure d (v,wk). Hence, gradient based classi�cation learning also requires
the term ∂d (v,wk) /∂wk.

For example, the cost function of the unsupervised self-organizing maps (SOM)
for vector quantization in the variant of T. Heskes is

ESOM =

ˆ

P (v)
∑

r∈A
δs(v)
r

∑

r′∈A

hSOMσ (r, r′)

2K(σ)
d(v,wr′)dv (48)

with the so-called neighborhood function

hSOMσ (r, r′) = exp

(
−‖r− r′‖A

2σ2

)

and ‖r− r′‖A is the distance in the SOM-lattice A according to its topological
structure [15]. K(σ) is a normalization constant depending on the neighborhood
range σ. Then the stochastic gradient prototype update for all prototypes is given
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as [15]:

4wr = −εhSOMσ (r, s(v))
∂d (v,wr)

∂wr

. (49)

depending on the derivatives of the used dissimilarity measure d, which allows the
application of di�erentiable kernel metrics.

Analogously the widely used supervised generalized learning vector quantiza-
tion scheme (GLVQ) with the cost function

E(W ) =
1

2

∑

v∈V
f(µ(v)) with µ(v) =

d+(v)− d−(v)

d+(v) + d−(v)
(50)

can be treated: the related gradient learning is based on the (stochastic) deriva-
tives

∂sE

∂w+
=
∂sE

∂d+

∂d+

∂w+
,

∂sE

∂w−
=
∂sE

∂d−
∂d−

∂w−
(51)

with ∂s
∂
and

∂sE

∂d+
=

2d− · f ′(µ(v))

(d+ + d−)2
,

∂sE

∂d−
= −2d+ · f ′(µ(v))

(d+ + d−)2
.

where µ(v) is the classi�er function with d+(v) = d(v,w+) denotes the distance
between the data point v and the nearest prototype w+, belonging to the same
class as the presented data point. In the second equation the abbreviation d+ for
d+(v) is used for simplicity. Again as in SOMs, d(v,w) in (50) is some di�eren-
tiable dissimilarity measure with respect to w. Hence, it could be replaced in (51)
by a di�erentiable kernel metric. Analogously d− is de�ned as the distance to the
best prototype of all other classes.

Thus stochastic gradient learning in supervised and unsupervised vector quan-
tization can be seen as a gradient descent learning of an error function in the
metric space (V, d (v,wk)). Obviously, under gentle conditions on V (continuous,
local convex, ...) it can be assumed that ∂d (v,wk) /∂wk ∈ V is valid. Yet, the
choice of the metric is free except the necessary di�erentiability. Hence, metrics
determined by di�erentiable kernel are applicable. Obviously, the kernels pre-
sented in Example 2.8 as well as the information theroetic kernels in Lemma 2.10
are di�erentiable (for the latter kernels, see [48] for di�erentiability of the respec-
tive divergences). If such a metric is obtained from an universal kernel κΦ or γΦ

for RKHS and RKBS, respectively, the Lemmata 2.7 and 3.17 ensure the topolog-
ical and isometric equivalence to the respective Hilbert or Banach space. Hence,
the algorithm operates in the same structural space as SVMs do and, therefore,
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can pro�t from its richness in shape, which frequently delivers excellent perfor-
mance. More properties of di�erentiable Mercer-like kernels and their reproducing
properties can be found in [10].

5 Conclusion

In this paper we considered the theoretical framework for applying di�erentiable
kernels in supervised and unsupervised prototype based vector quantization. We
show that utilization of a data metric determined by universal kernels as known
from support vector machines leads to an optimization space equivalent and iso-
metric to a reproducing kernel Hilbert or Banach space. Hence, gradient based
vector quantization schemes with di�erentiable universal kernels can bene�t from
this property. The main results of topological and isometric equivalence are the
Lemmata 2.7 and 3.17. Last but not least we provide some examples of di�eren-
tiable universal kernels based on divergences as fundamental information theoretic
concepts.

An important future task, which is just in progress, is the transfer of these
ideas to non-Euclidean online principal component learning according to E. Oja's
learning algorithms, which are based on the Euclidean inner product but could be
replaced by a kernel [30],[31].

Acknowledgment: The authors would like to thankM. Kästner for helpful
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