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New Challenges in Neural Computation

NC2 – 2013

Barbara Hammer1, Thomas Martinetz2, and Thomas Villmann3

1 – Cognitive Interaction Technology – Center of Excellence,
Bielefeld University, Germany

2 – Institute for Neuro- and Bioinformatics, University of Lübeck, Germany

3 – Faculty of Mathematics / Natural and Computer Sciences,
University of Applied Sciences Mittweida, Germany

The workshop New Challenges in Neural Computation, NC2, took place for
the fourth time, accompanying the prestigious GCPR (former DAGM) confer-
ence in Saarbrücken, Germany. The workshop centers around exemplary chal-
lenges and novel developments of neural systems covering recent research con-
cerning theoretical issues as well as practical applications of neural research. This
year, fifteen contributions from international participants have been accepted as
short or long contributions, respectively, covering diverse areas connected to data
analysis, challenges in vision and robotics, prior knowledge integration, and lo-
cal or sparse models, lots of the topics connecting to this years’ focus topic on
learning interpretable models with neural techniques. In addition, we welcome
an internationally renowned researcher, Prof.Dr. Udo Seiffert from Fraunhofer
IFF, Magdeburg, who gives a presentation about ‘Challenges of high-dimensional
data analysis from the application’s perspective’. This invitation became pos-
sible due to the sponsoring of the European Neural Networks Society (ENNS)
and the German Neural Network Society (GNNS). Following the workshop, a
meeting of the GI Fachgruppe on Neural Networks and of the GNNS took place.

We would like to thank our international program committee for their work
in reviewing the contributions in a short period of time, the organizers of GCPR
for their excellent support, as well as all participants for their stimulating con-
tributions to the workshop.
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Keynote talk: Challenges of high-dimensional data analysis

from the application’s perspective

Udo Seiffert, Fraunhofer IFF Magdeburg

Abstract:

The analysis of high-dimensional data typically leads to various challenges. This
talk will address a number of these challenges against the background of neural
computation / machine learning from the perspective of applications – primarily
hyperspectral image processing. Apart from several general and versatile con-
cepts a specific application might introduce further limitations in terms of the
applicability of general concepts, but often also contributes additional a-priori
information that eases prevailing problems. The demand for better interpretabil-
ity of models and results becomes increasingly relevant.
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Application of Maximum Distance Minimization
to Gene Expression Data

Jens Hocke, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck

1 Introduction

The k-Nearest-Neighbor (k-NN) [1] algorithm is a popular non-linear classifier.
It is simple and easy to interpret. However, the often used Euclidean distance
is an arbitrary choice, because the data dimensions are not scaled according to
their relevance. Similar to relevance learning in the context of LVQ classifiers [2],
the scaling of the dimensions can be adapted by feature weighting to improve
the classification rate of k-NN.

An optimal rescaling has to minimize the classification error E(X) of the
k-NN algorithm. Often this problem is called the feature weighting problem. We
want to find a weight vector w ∈ <D, wµ ≥ 0, µ = 1, ..., D for some given dataset
X = {xi ∈ <D, i = 1, ..., N} that helps the classifier to minimize E(X). In case
the Euclidean distance is used, the weighted distance between two data points

x,x′ becomes d(x,x′) = ||x− x′||w =
√∑D

µ=1 wµ(xµ − x′µ)2.

Well known methods for feature weighting are Relief [3] and Simba [4]. Re-
lated is the more general problem of metric learning with Large Margin Nearest
Neighbor Classification (LMNN) [5] as a popular approach, that optimizes the
Mahalanobis distance d(x,x′) = ||x− x′||W =

√
(x− x′)TW (x− x′).

We here present a method that contrary to the other methods is independent
of the initial dimension scaling and evaluate it on gene expression data.

2 Maximum Distance Minimization

For rescaling the dimensions, we do not look at local neighbors, as the other
methods do. Instead we try to minimize, by a very global optimization, the
maximum distance between all pairs of data points of the same class, while
keeping the pairwise distance between data points of different classes large. We
therefore name our method Maximum Distance Minimization (MDM). Formally,
we are solving the following constrained optimization problem

||xi − xl||2w ≥ 1 ∀i, l : yi 6= yl (1)

||xi − xj ||2w ≤ r ∀i, j : yi = yj (2)

min
w

r wµ ≥ 0 ∀µ, (3)

where yi, yl, and yj are the class labels of xi, xl, and xj . The above problem
can be formulated as a linear program, which is always solvable, even without
slack variables.
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Euclidean MDM Relief Simba LMNN

Breast 8.07(6.13) 11.42(7.25) 9.68(7.09) 14.07(7.63) 9.78(7.13)
Cancer 1213.00(0.00) 364.76(62.65) 1213.00(0.00) 1213.00(0.00) 1136.96(0.75)

DLBCL 13.11(5.24) 14.67(5.33) 11.17(5.03) 13.56(6.06) 15.44(4.32)
661.00(0.00) 293.86(34.13) 661.00(0.00) 661.00(0.00) 559.54(1.99)

Leukemia 2.21(2.27) 1.74(1.96) 1.86(1.82) 4.48(3.24) 0.69(1.33)
985.00(0.00) 473.24(55.28) 985.00(0.00) 984.94(0.24) 822.50(4.77)

Lung 4.37(2.77) 5.49(3.18) 4.22(2.66) 8.69(3.80) 4.78(2.66)
Cancer 1000.00(0.00) 536.62(78.55) 1000.00(0.00) 999.78(0.42) 870.86(1.87)

Novartis 1.26(2.15) 0.89(2.37) 0.98(1.98) 3.81(4.43) 0.39(1.34)
500.00(0.00) 238.46(32.60) 500.00(0.00) 499.96(0.20) 424.22(3.16)

Table 1. Results for gene expression data. For comparisson we also included LMNN.
The top entry is the average test error followed by the STD in parentheses. Below
the error rates the average number of non-zero weights, again followed by the STD, is
given.

3 Experiments

Experiments on UCI datasets show that MDM is independent of the initial
scaling of the data dimensions [6]. Here we applied it to gene expression datasets
available from the Broad Institute webside1. The data dimensions of each dataset
were normalized so that the data points have zero mean and a variance of one.
The k-NN (k=3) error rates in Table 1 were obtained by a 5-fold cross-validation
that was repeated ten times. None of the tested methods is clearly better then
any other and the variances are quite large. This shows how challanging this
data is. There are only 70 to 250 samples and it has 500 to 1200 dimensions.
Interestingly, MDM reduces the dimensionality heavily, which is worth to have
a closer look at.
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Practical Estimation of Missing Phosphorus

Values in Pyhäjärvi Lake Data

Alexander Grigorievskiy1, Anton Akusok1, Marjo Tarvainen2, Anne-Mari
Ventelä2, and Amaury Lendasse1,3,4

1 Aalto University, Department of Information and Computer Science,
PO Box 15400, FI-00076 Aalto , Finland

{alexander.grigorevskiy,amaury.lendasse}@aalto.fi
2 Pyhäjärvi Institute, Sepäntie 7, FIN-27500 Kauttua, Finland

{marjo.tarvainen,anne-mari.ventela}@pji.fi
3 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

4 Computational Intelligence Group, Computer Science Faculty, University of the
Basque Country, Paseo Manuel Lardizabal 1, Donostia-San Sebastián, Spain

Abstract. Practical problem of missing values estimation of phospho-
rus concentration is addressed in this paper. There are several covariates
which can be used to estimate phosphorus in Pyhäjärvi lake, however
some of them also contain missing data. In addition, variable selection
needs to be done in order to increase accuracy of modeling and facili-
tate understanding of underlying dependencies. We address the problem
by first, Delta test variable selection and then by regression approach
with Ridge Regression, SVM and LS-SVM accompanied with wrapper

variable selection. It is shown that for some time periods it is possible
to improve estimations from regression by averaging them with missing
values imputation methods like Empirical Orthogonal Functions (EOF).

Keywords: Environmental Modeling, Missing values, Regression, Sup-
port Vector Machine, SVM, Least-Squares Support Vector Machine, LS-
SVM, Empirical Orthogonal Functions, EOF

1 Introduction and Work Motivation

Pyhäjärvi lake is a large lake located on the south-west of Finland. The lake
plays an important role in the local agriculture and fishing industries. Due to
the human activity and changing climate the ecology of the lake has been chal-
lenged [1]. The main substance that influence the ecological balance in the lake
is phosphorus. Therefore, it is very important to model and analyze phosphorus
concentration in order to develop adequate measures for the lake protection.

Complication, which is frequently encountered when dealing with environ-
mental data, is the presence of missing values. Measurements are often taken
manually by humans and cases like spoiling the sample or sickness of a particu-
lar person are not exceptions. Selecting the best subset of covariates is also an
important step in the modeling. In this work, the goal is to estimate concen-
tration of phosphorus in various locations of Pyhäjärvi lake for the time period
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26.03.1991 - 21.04.2008. Some values of phosphorus are given but many are miss-
ing. Some covariates also contain missing values. To shorten the exposition, data
only for one location is considered in what follows.

The paper organization is the following: in the next section description of
the dataset is provided. In the Section 3 regression approach to phosphorus
concentration estimation is given. Then follows the missing values approach and
finally conclusions.

2 Dataset Description

The dataset is shown in the Table 1. There are 16 variables (columns) and
1230 rows in the dataset. Each row correspond to averaged value of correspond-
ing variable over 5 day interval. This interval is called “Week” for brevity.
In the column “Complete dataset” number of present values of different vari-
ables is given. The variable to estimate is the second one - “Total P S11”.

Table 1. Dataset and amounts of present values in vari-
ables

Dataset
No. Variable name Complete dataset Part 1 Part 2

(1230 rows) (351 rows) (271 rows)
1 “Flow S11” 1230 (full) 351 (full) 271 (full)
2 “Total P S11” 227 59 58
3 “Total P S10” 225 60 58
4 “Total P S12” 226 58 72
5 “Temperature” 1228 351 (full) 271 (full)
6 “Integrated Flow S11” 1230 (full) 351 (full) 271 (full)
7 “Smoothed Flow S11” 1230 (full) 351 (full) 271 (full)
8 “Rains” 1230 (full) 351 (full) 271 (full)
9 “Sin Week” 1230 (full) 351 (full) 271 (full)
10 “Cos Week” 1230 (full) 351 (full) 271 (full)
11 “Time shift 1 Ph. S11” 226 58 57
12 “Time shift 2 Ph. S11” 226 58 57
13 “Time shift 1 Ph. S10” 225 59 57
14 “Time shift 2 Ph. S10” 225 59 57
15 “Time shift 1 Ph. S12” 225 57 71
16 “Time shift 2 Ph. S12” 225 57 71

The sparsity of the
dataset is 46% i. e.
almost half of all the
values are absent. How-
ever, missing values are
distributed in time non
uniformly. For variable
“Total P S11” there
are large periods (up to
a year) when no data
is present and periods
where gaps are relatively
small (several “Weeks”).
Preliminary tests showed
that missing values
imputation methods
provide good estimation

of “Total P S11”, when there are no large gaps between given values of this
variable. Therefore, missing values imputation methods are applied only to
datasets named “Part 1” (03.1991-02.1996) and “Part 2” (03.1997-12.2000)
which correspond to time intervals with no big gaps between given values of
“Total P S11”. Regression modeling is conducted for the complete dataset.

Not all variables might be useful for phosphorus concentration estimation.
One goal of this work is to select relevant variables and discard irrelevant.

Regression Dataset. Regression dataset (Table 2) is con-
structed from the complete dataset in the Table 1 by taking co-
variates where no missing data occurs (including “Temperature”).

Workshop New Challenges in Neural Computation 2013
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Table 2. Regression
dataset

No. Variable name
To predict “Total P S11”

1 “Flow S11”
2 “Temperature”
3 “Integrated Flow S11”
4 “Smoothed Flow S11”
5 “Rains”
6 “Sin Week”
7 “Cos Week”
8 “Rains Int. 1”
9 “Rains Int. 2”
...

...
17 “Rains Int. 10”

The variable to predict is “Total P S11”. The num-
ber of training samples is 227 and equals the number
of present values in “Total P S11” variable. Having
trained the regression model, it is possible to estimate
phosphorus concentration on all other “Weeks” when
it is missing. This is called regression approach and
it is compared to missing values approach described
in details in Section 4. Since missing values approach
is studied only during periods “Part 1” and “Part 2”,
for all other “Weeks” regression approach is used to
estimate “Total P S11”. Ten additional variables No.

8-17 are added to the regression dataset. They are integrated values of “Rains”
over 1 “Week” and so forth up to 10 “Weeks”. The motivation for including
these variables is to check possibility that phosphorus concentration depends on
accumulated precipitation intensity during a long period.

In the following sections, we consider regression and then missing values
approaches.

3 Regression Approach to Phosphorus Concentration

Estimation

Regression approach has been applied to the data in Table 2. Three regression
models are evaluated, and the best one which has smallest normalized mean
square error (NMSE) is selected. First model is a linear one - Ridge Regression,
and the other two are nonlinear Support Vector Regression (SVR) and Least-
Squares Support Vector Regression (LS-SVR). Nonlinearity is obtained by using
Gaussian kernel.

One thing that can deteriorate regression models is the presence of irrele-
vant, redundant, or too noisy input variables. Those can increase computational
time, contribute to the curse of dimensionality and, finally, reduce accuracy of
the regression [2]. In addition, selecting of only useful variables facilitates inter-
pretability of the model.

3.1 Variable Selection

There exist many methods for variable selection. Overview of some of them is
presented in [2] and [3]. These methods can be divided into three main cate-
gories: filters, wrappers and embedded methods. Filter methods optimize some
external criteria and select a subset of input variables which corresponds to the
optimum. Advantage of filter methods is that they are usually faster to com-
pute than other types of methods, but disadvantage is that they doesn’t take
into account data model used during learning process. Wrapper methods utilize
learning machine as a black box method to score different subsets of input vari-
ables. Multiple retraining of learning algorithm and measuring performance on
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a separate validation set are usually required. This is a main disadvantage of
this class of methods.

In this work, hierarchical variable selection is applied. On the first step less ac-
curate but more computationally efficient filter method is used - Delta test [4],[5],
on the second step, when less variables are left for analysis, wrapper method is
utilized.

Based on the results of Delta test variables are divided onto 3 groups. First
group is completely irrelevant variables which are discarded from subsequent in-
vestigation. The second group is important variables which are always kept. And
finally to the third group attributed variables which are investigated through
wrapper approach by passing all possible their combinations through the regres-
sion algorithm and measuring NMSE on validation set.

Table 3. Variable selection via Delta test for regression datasets

No. of
samples

Relevant variables Variables to be investigated further

227
“Flow S11” , “Temperature”,
“Integrated Flow S11”

“Smoothed Flow S11”, “Rains”, “Sin Week”,
“Cos Week”, “Rain int 1”, “Rain int 4”

Variables in the right most column are investigated further through a wrapper
approach. Actually, three regression models are considered and selection of the
best subset of variables is done along with selection of the best model.

3.2 Regression Models

Three regression models have been analyzed in this work. One linear - Ridge re-
gression, and two nonlinear Support Vector Regression (SVR) and Least Squares
Support Vector Regression (LS-SVR) [6].

Regularization parameter λ in Ridge regression is adjusted via second in-
ternal cycle of cross validation. Gaussian kernel functions are used in SVR and
LS-SVR. There are three hyper-parameters to adjust in SVR formulation: C
- regularization parameter, ǫ - width of a tube inside which no penalty for a
point occurs, and σ - width of a Gaussian kernel. We have utilized method of
Cherkassky and Ma [7] followed by pattern search [8] to tune these parameters.
LS-SVM Toolbox for Matlab has been used for LS-SVR modelling. Param-
eter optimization in this toolbox is done through coupled simulated annealing
algorithm [9] and fine tuning through simplex method and cross-validation.

3.3 Regression Results

Before applying regression modeling all input variables and output variable have
been normalized to have zero mean and unit variance. Generalization error of
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different models and different subsets of input variables is measured by Monte-
Carlo 15-fold cross-validation which is repeated 50 times. Number of folds is
increased in comparison with standard 10 because number of samples in each
dataset is small, and there is a need to increase number of samples for training.
Regression model and subsets of variables which have the smallest NMSE are
presented in the Table 4. We see that the best model is LS-SVM and the worst

Table 4. Relevant variables and best models for the regression dataset

Best model Relevant variables NMSE ± (std)

LS-SVR
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Smoothed flow S11”, “Sin Week”, “Cos Week”

0.530± (0.312)

Ridge R.
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Sin Week”, “Int. Rain 2”, “Int. Rain 5”

0.675± (0.394)

SVM
“Flow S11” , “Temperature”, “Integrated Flow S11”,
“Smoothed flow S11”, “Sin Week”, “Cos Week”

0.570± (0.359)

one is Ridge Regression. This indicates the fact that dataset is highly nonlinear.
SVM is the second best model. We suppose that the hyper-parameter selection
strategy of LS-SVM toolbox is superior over the method we use for SVM.

The most relevant variables are the same for LS-SVM and SVM. Except
“Rains” variable, all relevant variables form the application domain point of
view are selected as important. Several subsets of variables are analyzed further
in the missing values imputation approach.

4 Missing Values Approach to Phosphorus Concentration

Estimation

Missing values datasets have been described in the Section 2. There are two
datasets named “Part 1” and “Part 2”. They correspond to time intervals when
measurements of phosphorus are not very sparse. They include all 16 variables
from the Table 1.

Regression modeling allows estimating phosphorus concentration when it is
unknown. However, in regression modeling the sequential nature of the data
is not taken into account. By utilizing missing values approach we are able to
account for this and also include additional predictors (covariates) which them-
selves contain missing values. Importance of several subsets (Table 5) of input
variables has been analyzed as well. Therefore, for periods for which missing val-
ues datasets are constructed, improved estimation of phosphorus concentration
is obtained.

Generally, missing values imputation is a wide area of research with many
applications [10], so it is hardly possible to try all the methods. Therefore, only
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a subset from different classes of methods is selected and subsequent ensemble
averaging is utilized to lighten possible disadvantages of a single method. Each
method takes as input a matrix with missing values, fills missing values and
returns the complete matrix. Due to the space constraints we describe only one
method - Empirical Orthogonal Functions (EOF) [11]. It is a widely used method
in meteorology and climate research for missing values imputation and is based
on Singular Value Decomposition (SVD) (Algorithm 1). For other two: Mixture
of Gaussians (MoF) [12],[13] and Singular Value Thresholding (SVT) [14] we
redirect to the original articles.

Algorithm 1 Empirical Orthogonal Functions

Given the incomplete matrix X ∈ R
m,n

1: Make initial imputation X
0, for example, by column means

2: i = 0 (iteration number)
3: repeat

4: Perform SVD: Xi = U
i
D

i(V i)T to obtain U
i,Diand(V i)T

5: Nullify K smallest singular values of Di. Denote this modified matrix as Di
0

6: Do inverse transformation: Xi
0 = U

i
D

i
0(V

i)T

7: Restore exactly known values: known(Xi
0) = known(X0)

8: i = i + 1 (iteration number)
9: until Convergence

4.1 Model Selection for Missing Values Approach

Combining different models. It is possible to select only one model based
on the lowest NMSE of cross-validation, however there is s reason to keep all
three and do an ensemble (e.g. see [15, p. 656]) Since regression can provide
estimations of phosphorus it is also included in the ensemble.

Ensemble is done via arithmetic averaging of predictions from different mod-
els. However, even further improvement can be achieved if we choose which of the
models to include in the averaging. There are five models we are investigating,
namely “Regression”, “Mixture of Gaussians 1 component” (MM1), “Mixture of
Gaussians 2 components” (MM2), “SVT”, “EOF”.

Experimental Setup. Experiments are done in the similar way as regres-
sion experiments. Accuracy of imputation is characterized by Normalized Mean
Squared Error (NMSE) and is measured by Monte-Carlo 15-fold cross-validation.
There are 50 iterations in total, on each of those dataset is randomly permuted.
The final estimation of NMSE is an average over folds within one iteration and
total average over all iterations. Iterations of cross-validation are required be-
cause datasets are very small - only about 225 samples.

There are two missing values datasets “Part 1” and “Part 2” as described in
Section 2. They are processed simultaneously in the cross-validation cycle. For
each dataset, averaging estimations of all possible combinations of five models
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and three subsets of variables (Table 5) is analyzed in terms of NMSE and
standard deviation (STD) of NMSE.

4.2 Model Selection Results

Results of the model selection are presented in the Table 5. Three groups of
variables which are interesting from the interpretation point of view have been
analyzed. In particular, usefulness of “Rains” variable which has been rejected
on the regression phase, as well as time shifted versions of phosphorus “Time
shift 1 Ph. S11”, “Time shift 2 Ph. S12”.

Table 5. Groups of variables which have been tested for missing values imputation

Missing Values Imputation Results

No. Variable Name Group 1 Group 2 Group 3

1 “Flow S11” X X X

2 “Total P S11” X X X

3 “Total P S10” X X X

4 “Total P S12” X X X

5 “Temperature” X X X

6 “Integrated Flow S11” X X X

7 “Smoothed Flow S11” X X X

8 “Rains” X

9 “Sin Week” X X X

10 “Cos Week” X X X

11 “Time shift 1 Ph. S11” X X

12 “Time shift 2 Ph. S11” X X

13 “Time shift 1 Ph. S10” X X

14 “Time shift 2 Ph. S10” X X

15 “Time shift 1 Ph. S12” X X

16 “Time shift 2 Ph. S12” X X

Best model combination 10001: “Regression LS-SVM”, “EOF”

NMSE ± std, Part 1 0.503± 0.599 0.504± 0.634 0.503± 0.637

NMSE ± std, Part 2 0.343± 0.611 0.340± 0.665 0.340± 0.662

It turns out that the best model combination is an average of estimations
of LS-SVM Regression and EOF. Actually, the best variable subset and best
model combination is selected as compromise between two “Part 1” and “Part
2” datasets. The reason is that sometimes one model combination is better for
“Part 1” and another one is better for “Part 2”. So, resulting table is produced
by manually inspecting NMSE and STD for various sets of variables and model
combinations, and choosing the one with good results for both “Part 1” and
“Part 2”. Since the difference in NMSE and STD is not very large for the three
groups, the third group might be preferred. This means that variable “Rains”
and time shifted values of phosphorus are insignificant variables for this problem.

It can be observed that STD is higher than NMSE in all cases. This is an
indicator of the fact that some extreme values of phosphorus concentration is
very hard to predict.
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5 Conclusions

Practical problem of phosphorus concentration estimation has been addressed
in this article. Two stage approach has been developed where on the first stage
regression problem with only complete covariates have been solved and on the
second stage improvements by missing values method has been made. Selection
of the best regression model and variable selection have been done along.

Empirical Orthogonal Functions(EOF) method in combination with LS-SVM
achieved the best accuracy for predicting phosphorus concentration.

In the future, other classes of methods are intended to be applied for the
problem. We plan to use existing methods or develop new ones which can do
nonlinear regression with missing values in the covariates.
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Abstract. The Self-Organizing Time Map (SOTM) is a recently introduced 
adaptation of the Self-Organizing Map for visualizing dynamics in cluster 
structures, or visual dynamic clustering. This paper extends the use of the 
SOTM to visualize changes in cluster structures over any variable of ordinal, 
cardinal or higher level of measurement. The rationale and functioning of the 
SOTM over any variable is illustrated with two real-world cases related to 
cluster structures in welfare, poverty and development indicators for a global 
set of countries. 

Keywords: Self-Organizing Time Map, cluster analysis, visual dynamic 
clustering 

1 Introduction 

The Self-Organizing Time Map (SOTM) [1] is a recently introduced adaptation of 
Kohonen's Self-Organizing Map (SOM) [2] for visual dynamic clustering. Clustering 
refers to the reduction of data into a smaller number of groups or mean profiles. 
Further, dynamic clustering refers to the same task, but with changes in the clusters 
over time. While there exist since the mid-20th century a plethora of methods for 
clustering, such as k-means, Ward's hierarchical and fuzzy c-means clustering, only 
recently was an approach denoted evolutionary clustering proposed for dynamic 
clustering [3]. Evolutionary clustering creates a sequence of clustering solutions with a 
balance between being faithful to current data and comparable with the previous 
clustering result. Chakrabarti et al. [3] relate the usefulness of such an approach to four 
tasks: (i) consistency (i.e., familiarity with the previous clustering), (ii) noise removal 
(i.e., increases in robustness due to a historical consistent clustering), (iii) smoothing 
(i.e., a smooth view of changes), and (iv) cluster correspondence (i.e., relation to 
historical context). The SOTM is a visual approach to evolutionary clustering by using 
dimensionality reduction for providing a low-dimensional representation of dynamic 
clusters. As is already hinted but not exploited in [3], an essential question remains: 
Why should the SOTM be restricted only to illustrating differences over the time 
dimension? 

This paper extends the use of the SOTM to visualize changes in cluster structures 
over any variable of ordinal, cardinal or higher level of measurement. This can be 
exemplified by customer segmentation based upon demographic data. Instead of 
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exploring how customer segments change over time, we can explore how customer 
segments change over other variables, such as age, education level, purchasing 
amount., etc. The usefulness becomes self-evident when translating differences in 
cluster structures over any variable to the context of dynamic views with evolutionary 
clustering: (i) familiarity with the previous clustering, (ii) increases in robustness due 
to a context-consistent clustering, (iii) a smooth view of differences, and (iv) relation to 
context of the variable. The relevance of such an approach is highlighted by the fact 
that this is a common setting in a wide range of domains, where data are high-
dimensional and large-volume, such as how risk indicators for financial entities change 
over their size or geographical location or how welfare and poverty indicators for 
countries change over some characteristic of the countries.  

In the vein of the last example, this paper illustrates how cluster structures in 
welfare, poverty and development indicators for a global set of countries change over 
two variables: an index measuring fulfillment of the Millennium Development Goals 
(MDGs) and the share of population below the poverty line. After briefly presenting 
the SOTM and its counterpart over any variable in Section 2, we illustrate it by 
presenting two cases on a real-world dataset in Section 3. Section 4 concludes and 
illustrates applicability in other domains. 

2 A SOTM over any variable 

This section presents the standard SOTM, its counterpart over any variable and 
visualizations of the SOTM. 

2.1 The SOTM 

 
The SOTM uses the capabilities of the SOM for abstraction of patterns in data. In the 
form that the SOTM was presented in [1], it provides means for abstractions of 
temporal structural changes by illustrating how cross-sections evolve over time in 
one-dimensional SOMs [2]. Whereas time has been introduced to the SOM in 
numerous studies (e.g., Temporal SOM [4] and Merge SOM [5]), the objective of the 
SOTM is inherently different as it aims at visualizing how multivariate cross-sectional 
data evolve over time. 

To observe the cross-sectional structures of the dataset for each time unit t (where 
t=1,2,…,T), the SOTM performs a SOM-based mapping from the input space ȍ(t), 
approximating the probability density functions p(x,t) of time-restricted subsets of the 
data, onto a  one-dimensional array A(t) of output units mi(t) (where i=1,2,…,M). To 
preserve the orientation between consecutive patterns, the SOTM uses short-term 
memory by initializing reference vectors of A(t-1) with those of A(t). However, the 
first eigenvector of principal component analysis (PCA) on ȍ(t1)  is used for an 
initialization of A(t1). Adjustment to temporal changes is achieved by performing a 
SOM-type batch update per time unit t. Thereafter, the timeline is created by 
arranging all A(t) in an ascending order of time t. The topology preservation of the 
SOTM is hence twofold: the horizontal direction preserves time topology and the 
vertical preserves data topology. While being time restricted, the parametrization of 
the SOTM follows the two standard steps from the SOM paradigm. First, it locates 
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best-matching units (BMUs) by a time-restricted matching of each data to the unit 

with shortest Euclidean distance, i.e. )(-)(min tmtx i , and then it updates each 

reference vector mi(t) through a time-restricted version of the batch formula. The 
number of updates and size and type of neighborhood can obviously be adapted 
depending of the purpose of use and characteristics of the data at hand. 

2.2 Replacing time in the SOTM 

The above description of the SOTM focuses on visual dynamic clustering. This 
section draws upon the approach of the SOTM, yet replaces the x-dimension of time t 
with any variable v. For instance, similarly as time can be used for dividing data into 
10 distinguishable time points, the variable v can be used to divide data into separate 
subsets. Hence, this section presents a SOTM in which the time dimension t  has been 
interchanged to a variable v, which eventually implies a SOTM for illustrating 
changes in cluster structures over variables. 

The properties of variable v (where v=1,2,…,V) follow those of time t in the 
original SOTM by being a discretized ordinal or cardinal variable (or higher level of 
measurement), having arbitrary frequency and being related to all entities in ȍ. In 
particular, this excludes the use of nominal variables with values which have no 
numerical meaning (e.g., gender and occupation), and does thus not enable ordering 
or ranking of data. Thus, the variable v is simply a transformation of dataset ȍ into 
subsets ȍ(v) according to the discrete values of variable v. 

As replacing t with v involves no changes in the overall procedure, we mainly 
focus herein on the implications for the two SOM-based steps in SOTM training. 
Thus, for each A(v), a data points )(ȍ䌜)( vvx j  (where j=1,2,…,N(v)) are compared to 
reference vectors )(䌜)( vAvmi  and assigned to their BMUs mc(v): 

 )(-)(min=)(-)( vmvxvmvx i
i

c , (1) 

 
Then, each reference vector mi(v)  is adjusted using the batch update formula:  
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where 
2

)(-)( vrvr ic  is the squared Euclidean distance between the coordinates of the 

reference vectors mc(v) and mi(v) on the one-dimensional array, and ı is the user-
specified neighborhood parameter. 

In this vein, the functioning principles of the SOTM over variables v can be 
summarized as follows: 

 
v = 1 
initialize A(v) using PCA on ȍ(v) 
apply the batch update to A(v) using ȍ(v) 
while v<V 

v = v + 1 
initialize A(v) using the reference vectors of A(v-1) 
apply the batch update to A(v) using ȍ(v) 

end 
order A(v) in an ascending order of variable v 

2.3 Visualizing any SOTM 

Visualizing the SOTM, independent of whether it is computed over time or any other 
variable, can make use of the same set of visualization aids. We focus in this paper on 
two representations of the SOTM. 

The multidimensionality of the SOTM can be represented using feature planes, as 
is common in the SOM and SOTM literature. They are views of the spread of values 
for each variable on the SOTM grid and enable assessing the variation in cross-
sectional distributions over the chosen variable v. Herein, feature planes make use of 
ColorBrewer's scale [6], where variation of a blue hue occurs in luminance. Hence, 
light to dark represent low to high values, as is exemplified in Figs. 1 and 3. 

For representing the multivariate structures of a SOTM, we can use a Sammon’s 
mapping-based coloring. Sammon's mapping [7] is one of the seminal 
multidimensional scaling methods that stresses local pairwise distances. Over the 
chosen variable v, this approach enables exploring structural properties of v 
(vertically) and differences in structures (horizontally) by trying to match the pairwise 
distances of the SOTM units with their distance in the high-dimensional space. This 
can be represented in two ways. First, a Sammon's mapping of the SOTM plots all 
units (mi(v) where v=1,2,…,V) to one dimension and assigns the value of the 
Sammon's dimension to each unit. Variable v is disentangled plotting the Sammon's 
dimension individually for each element of variable v. Thus, this representation has 
Sammon's dimension on the y axis and variable v on the x axis, in which adjacent 
units are connected with solid (data topology) and dashed (variable topology) lines for 
a net-like representation. Second, the Sammon's dimension may be used as an input to 
a coloring method by Kaski et al. [8] for visualizing cluster structures of the SOTM. 
The Sammon's dimension of the SOTM units is paired with the uniform color space 
CIELab [9], where perceptual differences of colors represent distances in data. 
However, as also the individual SOMs of the SOTM are one-dimensional, we only 
use one color dimension (blue to yellow) to represent differences between units. 
Hence, the coloring represents distance structures on the SOTM grid, where distances 
in color show differences among clusters and their differences over variable v.  
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3 Experiments 

In this section, we present the SOTM over cardinal variables on a real-world dataset. 
Following the case in [1], we also illustrate an application of the SOTM on a 
multivariate dataset of development and welfare indicators with patterns for a large 
number of economies over the past two decades. The dataset includes a selection of 
World Bank’s World Development Indicators for tracking the progress of the MDGs. 
The eight MDGs represent commitments to reduce, by 2015, hunger and poverty, and 
to tackle gender inequality, ill-health and lack of education and access to clean water, 
as well as environmental degradation. The dataset ȍ is in panel format, where rows 
represent country-year observations, including 207 countries spanning from 1990–
2008, and columns represent 15 indicators measuring fulfillment of the MDGs, which 
are all transformed using min-max normalization. However, instead of years, we 
show how cluster structures differ over two cardinal variables: an MDG index and 
population below the poverty line. 

3.1 MDG indicators over an MDG index 

The first application on the MDGs illustrates how cluster structures evolve over a 
broad MDG index. The MDG index is based upon work in [10], where a large set of 
welfare, poverty and development indicators were aggregated to an overall measure 
of MDG fulfillment. While a large number of measures are highly correlated, such as 
ill-health and poverty, some are less so, such as poverty and environmental 
degradation or gender inequality. As the values of  the MDG index are centered 
around 0.4, although being in the interval of [0,1], we transform them into percentiles 
to better represent how the cluster structures evolve over the MDG index. Further, to 
discretize v, we focus on deciles, and thus v=0.1,0.2,…,1.0. 

The architecture of the SOTM is chosen to be 6x10 units, where six units represent 
data topology for each of the ten deciles of the MDG index. Fig. 1 visualizes 
univariate changes in cluster structures over the MDG index. It illustrates some 
obvious patterns, such as decrease in poverty measures over the MDG index, whereas 
some less so. For instance, seats held by women in parliament take average values for 
MDG index values of [0.2,0.4] and high for [0.8,1.0]. Likewise, high CO2 emissions 
and low official development assistance (ODA) characterize MDG index values of 
[0.4,0.6]. This indicates that polluting countries with little gender equality and ODA, 
but good values in poverty and health-related measures, populate the mid part of the 
SOTM. Moreover, one can also observe that while the share of underweight children 
decreases abruptly over the MDG index, the HIV rate and the tuberculosis prevalence 
rate decrease gradually over the cluster structures.  
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Fig. 1. Feature planes of the SOTM over the MDG index. 
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Fig. 2. Cluster coloring of the SOTM over the MDG index. 

Fig. 2 shows, on the other hand, how the multivariate structures evolve over the 
MDG index. It shows that the largest differences occur in the lower end of the MDG 
index, whereas changes in structures for an MDG index of [0.3,1.0] are more gradual. 

3.2 MDG indicators over population below the poverty line  

In the second application, we use the same data, but interchange the MDG index to 
the share of the population below the poverty line. Again, we transform the variable v 
into deciles, i.e., v=0.1,0.2,…,1.0. 
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Fig. 3. Feature planes of the SOTM over the share of population below the poverty line 
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Fig. 4. Cluster coloring of the SOTM over the share of population below the poverty line 

We follow the above application by again setting the architecture of the SOTM to 
6x10 units, where six units represent data topology for each of the ten deciles of the 
population below the poverty line. As above, Fig. 3 visualizes univariate changes in 
cluster structures over the population below the poverty line. As the nature of variable 
v is different (i.e. not an index value), the changes in cluster structures are more 
gradual. Here, on the other hand, we can observe that countries with high CO2 
emissions and little gender equality and ODA lie in the very beginning of the SOTM, 
whereas countries with higher proportion of internet users and more ODA and women 
in parliament are located in [0.3,0.5]. In Fig. 4, we can again observe that larger 
differences in cluster structures occur in less developed nations, which also 
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corresponds to the fact that population below the poverty line varies little below the 
median (as is seen in the first feature plane of Fig. 3). 

4 Conclusions 

This paper has illustrated how the SOTM can be used for an abstraction of changes in 
cluster structures over any variable. Whereas the standard SOTM performs visual 
dynamic clustering with a focus on changes over time, the present paper shows that 
the only restriction on the variable over which differences in cluster structures can be 
shown is ordinal, cardinal or higher level of measurement. The case examples used to 
illustrate the SOTM over any variable relate to welfare and poverty indicators, 
particularly to changes in cluster structures over an MDG index and the share of 
population below the poverty line. The simple demonstrations in this paper function 
as examples for the SOTM to be applied to other domains and problems. It is worth to 
note that it is not rare for cluster structures to change over various variables in most 
tasks, and hence this approach is expected to be useful also in a wide range of 
domains. 
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Abstract. This paper presents a simple and powerful approach to image-
based classification of webpages. It distinguishes between arbitrary classes,
and is resilient to noise. The approach consists of extracting colour im-
age descriptors, building a unified image representations, and running a
fast classifier on top of it. The results are good even in the presence of
noise, and excellent for some classes. Results on a subset of Caltech101
are given for comparison.

1 Introduction

Analysis of web content is an old task, emerged with the first Internet search
engines. Being able to describe or classify a webpage is essential for various tasks
like returning relevant search results [9], finding similar pages [13] or blocking
unwanted or dangerous websites [14] like phishing ones.

Traditional webpage analysis approaches rely on textual information (text
body of a page, address, keywords and links). But with the increase of bandwidth,
storage and processing power, image data found heavy usage in webpages being
a native to humans powerful expressive format. A modern user will probably be
surprised seeing a text-only webpage without visual design.

Image data, while being an important source of information in the web, is
hard for machine processing due to its extreme variability. The task can be
simplified by restricting it to image classification in several classes of interest.
Existing classification methods include target-specific ones [29], which cannot
be generalized on arbitrary classification. An example of these are adult content
detection methods based on the amount of skin colour in the image [20]. Other
methods are very complicated and aimed on image understanding with object
extraction and recognition [27, 6]. They are common in regular competitions like
PASCAL VOC [7] or common benchmark datasets like Caltech101 [8]; otherwise
they are impractical due to complicated modification and adaptation, a lack of
ready-made toolboxes, and long training and running times.

The goal of the research is to create a universal method for image classifica-
tion of arbitrary classes. Because exact classes of particular webpage images are
unknown, a specific assumption is made that they have the same class as the
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page itself, which may lead to a high amount of noise. Also the classifier should
scale well with the size of a dataset, because huge datasets are easily obtained
from the web, and are a key for overcoming the noise problem.

The rest of the paper is organized as following. The next section describes
the four stages of the proposed methodology for image-based classification. The
Experiments and Results section presents classification results for the original
web image dataset, as well as for the similar subset of Caltech101 images for
comparison. And the last section concludes on the performed work.

2 Methodology

The current goal of methodology for website image-based classification is to
develop a uniform approach to general image-based classification. It allows esti-
mating the feasibility of such a classification for each class of interest, adapting
the system to changing requirements, and leaves space for later modifications.
The proposed approach, satisfying the aforementioned restrictions and having
clear and feasible to implement image processing pipeline is depicted on Figure 1.
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Fig. 1. Overview of image classification method. Three major stages are pre-processing,
building image representations with random vector quantization, and final classifica-
tion step with ELM. Image classification results are combined into website classes as
described in the last section of the methodology.

The pipeline consists of three image classification stages, plus a website com-
bination step. The preprocessing stage provides local image features, indepen-
dent of particular image size, encoding format, scale and orientation, which is
desirable for web images analysis. There are many such features [3, 21] which are
often used in conjunction, but for getting an insight on the available data (and
for practical reasons of working with a huge dataset) only one type of features
is currently selected - colour SIFT [16, 26].

The first stage (Figure 1) creates a single representation for each image,
which is required for the image classifier and does not depend on the particular
number of local features. For the representation, a histogram of local features of
each class is used. Local features are classified with a random vector quantization
approach.
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The second stage (Figure 1) estimates classes of single images. Any non-linear
classifier which scales to millions of data samples suits for that role. An ELM [12]
classifier is chosen for low computational requirements and a performance com-
parable to the state-of-the-art [17].

The last stage combines estimations of image classes into website classes. It is
applied when image grouping into websites is available. The steps are described
in more details in the following subsections.

2.1 Local Features

Local image features [15] are widely used as a base in image processing systems,
including the state-of-the-art ones [6]. They can robustly capture similar objects
in different images under slightly different angles or poses [24], and are tolerant
to image scaling, rotation and noise caused, for instance, by different encodings
and compression [16].

Local image features are calculated in two steps: determining features’ posi-
tions, sizes and orientations (feature detection), and calculating quantized his-
togram from the pixel values of an image patch (feature description).

Several algorithms exist for feature detection [24], generally with a trade-
off between detection accuracy and invariance to image transformations. The
Harris-Laplace [18] feature detector is used in the work, which is rotation and
scale invariant. It starts from building edge maps of the intensity map of the
whole image, for different scale parameter. This gives a 3-dimensional tensor,
local maximums of which corresponds to the detected local features. Orientation
is just the major orientation of pixel gradients in a feature region.

Image Gradients
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Fig. 2. Schematic representation of local feature descriptor calculation. Real descriptor
has 4×4 sub-windows instead of 2×2 on the picture.

The selected feature description method is based on a widely used SIFT [19].
It calculates the descriptors by splitting the detected image patch into 4×4 bins
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(2×2 on the figure), quantizing pixel gradients in each bin, and concatenating
the quantized representations. The process is illustrated on the Figure 2. The
approach utilized in the paper is cSIFT [26], which calculates SIFT descriptors
for each colour channel in the opponent colour space and concatenate them
together. This allows automatically consider the colour of an image for colour-
sensitive classification tasks like adult image detection.

2.2 Image Representation with Random Vector Quantization

A unified representation for all images is desirable for the classification task,
however different images have highly variable number of local features (from one
to tens of thousands). A typical approach of building a local feature histogram
(also called a bag-of-visual-words) is omitted, as it aims at using an SVM classifier
which has effective kernels for histogram data, and the classifier in the article is
not an SVM.

The idea for image representation is to calculate how many local features of
each class an image possesses. This corresponds to an image-to-class distance [4],
and enables classification of a query image even if no similar image exists in
the training set. Local features are classified using random vector quantization
(random VQ) [10] of a cSIFT descriptors space, as described hereafter.

From all the training images, local descriptors di ∈ R
384, i ∈ J1, NdK are

gathered in the same poolD : di ∈ D. Assume that all the descriptors in an image
have the same class as an image itself ci = class(di). Given a number of clusters
K, the same number K of descriptors dk ∈ D, k ∈ J1,KK are chosen randomly
from the whole pool of descriptors D. Lets call the selected descriptors centroids
lk = dk, k ∈ J1,KK for convenience. Then the set of centroids {lk}, k ∈ J1,MK
defines a random VQ of the descriptor space, with the corresponding Voronoi
cells Vk : ∀d ∈ Vk, k = argminj∈J1,KK ||d− lj ||2. Denote Dk a set of descriptors
belonging to the Voronoi cell Vk, and all possible classes m ∈ J1,MK. Then
classes can be assigned to the Voronoi cells (and the corresponding centroids)
by the majority vote of classes of its descriptors:

ck = argmaxm∈J1,MK

∑

dj∈Dk
δ(cj ,m), ck = class(lk) = class(Vk), (1)

where δ(cj ,m) is Kronecker delta.
Better results are achieved using soft class assignment with ck = [c1k . . . c

M
k ] ∈

R
M , provided by the empirical formula on eq. 2. A likelihood of a centroid lk to

belong to class m depends on an average distance from the centroid (the smaller
the higher) which is further divided by a number of descriptors of that class
in the given Voronoi cell (the more the higher is the likelihood). The square
root smooths out extreme likelihood values. If no descriptors of that class are
presenting in that Voronoi cell, cmk = −

√
global average distance is used.

cmk = −
√

∑

(di∈Dk)∩(ci=m)

||lk − di||2 / ||{di}||, (2)
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Defining a set of descriptor in a query image Dq, a representation of the query
image is a vector q = [q1 . . . qm] ∈ R

M is just a summation of soft class vectors
for all of its descriptors:

q =
∑

di∈Dq

ck : k = argminj∈J1,MK ||di − lj ||2 (3)

Choosing the class(q) = argmaxm∈J1,MK q
m already provides a naive image

classification, however adding the proper classifier in the last stage significantly
improves the results.

2.3 ELM classifier

The ELM[12, 11] algorithm uses the Single Layer Feedforward Network (SLFN)
structure. The main concept behind the ELM is the random initialization of the
weights and biases of the hidden layer of SLFN. Then finding an output weights
is a linear problem, with a very low computational cost compared to iterative
training procedure like error back-propagation.

Consider a set of M distinct samples (xi ∈ R
d1 ,yi ∈ R

d2); then a SLFN with
N hidden neurons is modelled as the following sum

N
∑

i=1

βiφ(wixj + bi), j ∈ J1,MK (4)

with φ being the activation function, wi the input weights, bi the biases and
βi the output weights.

In the case where SLFN would perfectly approximate the data, the error
between the estimated outputs ŷi and the actual outputs yi are zero, and the
relation between inputs, weights and outputs is then

N
∑

i=1

βiφ(wixj + bi) = yj , j ∈ J1,MK, (5)

which writes compactly as Hβ = Y, with

H =







φ(w1x1 + b1) · · · φ(wNx1 + bN )
...

. . .
...

φ(w1xM + b1) · · · φ(wNxM + bN )






(6)

and β = (βT
1 . . . βT

N )T , Y = (yT1 . . . yTM )T .
Solving the output weights β from the hidden layer output matrix H and

target values is achieved through the use of a Moore-Penrose generalized inverse
of the matrixH, denoted asH†. The ELM is proven to perform universal function
approximation [12].
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In the proposed methodology, ELM classifier further processes image rep-
resentations q to improve results by non-linear transformation and considering
relations between the components of q. The inputs are image representation
vectors q ∈ R

K , the desired outputs y ∈ R
K have all the components equal -1

except for the true class component set to +1. The classifier outputs ŷ ∈ R, and
the estimated class of an image is ĉ = argmaxm(ŷm).

2.4 Website Classification

In image-based website classification, additional information is provided by the
grouping of images into websites. An estimated website class ĉws is obtained
from its images as:

ĉws = argmaxm

(

∑

ŷ∈website

ŷm
)

(7)

Experiments show the prediction improvement from combining image out-
puts for website classification, up to twice higher accuracy for some classes. The
next section presents application results of the proposed methodology to a real
web images dataset, as well as to a subset of Caltech101 for comparison.

3 Experiments and Results

The methodology was tested on two datasets - one real web image dataset pro-
vided by F-Secure Corp.4 (which cannot be published), and a subset of Cal-
tech101 for comparison. The web image dataset has 11 classes of interest plus
one ”background” Unknown class representing all other webpages. It has train-
ing and test parts, which are taken from separate websites. Not all the images
are relevant because true classes are known only for webpages; part of irrelevant
images may reach 80% for classes like Cults. The former dataset consists of 12
classes from Caltech101, which have the largest amount of images. Parameters of
websites are presented in Table 1. Caltech101 dataset does not have webpages,
thus only image classification results were obtained. Web images set has both
image classification and webpage classification results.

Main code was written in Python, and it includes python imaging library
with multiprocessing module for parallel computations. Colour image descriptors
are obtained using colorDescriptor software [26]. Centroids for random vector
quantization are initialized from random descriptors of the web images training
dataset and used in both experiments, because they were taken randomly, and
their labels are re-calculated for each dataset separately.

3.1 Web image dataset

The classifier was trained on the web images training set, using 10000 images per
class for training and 7000-10000 images per class for validation. Experiments

4 F-Secure Corporation, http://www.f-secure.com/en/web/home global
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Table 1. Datasets parameters, relevance estimated empirically.

Web images dataset, training + test

Class Websites Images

Adult 6801+219 216122+8597
Alcohol 12828+628 76666+5506
Cults 8387+182 37410+2262
Dating 4703+125 31844+789
Drugs 11439+221 85393+2727

Gambling 7322+582 38546+4905
Hate 8546+206 48581+1993

Religion 5438+45 17928+545
Tobacco 5784+483 38623+6379
Violence 1919+224 21113+4010
Weapons 2464+164 27240+1755
Unknown 3432+96 34382+902

Caltech101 subset

Class Images

Aeroplanes 800
Motorbikes 798
Background 468
Faces easy 435

Faces 435
Watch 239

Leopards 200
Bonsai 128
Car side 123
Ketch 114

Chandelier 107
Hawksbill 100

repeated a number of times with random initializations, and the best model
selected with validation. Then the test results are calculated on the separate
test set. The results are presented on Figure 3. The calculations were performed
using computer resources within the Aalto University School of Science ”Science-
IT” project. Average running time per image was 0.3s for extracting the cSIFT
descriptors (on average 300 descriptors per image) and 0.5s for finding the closest
centroid for all the descriptors. Running the ELM for all 40000 images of the
test set took 0.7s.

Single image classification provides 23,5% average accuracy (the random
guessing would give 8,3%). Combining images to websites and calculating classes
of websites increase average accuracy to 33,6%. Note that the combination step
has increased accuracy for every single class, and for the Drugs class it increases
twofold: from 21,6% to 43,4%.

3.2 Caltech101 subset

For the subset of Caltech101, only image classification accuracy is obtained, as
there are no websites. For each class, 40 images are used for training, 30 for
validation and 30 for testing, chosen randomly without repetitions. The best
ELM classifier is chosen among 100 runs, and the whole process repeated 100
times. Results are presented on Figure 4. Average accuracy for test images is
52,5%.

4 Conclusion

A general image-based website classification methodology is presented in the
paper. It works with arbitrary classes, tolerant to noise, and scales well with the
size of dataset.

On real image classification test, it shows 23,5% average accuracy on single
images (random guessing would give 8,3%), boosted to 33,6% by combining
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Fig. 3. Test results for web images dataset. Bottom chart shows results combined into
webpages - collections of images. Combining results increases accuracy.

images into websites. Some classes, like Adult and Dating or Cults and Religion,
are confused with each other, which reflects the true distribution of images.
Overall, the classifier is working, and for some categories it manages to achieve
very good performance.

The Caltech101 subset yield 52,5% average image classification accuracy. For
a comparison, SVM+KNN method [28] report 56%-66,2% average accuracy for
the whole Caltech101 image set, which is superior to the proposed algorithm.
While on the current stage, the methodology does not compete to the state-of-
the-art ones, the goal of testing in a Caltech101 subset was to check the results
in the absence of noise. The increase of average accuracy from 23,5% to 52,5%
with the same amount of classes shows that the noisy data problem is important,
and encourages the development of image set filtering algorithms.

There are many ways of further development, which are easier to implement
now, when the general framework for image-based website classification is ready.
Images should be filtered using a separated advertisement and avatar image
classifier, and the amount of text in image. One way to improve results is by using

Workshop New Challenges in Neural Computation 2013

32 Machine Learning Reports



0.758

0.087

0.021

0.000

0.031

0.011

0.000

0.018

0.257

0.011

0.135

0.040

0.015

0.199

0.018

0.000

0.026

0.020

0.002

0.004

0.041

0.006

0.047

0.027

0.060

0.073

0.638

0.000

0.043

0.036

0.005

0.085

0.027

0.050

0.090

0.093

0.003

0.159

0.006

1.000

0.069

0.001

0.001

0.059

0.088

0.000

0.086

0.062

0.003

0.121

0.064

0.000

0.479

0.065

0.037

0.071

0.043

0.010

0.055

0.127

0.000

0.032

0.008

0.000

0.046

0.279

0.132

0.003

0.023

0.009

0.022

0.059

0.001

0.055

0.011

0.000

0.079

0.482

0.779

0.021

0.037

0.018

0.012

0.097

0.014

0.067

0.098

0.000

0.047

0.022

0.005

0.578

0.099

0.028

0.058

0.104

0.075

0.061

0.007

0.000

0.023

0.023

0.003

0.046

0.286

0.004

0.050

0.034

0.008

0.040

0.068

0.000

0.070

0.029

0.026

0.072

0.022

0.832

0.063

0.102

0.052

0.077

0.037

0.000

0.043

0.017

0.002

0.021

0.062

0.013

0.331

0.110

0.010

0.028

0.023

0.000

0.043

0.014

0.007

0.021

0.015

0.021

0.050

0.145

Confusion matrix for test images, normalized

Estimated classes

T
ru

e
 c

la
s
s
e

s

Airplanes MotorbikesBackgoundFaces easy Faces Watch Leopards Bonsai Car side Ketch Chandelier Hawksbill

Airplanes

Motorbikes

Backgound

Faces easy

Faces

Watch

Leopards

Bonsai

Car side

Ketch

Chandelier

Hawksbill

Fig. 4. Caltech101 subset classification test results, averaged over 100 runs.

a proper SIFT descriptors distance [22] instead of Euclidean norm. Second is to
extract possible objects from images (which can be performed automatically [5])
and use them in classification. One more way is to add more local and global
descriptors [2], such as GIST [21] or LBP [1]. Different global approaches are
described in Torralba’s works [21, 23]. And the final step may include multi-view
learning [25] from the aforementioned different sources. Such improvements are
currently under investigation, and will be part of a future work.
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Abstract. Current state-of-the-art detection approaches reveal a strong
performance degradation with increasing object occlusion. Here we inves-
tigate different strategies to improve detection of occluded objects based
on the analytic feature framework from [8] and compare the results in a
car detection task. Motivated by an analysis of annotated traffic scenes
we first describe a dedicated combination of classifiers to deal with the
predominant car-car occlusion, and second, we propose a more general
concept to handle vertical occlusion patterns. In a final test, depth infor-
mation is used as additional local cue to reason about visible object parts.
We report first improvements and discuss advantages and drawbacks of
the individual approaches for further investigations.

Keywords: Object detection, Occlusion handling, Supervised learning

1 Introduction

Despite extensive research visual detection of objects in natural scenes is still
not robustly solved. The reason for this is the large appearance variation in
which objects or classes occur. A very challenging variation is occlusion which
is caused by the constellation of objects in a scene. Occlusion reduces the num-
ber of visible features of an object but also causes accidental features. Existing
object representations can deal moderately well with a low to medium level of
occlusion and fail for stronger occlusions. The parts-based methods like [6, 7]
aggregate local features in a voting manner and are usually trained with unoc-
cluded views. During recognition they can handle arbitrary occlusion patterns,
but require that sufficiently many features can still be detected. In contrast to
this other methods like [1, 8] train a holistic object template in a discriminative
manner. These methods focus resources on differences between classes. Because
of this strong specialization on the training problem, these approaches show a
stronger decrease of performance for occluded objects when trained on unoc-
cluded views. However, in general the voting methods perform worse than the
discriminative ones, whenever test and training set do not show such systematic
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differences, as discussed in [13] and confirmed by the detection results in [2]. In
this paper we investigate different strategies to improve the performance of a
holistic discriminative method under stronger occlusion.

A common strategy to explicitly deal with occlusion is to make use of context
information, i.e. to exploit knowledge about the possible constellation of objects.
In [3, 12] Markov-Random-Fields are used to infer if neighboring features are
consistent with a single detected instance of an object or have to be assigned
to different ones. In this way both approaches can reason about relative depth
of objects and produce a coarse segmentation. However, both methods require
a time consuming iteration process over the whole input image. In [10] spatial
relations are exploited more selectively by using the detections of larger and thus
more easily detectable objects to narrow down search space for smaller, more
difficult ones. We transfer this general concept to the occlusion case, where the
difficult objects are the occluded ones.

Besides instance-instance relations also knowledge about general occlusion
patterns can be used. In [11] the authors explicitly take vertical occlusion at
the image border into account. When objects are placed on a horizontal plane,
vertical occlusion is a typical pattern also inside the image. Here we exploit this
for car detection by using a dedicated classifier architecture.

Occlusion is related to the 3D relation of objects. A general cue of 3D infor-
mation is depth. To check the physical plausibility of an object’s position and
size [4] or to segment and put attention to individual scene elements. So in [9]
temporal differences between RGB-D(epth) views are used to discover movable
parts for action representation. Here we integrate depth into the architecture for
vertical occlusion to reason about visibility of features.

In Sec. 2 we shortly describe our basic holistic discriminative detection frame-
work and show how it is influenced by occlusion in a car detection task. In the
following sections different strategies to deal with occlusion are motivated and
tested. First, in Sec. 3 we propose a conditional combination of classifiers for
the predominant car-car occlusion setting. To deal with more general occlusion
pattern we design a classifier architecture in Sec. 4 where the response of dis-
criminative vertical parts detectors are integrated in a second stage. Finally,
in Sec. 5 we make a first test how to exploit depth information in the 2-stage
architecture, before drawing the conclusion in Sec. 6.

2 Analytic Feature Framework

Holistic discriminative approaches usually extract unspecific features and apply
a powerful classifier directly on top. So the popular method proposed in [1] uses
Histograms of Oriented Gradients (HOG) with a Support Vector Machine (SVM)
and was shown to yield state-of-the-art performance in various detection tasks.
In [8] we proposed the analytic feature framework (Fig. 1a) that puts effort
in learning a more problem-specific feature representation and uses a simple
classifier on top for discrimination. We could show that it provides competitive
detection performance. For an input image first SIFT descriptors are computed
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Fig. 1: (a) Analytic feature hierarchy. SIFT descriptors are computed on a regular
grid and matched to 96 analytic features. After a local maximum filter per feature
the SLP templates are used in a convolutional step. Maxima in the final response
map denote possible car locations. (b) ROC of CStd for car detection scenario.
The performance decreases strongly with the percentage of the cars’ occlusion.

on a regular grid and then matched to a set of 96 analytic features. The analytic
features are the result of a supervised selection process described in [5]. Next,
a local maximum filter is performed per feature to enhance robustness against
small translations. Finally the car template, which was trained with a Single
Layer Perceptron (SLP), is shifted over the feature representation. The local
maxima in the resulting response map denote possible car locations. To deal
with cars at different distances we apply the framework on successively reduced
image resolutions. For a pedestrian benchmark in [8] we could prove highly
competitive performance of the analytic feature framework approach.

In [8] we used the framework for detection of front and back views of cars
in real world traffic scenes. These image streams were taken under different
weather conditions (sunny, rainy, overcast) and in different scene types (city,
rural, industry, highway) and contained cars under all levels of occlusion. The
final SLP car template was trained on unoccluded views only. We will refer to
this reference system as CStd throughout the paper.

The results in Fig. 1b reveal a strong dependency of the performance of CStd

on the percentage of the cars’ occlusion. For a false positive per image rate of
0.1 we get 70% of the cars with an occlusion between 0-40%. This pure detection
performance is usually sufficient for a system that applies temporal integration
(tracking). However for stronger occlusion the recall drops severely, which can
no longer be compensated at system level.

3 Occlusion Handling Using Object-Object Relations

To get a better understanding of occlusion of cars in traffic scenes we counted
the number of typical occluders and types of occlusion using ground truth data
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Table 1: Counts of car occluders and occluded car parts for the ground truth
data. In total 8796 out of 15514 cars are occluded, most of them by other cars.

Occluding object #

Another car 7061
Image border 2137
Motor bike 82

Occluding object #

Pedestrian 70
Traffic sign 31
Other/non-labeled 1125

Occluded part #

Left 3730
Right 3124
Middle (only) 90

(a) (b)
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Fig. 2: (a) Typical occlusion examples. (b) Segment pair types. Each pair has a
foreground segment F i and a background segment Bi. For Bi the first pair-type
contains a labeled car occluded by another car, the second pair-type a random
region next to a car, and the third pair-type a random region next to a false-
positive of CStd. For simplification we only use samples with occlusion at the
left side and mirror examples with right occlusion to get more data. (c) CStd

shows a good performance for the foreground segments F while the result for
the occluded cars B is significantly weaker. On the combined data set F ∪B,
CCom is in general much better than CStd.

(see some occlusion examples in Fig. 2a). The result in Tab. 1 reveals that
most cars are occluded by other cars. In [8] we exploited this fact and trained
an additional classifier COcc on occluded cars and applied in the vicinity of
cars already detected by CStd only. This concept was inspired by [10] where the
detection of small office objects was enhanced by predicting their spatial position
relative to larger and more easily detectable objects.

We decided to use two separate classifiers instead of training CStd also with
occluded views, because we expected a decrease of performance of CStd for unoc-
cluded cars otherwise. The conditional application of COcc is necessary to avoid
a strong increase in the number of false positives, which would be the result of
the independent usage of both classifiers. We refer to the combined application
of both classifiers as CCom.
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For a fast proof of concept, in [8] we tested this strategy on segmented car
and non-car views. So we generated data pairs i, each having a Foreground
segment F i containing the occluder and the corresponding Background segment
Bi containing something occluded. We refer to the set of all foreground/back-
ground segments with F = {F i} and B = {Bi} respectively. The types of pairs
that mimic all possible constellations in a scene are shown in Fig. 2b. We trained
COcc on the background segments B including cars with an occlusion up to 80%.

Figure 2c confirms again that CStd can cope substantially better with the
familiar foreground segments F than with the occluded segments in B. On the
combined data set F ∪ B the classification has some intermediate quality but
is clearly dominated by CCom. For example, at a recall of 0.8 CStd has a false
positive rate of 0.13, while that of the combined curve is 0.04. This is a threefold
reduction in the number of false positives.

The used segment dataset in [8] was simple in the way that the position and
size of the occluded car was normalized, whereas in a real scene a strong variance
can be expected relative to the position and size of the unoccluded car. Because
of this it is not trivial to transfer the proposed concept to full scene detection.
Furthermore the concept neglects general occluders. Thus we propose other new
strategies to deal with occlusion in the following.

4 Split of the holistic car template

Tab. 1 reveals that most cars are either occluded on the right or left side. This
vertical occlusion is caused by other cars, unlabeled walls, or the image border
(see Fig. 2a), and causes a mismatch of the holistic car template used in CStd.
To improve the detection for this type of occlusion we used following strategy:
We subdivided the holistic classifier into three vertical parts and trained each
part-classifier with unoccluded car views. So each classifier is forced to make a
more local decision about the presence of the car and is later not affected by
occlusion of a different part. To integrate the responses of the part-classifiers we
use their confidence values as input for an additional SLP which is trained with
cars with occlusion rate 0-80%. The resulting two stage architecture is shown in
Fig. 3b and will be referred to as C3Split. The structure is equivalent to an MLP
but instead of Backprop learning we use for each stage a different training set.
In this way we enforce a stronger local decision and better generalization of each
sub-segment.

The detection results in Fig. 4a show an improved performance of C3Split

compared to CStd for occlusion rates of 1-40%, while there is a similar perfor-
mance for occlusion rates of 41-80%. Unexpectedly, there is a strong gain for
unoccluded cars. A possible reason might be that the vertical part templates of
C3Split are forced to make better use of their local information and thus find
a more general car concept each. This hypothesis is underlined by the weights
learned by the holistic SLP CStd, that show a rather sparse contribution of a
small set of analytic features at specific locations, while each part-classifier of
C3Split integrates all features at all positions in a much broader manner.
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Fig. 3: Different detection architectures. (a) Architecture of CStd. A holistic SLP
template is trained on non-occluded car views. (b) Architecture of C3Split. The
three vertically subdivided SLP templates are trained on the same examples to
(a). In the second stage, a separate SLP learns to combine the three confidence
values of the first stage using non-occluded and occluded car views. (c) Archi-
tecture of C3SplitDepth. The final SLP uses the median depth for each vertical
car part as additional input.

Motivated by the result of C3Split we splitted each vertical part further into
two horizontal regions. However, C6Split showed a much worse performance com-
pared to C3Split in a similar range as CStd. In future more systematic analysis is
necessary to investigate the effects of this two stage architecture.

C3Split differs from CStd in two ways: It uses an adapted classifier architecture
and additional occluded training examples in the second stage. To verify that
the improved performance of C3Split is not simply caused by using different
training data, we trained a holistic detector similar to CStd but using the training
data of the second stage of C3Split with occlusion of 0-80%. We refer to this
classifier as CAllOcc. In Fig. 4b, CAllOcc shows a similar gain as C3Split for 1-
40% occlusion. The performance for unoccluded cars is worse than CStd. This
indicates that the additional variation in the occluded training examples confuses
the representation of unoccluded views, as we expected in Sec. 3. For 41-80%
occlusion CAllOcc outperforms C3Split and CStd, so the holistic approach can
better make use of the remaining information in case of strong occlusion, maybe
by directly representing the effect of the occlusion edge.

5 Additional use of depth information

C3Split shows an improvement in detection performance for cars with an occlusion
rate of 0-40%. For cars with stronger occlusion the performance is nearly the
same as CStd. The SLP in the second stage seems not to be able to deal with
some occlusion cases by using only the confidence values of the sub-segments.
A first analysis of the results shows the following problem: Very low confidence
values in two of three sub-segments can result in a low confidence value at
the classifier on top regardless of how good the confidence value on the third
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Fig. 4: (a) Performance of C3Split. C3Split generally dominates CStd at occlusion
rates up to 40%, with an unexpected, strong gain for unoccluded views. (b)
Performance of CAllOcc. CAllOcc shows a similar gain as C3Split for 1-40% oc-
clusion. For unoccluded views the performance is worse than CStd. But CAllOcc

outperforms the other detectors on strongly occluded cars. (c) Performance of
C3SplitDepth. The way C3SplitDepth makes use of depth information does not lead
to a significant improvement.

sub-segment is. There are two different scenarios where this constellation can
happen. First, the object is a non-car object but a structure in one sub-segment
accidentally generates a high confidence value, which can potentially happen
quite often. Second, the object is a strongly occluded car and only visible in one
of the three sub-segments. The approach is not able to distinguish both patterns
and thus seems to require a strong response of two vertical parts at least. One
possibility to overcome this limitation is to make use of additional context cues,
e.g. stereo disparity. So the fact that the occluded part of a car will be closer to
the camera than the visible part could be exploited.

We tested this hypothesis by retraining the SLP on the second stage of C3Split

using the median depth of the three vertical car parts as additional input. The
resulting architecture is shown in Fig. 3c and referred to as C3SplitDepth. The
results in Fig. 4c show no significant improvement compared to C3Split, so the
C3SplitDepth seems not to be able to make use of the additional cue. An analysis
of the top-level SLP weights shows that the median depth information is nearly
unused. There are several possible reasons for this. Maybe the use of the median
per part is a too strong reduction of information, or the use of the absolute me-
dian values does not produce a linearly separable pattern for different distances
of the car and its occluder. We need a detailed analysis of the depth information
to find a useful representation which can increase the detection performance.

6 Conclusion

In this paper we presented different alternatives to improve the detection of oc-
cluded objects. In a first test we combined two detectors, one for unoccluded
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and one for occluded instances, in a conditional way, and reported enhanced
performance in a car-car occlusion setting using segmented views. For the more
general setting of vertical occlusion we proposed a vertical split of the holistic
car template into three parts together with a second stage that learns typical
combination of these parts responses for occluded car examples. This prototype
outperformed the reference system for different levels of occlusion. However,
there was only a very small gain for strongly occluded cars, but an unexpectedly
large gain for unoccluded ones. We confirmed that the gain in performance is not
simply caused by the additional use of occluded training examples and we also
shortly tested an additional horizontal split of the vertical parts, which strongly
reduced the performance. Finally, we integrated depth information into the verti-
cal occlusion prototype to give the classifier an independent cue to reason about
the response patterns of the vertical parts. However, the straightforward use of
the median depth per part seems to be too coarse or inadequate to get a sig-
nificant performance gain. In conclusion, the experiments already suggest some
possible directions for further improvement. But much more in-depth analysis
of the individual effects presented in this paper are necessary.
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Abstract. Anticipating the intentions of others is a key ability for cog-
nitive interaction that is still not well understood and poorly replicated
in artificial systems, such as robots. In this contribution we explore a
neural model of Gestalt formation as a potential approach to intention
anticipation. The idea is to view the already recognizable part of an
ongoing action, together with the underlying intention, as a ”Gestalt”,
which has to be completed when only the recognizable action part is
given as an available fragment. To test this idea, we extend a previously
developed model of competing neural layers for Gestalt formation by a
”hallucination mechanism” that constructs the most likely completion
of a given action fragment. We show that the resulting model can suc-
cessfully anticipate cooperative moves of a human player in a two-person
interaction scenario.

1 Introduction

When humans try to solve a task cooperatively, they can adapt their behavior
to each other without explicit negotiation. This ability has many facets, one
of them being the intuitive anticipation of the intentions of their collaboration
partners. As an example, one can look at the task waiters perform when laying
out dishes for a dinner. If one waiter starts to lay out the dishes, another one
will most likely start to place the cutlery, because the dishes are taken care of
and the cutlery is needed to complete the task.

This ability of “seeing” what the other will do to complete my fragmen-
tary action has some resemblance to the completion of a fragmentary “Gestalt”,
viewing the fragmentary action as the incomplete pattern for which a ”good
continuation” is sought. This suggests to apply models for Gestalt formation to
map the given input into a dynamics that completes the fragmentary actions
towards a “good Gestalt”, such as, e.g. “cooperation”. The driving dynamics
itself would then be in the role of the “intention” that completes the action.

To explore this idea in a concrete fashion, we apply the Competitive Layer
Model [11]. The CLM has been proven feasible for a large set of segmentation

⋆ This work has been conducted within and funded by the German collaborative re-
search center “SFB 673: Alignment in Communication” granted by DFG.
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Fig. 1. The left image shows the Competitive Layer Model. At the bottom are three
inputs v1···3 and their corresponding neurons x1···3 within each layer L = 1 . . . α. The
right image shows an example for a CLM with six layers and two different classes of
interaction functions. The layers L1, . . . , L3 respond to interaction function F1 and the
layers L4, . . . , L6 respond to interaction function F2.

and grouping problems in the image processing domain [9,14] and for automatic
task segmentation [10].

The CLM allows the grouping of features based on the Laws of Gestalt Theory
[6], a theory from the field of cognitive psychology, which tries to describe how
humans perceive complex scenes. As a result of a combination of excitatory
and inhibitory couplings of neurons, similar features form reinforcing groups of
attractors, while simultaneously suppressing other, less similar features.

However, a human can not only correctly group features, but also imagine
well fitting completions. Hence, we apply the approach presented in [7], with
which it is possible to evaluate the compatibility of previously unknown features
with respect to a CLM grouping result. The presented approach is extended with
a technique to automatically find well fitting completions.

The recognition of intentions is of particular interest in the field of human-
robot interaction and has been approached with a variety of techniques. In [5],
the recognition of intention was done based on Hidden Markov Models, whereas
[3] integrates Markov Models, Bayesian Networks and machine learning tech-
niques in a hierarchical model to achieve this goal. Encoding a set of possible
intentions in a Finite State Machine and learning of the transition probabilities
has been done in [1].

2 The Competitive Layer Model

The Competitive Layer Model (CLM) is a recurrent neural network which con-
sists of L×N linear threshold neurons. These neurons are arranged in α = 1 . . . L
layers, where each layer holds a total number of r = 1 . . . N neurons, as depicted
in Fig. 1(a). The activity of a neuron in a single layer is denoted as xrα. The dy-
namics is designed such, that compatible features induce high neuron activities
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Fig. 2. An exemplary interaction function for good continuation is shown on the left.
The central feature vr gets excitatory responses from the gray shaded features and
inhibitory responses from the white. The right image shows parameters for the com-
patibility of oriented edge elements. The used parameters are the distance between the
centers of the elements, given by pr and pr′ and the three angles θ1,2,3.

within individual layers α, indicating perceptual grouping of those features. All
neurons within a column r correspond to the same feature vr.

The neurons in each layer are coupled with lateral interaction weights frr′ ,
which are determined by the similarity between two features vr and vr′ , e.g.
positive values for compatible and negative values for dissimilar features. This
compatibility measure needs to be explicitly specified by a symmetric interaction
function

frr′ = f(vr, vr′) = f(vr′ , vr). (1)

Because the interaction weights need only be computed once, they can be stored
as a symmetric interaction matrix F = frr′ .

An example for an interaction function that models the Gestalt Law of good
continuation is given in Fig. 2(a). Features which form a smooth path with
respect to the central feature vr create excitatory responses while other features
which do not fit create inhibitory responses. To assure that an input feature vr is
only represented by an active neuron in a single layer, the corresponding neurons
in each layer are coupled with a columnar winner-takes-all (WTA) competition.

Combining both components, the lateral interaction function and the column-
wise WTA circuit, a linear threshold dynamics can be summarized with the
following update rule:

·

xrα = −xrα + σ(J(hr −
∑

β

xrβ) +
∑

r′

frr′xr′α) (2)

Here, σ(x) = max(0, x) is the linear threshold function, J(hr −
∑

β xrβ) repre-
sents the columnar WTA with a weighting constant J , and h specifies the overall
columnar activity and thus denotes the importance of a feature. Throughout this
article we assume that all features are equally important, therefore h = 1. The
lateral interaction between the features at position r and r′ is computed with
∑

r′ frr′xr′α. For a conclusive analysis of the CLM dynamics please refer to [14].
The CLM architecture as described above can only hold one interaction func-

tion at a time and therefore only respond to a specific type of feature compat-
ibility. To circumvent this limitation, we apply the idea presented in [12] and
introduce different types of layer classes. As shown in the example in Fig. 1(b),
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a set of layers is grouped in a layer class which responds to a class specific in-
teraction function. In the illustration in Fig. 1(b) the layers L1, . . . , L3 respond
to the interaction function F1 while the layers L4, . . . , L6 respond to F2.

In previous works, for example in [14], the interaction function had to be
hand crafted. To gain a better generalization capability and to simplify the task
of choosing a suitable interaction function, we apply the techniques presented in
[13] to learn an interaction function from labeled training data.

The approach presented in [13] relies on a set of labeled training data which
is used twofold. In the first step, for each feature pair (vr, vr′) a proximity
vector d(vr, vr′) is calculated. These proximity vectors are subsequently clus-
tered to yield a compact representation of the proximity space. In the simplest
case, the proximity vector may simply stack the original feature vectors, i.e.
drr′ = [vtr, v

t
r′ ]

t. However, if more insight into the task is available, more elabo-
rate distance vectors can be computed, expressing the similarity of two features
within a multi-dimensional vector. The objective is to capture properties of typ-
ical feature pairs within the given domain. For example, Fig. 2(b) shows the
proximity function employed for oriented edge features.

In a second step, the label information is used to assign positive or negative
interaction weights to each cluster prototype. Prototypes mainly corresponding
to feature pairs of the same group, i.e. being compatible, will get a positive
weight. Contrarily, pairs of features originating from different groups will gen-
erate negative interaction weights. Exploiting the frequency of the positive and
negative interaction labels, it is possible to create a set of basis interaction func-
tions. For a detailed derivation please refer to [13].

3 “Intention Field” for Anticipating new Features

To extend the capabilities of the CLM from grouping towards amending sparse
groups, we utilize an approach presented in [7]. Given a CLM which has already
converged to a grouping result, it is possible to use this result to find previously
unknown features which fit well to the already known features.

3.1 Quality Measurement

As presented in [7], it is possible to evaluate the quality Q of a new feature vnew
by calculating its compatibility to the achieved grouping result. To this end, first
an interaction vector m for the new feature value vnew has to be created

m = (f(vnew, v0), f(vnew, v1), · · · , f(vnew, vr))
T (3)

utilizing the previously learned interaction function frr′ . The support for the
new feature is calculated as

xvnewα = mT · xα (4)

for all layers L = 1 . . . α. We will view the mapping I : (v, vnew) → xvnew
from the

existing pattern v to the support as the “intention” I(v, .) that is associated with
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(a) Training data. (b) Grouping result
for test data.
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(c) Activities from “intended” completions for
the grouping result from (b).

Fig. 3. The labeled training input to learn the interaction function is shown in 3(a).
The shapes are composed of edge features as depicted in Fig. 2(b). 3(b) presents the
grouping result from the CLM for two test shapes. Their “intended” completions are
displayed in 3(c), where the quality of the “intentions” produces a steep slope inside
and outside of the circular input shapes.

the existing pattern v. In this way, we obtain a computationally clear and concise
representation of “intention” as a mapping that tells how strongly the system
supports different possible completions vnew of a given partial input. To make
the computed activity for the “intended” completing feature vnew comparable,
we apply a normalization, which shall assure that the support for such a feature
is in the range from 0 to 1 in each layer.

Assume we have a CLM which holds N features and is already converged.
Because of the linear threshold σ(x) from (2), every feature has an activity
greater or equal to zero. Therefore, we calculate the normalization constant Mα

for each layer as:

Mα =

N
∑

r=1

xrα (5)

With N being the number of features in the original input and their corre-
sponding neural activity xrα in the layer α. Consequently, the quality Q of an
“intended” completion can be determined using (4) and (5) as

Qα(vnew) =
1

Mα

·mT · xα (6)

An example of this process is shown in Fig. 3. An interaction function is
learned from the training set in Fig. 3(a), where the labels are indicated by
different colors. These shapes are composed of oriented edge features as shown
in Fig. 2(b). The grouping result of the CLM is shown in Fig. 3(b). Here the
assignment of features to the same layer is expressed by the same color. To closer
examine the approach, the best fitting “intended” completions for the incomplete
shape are generated. Fig. 3(c) shows the maximal quality of “intended” comple-
tions for each pixel of the image. Please note that for visualization purposes
the feature space was discretized. At each pixel position the maximal activity
for a total number of 36 different orientations, reaching from 0◦ to 175◦, was
calculated and is shown in Fig. 3(c).
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3.2 Finding good Features

The method used to display the quality of an “intended” completion in Fig. 3(c)
is not suitable for real world problems. It discretizes the feature space and is
computational intractable because of the brute force data generation over the
whole space.

We therefore propose to use a sampling technique which has been proven
feasible for path planning and protein folding, the transition based rapidly ex-
ploring random tree (T-RRT) [4]. T-RRT extends classical RRT to find good,
cost-efficient paths in the presence of a cost function defined on the configura-
tion space, e.g. finding paths along a valley in a mountainous region. Thus it
applies a transition test supplementary to the state validity checking of RRT.
The transition test, as presented in [4], needs a cost function c which evaluates
the cost of a newly sampled configuration q. The probability of a transition from
state qt to a new state qt+1 is then determined by the Boltzmann distribution:

pt,t+1 =

{

e−
∆ct,t+1

K·T if ∆ct,t+1 > 0

1 else
(7)

where ∆ct,t+1 = ct+1−ct
dist(ct,ct+1)

, which determines the slope of the cost along the

path. K is a constant which normalizes the costs. As proposed in [4], we set K =
cstart+cgoal

2 . The parameter T is a temperature to allow a simulated annealing
behavior. If the transition test is successful, the temperature is decreased by
a factor T = 1

a
· T . If the test fails for a given number of steps nFail, the

temperature is increased by T = a · T . Here we also use the same values as in
[4], namely a = 2 and nFail = 100.

3.3 Integration

With the given T-RRT algorithm and the quality measurement from (6), it is
easily possible to create a cost function:

c(vnew) = 1−Q(vnew) (8)

which prefers paths along high quality features, thus exploring the “intention
field” towards well fitting completions. We can consider the known features of
the CLM as points on a trajectory through this space. The task of the T-RRT
algorithm is to connect these points and fill in the sparse regions by finding good
amendments, for example to complete the shape from Fig. 3(c).

4 Evaluation

To evaluate the proposed approach, we will first test our technique in an interac-
tion game, where the task for our system is to anticipate which figure a user has
in mind and complete it accordingly. The second part of the evaluation uses ar-
tificially generated shapes and introduces an error margin to gain a quantitative
measure how good the generated features of our system are.
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Fig. 4. Color labeled training patterns for the completion task. The rightmost part of
the image shows the result of the used feature extraction. For each colored block an
oriented rectangle is fitted and the longest axis of this rectangle is used as input for
the CLM.

4.1 Interaction Game

The experimental evaluation consists of a cooperative figure completion task. At
first we present some color labeled example figures to our system from which the
interaction functions are learned. Each of the four images from Fig. 4 is used to
learn the interaction function for a layer class. Each colored rectangle has the
size of a wooden block from the Jenga game, as shown in Fig. 4. From these
images the features are extracted using a simple color threshold and by applying
a box fitting algorithm from OpenCV 1 to the filtered images. The longest axis
of these boxes is used as an individual input feature for the CLM. The goal of
the system is to anticipate which figure the human player has in mind and to
complete it accordingly by suggesting a well-fitting location to place the next
Jenga block using the presented approach. The actual placement of the wooden
blocks was not yet realized by a robotic pick-and-place program, due to minor
technical issues. Occasionally the human player may place a block by himself.

Fig. 5. Results from the cooperative shape completion task. Each of the four rows
shows a sequence of the task. The color coding at the bottom of the figure indicates if
it is the user’s or the system’s turn. A blue bar represents an action performed by the
user and no bar stands for an action executed by the system. The green bars in each
frame denote the anticipation of the system for the following frame. After the sixth
frame the system is completing the shape autonomously.

1 Open Source Computer Vision - http://opencv.org
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(a) Original (b) Sparse (c) “Intentions” (d) Comparison

Fig. 6. Illustration of the generation and evaluation of artificial shapes. The shape in
the leftmost image serves as reference, which is used to generate a sparse shape as
shown in Fig. 6(b) and as ground truth data for the error calculation. In Fig. 6(c) the
completing features generated by our approach are shown in red. The rightmost image
compares the completing features from Fig. 6(c) to the ground truth data. The mean
mutual distance between these features is used as error margin.

When a new block is placed on the table, our system explores the neural
potential in the vicinity of this block towards unoccupied regions. Because the
geometry of a Jenga block is known and the task is to place one block at a time,
the exploration radius is limited to the length of one block.

Four game sequences are shown in Fig. 5 corresponding to different geometric
shapes to be laid out. Each row depicts a single trial which shows the sequence
from left to right. The bottommost row indicates when our system or the user
performed the shown action in that column. A blue label indicates that the action
was performed by the user whilst no label represents that our system decided
where to place the next block. Additionally, a green block in the sequence of
images shows the anticipation of our system for the following frame.

The procedure was similar for all trials. The first two Jenga blocks were
placed by the user. From block three to six the system and the user were taking
turns. Eventually, the system should complete the figure autonomously.

The evaluation shows overall good results. Especially the circular shape in the
topmost row is rapidly recognized, which can be seen by the first first anticipation
of the system in the second frame. The other shapes were recognized in the fourth
frame, because the lines in the previous three frames are too ambiguous. After
getting a hint in the fourth frame through the user’s action, the system detects
the rectangular respective triangular shape. Also the autonomous completion
after the sixth frame works well in three of four shown trials. Only the rectangle
in the last trial is not completed as expected. This may have the cause that the
training pattern from Fig. 4 contains a shape with an edge length of two blocks,
which corresponds to the anticipation of our system. Although the used learning
technique generalizes over different sizes and rotations of the presented shapes,
which can also be seen by the figure created in the second sequence, which is
not present in the training image, the presented training shapes may have not
been variant enough to fully exploit the generalization ability of the learning
approach.
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4.2 Artificial Data

To gain a quantitative error margin for the proposed approach, we evaluate the
process with artificially generated shapes. To this end, a shape with varying size
and rotation is generated and stored as ground truth data for later comparison.
We will denote this complete shape as C. From this shape C, features are ran-
domly removed to create a sparse shape, hereafter named S. Our approach is
then used to close these gaps by generating completing features. The set of these
features will further be denoted as H. The used error margin (9) is the mean
mutual distance of generated features from H to their closest corresponding fea-
ture in the original set C. An exemplary overview of this procedure is shown
in Fig. 6. The first image shows the complete shape which is used as reference.
In the second image a number of features is removed to create shape C. The
result of the “intention” completion can be seen in Fig. 6(c). An overlay of the
“intended” completions and the original shape is illustrated in Fig. 6(d). From
the features of Fig. 6(d) the error is calculated as:

E(C,H) =
1

|H|

∑

h∈H

min
c∈C

||d(c, h)|| (9)

We generated four different kinds of shapes, namely a triangle, a rectangle, a
pentagon and a circle with varying sizes and orientations. From these shapes up
to 40% of the feature were removed randomly in steps of 10%. For each shape and
percentage of removed feature, 50 shapes are randomly generated. The generated
shapes have an average of 2.8 distance between two features. In table 1 the
average mutual distance over the 50 trials per shape and removed percentage
is shown. There are no significant outliers in the data and given the distance

Table 1. Distance between “intended” completions and original shape.

Shape percent removed Shape percent removed

10% 20% 30% 40% 10% 20% 30% 40%

Triangle 4.77 4.99 4.64 4.62 Rectangle 3.39 4.71 4.83 4.70

Pentagon 3.18 4.65 3.95 4.84 Circle 2.93 3.59 3.88 3.75

between the generated features of 2.8, the mutual distance is small enough to
say that our approach can create reasonable amendments in the absence of data.
Since the mutual distance in case of the circle is overall smaller than the mutual
distances of the other shapes, this suggests that our approach slightly prefers
smooth continuations to corners.

5 Conclusion

We presented an approach which exploits the perceptual grouping capabilities
of the Competitive Layer Model and introduces a technique which extends these
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grouping capabilities towards the automatic generation of new data. The ap-
proach shows reasonable error margins in the evaluation with artificial data,
which indicates good completion abilities. It is further evaluated in an interac-
tion scenario which utilizes the generative aspect of this technique to anticipate
the intentions of the human partner. Although the scenario is rather simple, the
results are convincing that this extension of the CLM capabilities can be useful
in a broader domain and more complex scenarios, because the only part which
has to be supplied by a user is a compatibility function in the feature domain.
This property also eases the adaption of the presented approach in comparison
to more specialized data generation techniques like, for example, [2,8]. Given the
findings from [10] and the presented compatibility measurement for actions, we
strive to extend the CLM based segmentation of actions towards anticipating
good completing actions for cooperative human-robot tasks.

References

1. Awais, M., Henrich, D.: Proactive premature intention estimation for intuitive
human-robot collaboration. In: IROS 2012. pp. 4098–4103. IEEE (2012)

2. Eslami, S.A., Heess, N., Winn, J.: The shape boltzmann machine: a strong model
of object shape. In: CVPR. pp. 406–413. IEEE (2012)

3. Gehrig, D., Krauthausen, P., Rybok, L., Kuehne, H., Hanebeck, U., Schultz, T.,
Stiefelhagen, R.: Combined intention, activity, and motion recognition for a hu-
manoid household robot. In: IROS, 2011. pp. 4819–4825. IEEE (2011)
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Learning as an essential ingredient for a tour guide robot
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Abstract. Even though, that over the last years the methodical fundament for robotics
has become more and more stable, the integration of these different methods to a useful
practical application offers some challenging aspects. This paper describes the design and
development of a tour guide robot already being used in his scenario environment. The
paper will show how the different methods are used and how still a research on the different
methods itself can be made possible.

Key words: museum tour guide robot, navigation, map building, people tracking, body pose
estimation, dialog modeling

1 Introduction

The idea of a tour guide robot in a museum environment has already been addressed several times
in the past ([1–3] only to name a few). Within those projects the museum specific part of the
story is usually limited to showing around visitors and present information to the exhibits or in
the sense of a concierge robot to point out interesting exhibitions.

For our project of a museum tour guide robot, the interactive and entertaining presentation
of information is one of our major goals. During the duration of our project the robot is already
present in the museum. Our project partner Technische Sammlungen Dresden which is a collection
for history of technology allows and encourages us to evaluate our methodical development in an
exhibition for vintage computer hardware.

Within the exhibition the robot is meant to wait at the entrance and welcome arriving visitors.
For starting a verbal dialog with the visitors the robot starts to introduce itself as well as the
entire exhibition. This first dialog between the visitor and our robotic system is supposed to
collect information about the user’s intention, expertise and interest. On basis of this information
the tour through the exhibition will be tailored individually. For example the number and order
of the exhibits during the tour can change depending on the estimated user’s preferences.

At each of exhibits on the tour the robot will be able to decide, which information about the
exhibit is to be presented. This is inferred from previous dialog situation, in which the user has
shown interest in particular categories, like history facts or technical details. Furthermore, if the
interest of a single user is drawn to another exhibit the robot should be able to change the tour
accordingly.

With that plot in mind, bringing an assistance robot into our all day living, the system needs
to be adaptive and hence has to be able to make intelligent decisions. Challenging demands of
such application go far beyond the abilities of simple state machine like algorithm. In particular,
our robot companion needs understand its environment and - even more important - the persons
within the environment.

As already stated, our project demonstrator is situated in a historical computer science ex-
hibition. From our experience, a lot of users are not particularly interested in vintage computer
hardware. Furthermore, one has to argue for such projects about the benefits over a human pre-
senter.

⋆ This work was supported by ESF grand number 100076162
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(a) (b)

Fig. 1. Two possible scenarios of augmented reality with our robot: (a) Robot projecting to a plain wall,
(b) Robot projecting onto a CRT display, ’reviving’ the old hardware.

For both problems we came up with the idea of mounting a video projector on our robot. The
benefit of that idea is at least two-fold: (1) We are able to project the content about the exhibits
e. g. on a wall instead of only presenting it on a robot mounted screen. Hence, the information
can be made available to a larger audience (see Fig. 1a). (2) It is furthermore possible, to project
details directly on the exhibits, e.g. to highlight certain parts for detailed descriptions .

An especially appealing scenario is the revival and live demonstration of old computers by
running a simulator on the robot and projecting the simulated screen output onto a CRT display.
This way we can demonstrate the full capabilities of several old computers without having to
activate the historic hardware itself (see Fig. 1b).

To fulfill the described story several aspects need to be considered which can be roughly divided
into navigation, described in Section 2, and human-robot-interaction (HRI), discussed in Section
3. For the navigational part a map of the environment is needed in which the robot needs to find
its current position as well as for planing the path to the target position. This paper discusses our
framework for building such a map as well as some ideas on how such a map, which is large for
our environment, can be handled efficiently.

Furthermore, for being able to interact with the visitors the tracking of persons plays an
important role. A tracking of the persons position, his or her face and even the entire body
pose takes place. The different kinds of trackers allow to reason about the persons intention by
understanding their motion. These estimations can than be used for dialogue modeling to be able
to conveniently interact with people.

Finally, we have to face the problem, that the system is evaluated while already operating in a
public environment. Having only a partially functional system would not be accepted by the visitor
making tests and evaluation difficult or even impossible. Hence, we came up with the idea to gap
the missing or not yet functional parts of our system by a human operator in a Wizard-of-Oz like
manner as presented in Section 4.

2 Navigation

To be able find its position the robot needs a way to perceive its environment and compare these
sensor readings with a model of the environment. For our approach an occupancy grid map based
on the data coming from a laser scanner is applied for localization and path planing. The map can
be enriched with semantic information, allowing to attach information needed e.g. by the dialog
system. Since the laser scanner is limited to perceive objects in a plane parallel to the floor at
about knee height, an additional 3d obstacle avoidance system enables to detect objects, like e.g.
tables.
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Fig. 2. Overview of the navigation framework. The front-end has the task to provide spatial relations of
the robot poses, while the back-end maintains these poses in a graph structure for estimating the traveled
path of the robot.

2.1 Map Building

Providing the path of the area traversed is known, a map can easily be built. For most of the
cases these paths are not available respectively hard to obtain at high accuracy for indoor envi-
ronments. If both, map and path, are unknown, the robot has to concurrently maintain estimates
about its position as well as the traversable environment which is well known as the Simultaneous
Localization and Mapping (SLAM) problem.

We use a SLAM framework [4] enabling to build highly accurate maps using laser range finders
which is illustrated by Figure 2. This includes a front- end providing spatial relations of robot
poses by means of local motions and loop closures. This information is passed to a back-end that
maintains pose relations and estimates the path travelled by the robot. A joint pose and map
optimization is carried out afterwards given the estimated trajectory.

The front-end provides an initial estimate using laser scan matching about the successive robot
poses. In addition to that the front-end is responsible for recognizing previously observed places
and thus passes loop closure candidates to the back-end. This is done by extracting FLIRT1

features from laser range scans which are matched to those obtained from the previous scans. The
most important requirement of a SLAM system is its ability to detect and incorporate information
about places that have already been visited which are referred to as loop closures. Again, we rely
on FLIRT features with an additional RANSAC-based consistency check.

Thanks to the front-end we are given an initial graph of robot poses and relations expressing
spatial constraints between those. The graph consists of the different poses on the trajectory as
vertices and the actions of getting from one pose to another as edges. The optimization of this
graph to handle false loop closure detections is the task of the back-end. The final map is built
using sparse surface adjustment (SSA).

For the environment the maps usually become large depending on the desired resolution. In
[5, 6] an Non-negative matrix factorization (NMF) based approach has been presented allowing a
sparse coding of the occupancy map. This is possible since NMF extract a set of basis primitives
which contain the information about the characteristics of the environment, like corner, horizontal
wall, etc. Since these basis primitives are generated based on the available map, they are spe-
cific for the current environment. Furthermore, based on the sparse coded maps a histogram like
representation is extracted. This kind of representation can be used to optimize the localization.

2.2 Semantic Labeling

Putting the robotic system into service involves building a map of the new environment including
the labeling of the parts of the exhibition. Even while the robot is already in service adding or

1 Fast Laser Interest Region Transform
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(a) (b) (c) (d)

Fig. 3. (a) The raw map (where white pixels are free and black pixels are occupied) and subsequent
processing steps: (b) The dilated and gap closed binary map. (c) The map skeleton (blue) with starting
and intersection points (purple) and critical lines (red). (d) The constructed areas.

moving exhibits is an expected task. For the chosen scenery the staff of the museum should be
able to do this. The method described in detail in [7] allows the museum’s staff to “teach” the
robot about new constellations.

In our opinion the best way to accomplish this familiarization is by interacting with the robot in
a very humanlike manor. This idea is inspired by the human habit to show around new co-workers.
To handle this scenario it is necessary for the robot to detect and follow humans, to interact with
them through a dialogue and to recognize rooms by splitting a built map in semantic parts - a
topological map.

Our method is divided in three subsequent steps (see figure 3b-d). To explain the single stages,
a rather simple simulated occupancy grid map is used as raw material (see Fig. 3(a)). The first
step is filtering and dilating the original map (Fig. 3(b)), followed by thinning (blue line in Fig.
3(c)) and the last step is separating areas (Fig. 3(c) and (d)).

2.3 Local Navigation

We use a navigation system using laser based localization supported by a 3D obstacle segmentation
system [8]. Fox et al. [9] introduced the Dynamic Window Approach (DWA) for collision avoidance,
that became very popular over the last decade. We utilize a version of DWA with Lyapunov
stability criterion [10, 11], a widely used method in control theory. The goal of the DWA is to
reach a waypoint that is located on the planned path in a defined distance to the robot, so it will
try to follow the path approximately, while avoiding obstacles, until the target is reached.

2.4 3D Obstacle Avoidance

Using only a laser range finder for navigation would not allow to detect each and every obstacle.
In particular, exhibits placed on tables or within glass vitrines are completely ignored. That’s why,
we enrich the laser detection with information coming from a time of flight camera mounted on
the head of the robot [12].

After pre-precessing the depth data to reduce noise, a floor plane is estimated dynamically for
each frame. We select a set of points that were classified as free space in the previous depth image
to get an estimate for the ground plane within the actual depth image. To reach a high efficiency
of the frame-wise ground plane correction, we refine the suspected ground plane position with
linear regression over some selected range measurements. After correcting the base plane position,
obstacles are separated from the base plane by using a fixed and an amplitude based threshold.

3 Human-Robot-Interaction

For providing the possibility of an interaction between our robot and the human visitor a number
of components are necessary. First of all it is import to recognize persons at all and furthermore to
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know their position around the robot. To ensure this, a people tracker is essential. For involving the
surrounding visitors into an interaction a spoken dialog is necessary. To make the dialogue adaptive
to the needs of the visitors a dialog model needs to collect all available subtile informations from
the user, e.g. the body language. People tend to turn away from their dialog partner as soon as
the interest in the dialog fades away. There are even studies that show, that it is possible to infer
the mood from the way a person moves. To perceive both information a human motion estimation
system is developed [13]. The presentation of information to a larger audience or even augmenting
the exhibits using a video projector relies on a system for projection correction.

3.1 People Tracker

In order to look at people, the robot needs to know the position of the head of each person (and the
position of its own head, as we operate within a global coordinate system). The measurements of
all sensors will be transformed into the same global coordinate system. Most of the sensors are not
able to estimate the position in all three dimensions – laser and sonar sensors can only detect the
legs of people and do not have the possibility to sense the elevation of the head, while cameras can
only give rough estimations of the distance to the detected head based on assumptions of the size
of that head. Therefore, the information of different sensor cues should be fused and uncertainties
should be accounted for.

We use a tracking-by-detection approach, where a sensor cue detects people at certain moments
and passes those detections to the tracker, which updates tracks to combine them with previous
detections [14]. To make tracking more robust and being able to model uncertainties, we use
a Kalman filter to estimate the positions of each person independently of others. To keep the
sensor cues consistent and make integration of new cues easy, their detections will be converted
into normal distributions describing the estimated position of a detected persons head in three-
dimensional Euclidean space before passing them to the tracker.

As sensor cues we use leg hypotheses being detected in a laser range finder, a face and head-
shoulder-contour hypotheses both based on the Viola and Jones algorithm detected in an omnidi-
rectional gray-level as well as a directed infrared image.

Because sensor measurements are uncertain and prone to errors, probabilistic approaches are
most often used in mobile robotics for state estimation. Instead of including the positions of all
people into one joint state space, we track them independently of each other so the state space
has a low dimensionality and the problem remains computationally efficient. We assume the state
of a person to be normally distributed and use a Kalman filter for estimation.

3.2 Dialog System - User model

Since a major demand of the defined task is the interaction with the user, the dialog system is a
central part of the robot. A dialog policy controls the next chosen speech utterance. This policy can
either be designed by an expert or training using reenforcement learning strategies. The rewards
for the reenforcement learning can be derived from the user behavior (e.g. a negative reward for
an aborted interaction) or by a human operator observing the ongoing dialog.

The decision of the policy is based on a knowledge base. Starting with the world model the
robot knows its position from which the likelihood of request about certain local exhibits can be
estimated. The domain model simply provides facts of the exhibits and other answers to possible
question. The user model collects information about the users interest or current mood. Together
with the history of previous user behavior the most likely intention of the user can be inferred.
On top of that the task model gives the dialog a structure, simply speaking a greeting should take
place before presenting the exhibits followed by a farewell.

3.3 Human Motion Estimation

The body pose is estimated with an algorithm [15], which enhances the approach presented in [16].
It relies on the image of a depth camera from which a Self-Organizing Map (SOM) is extracted
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Fig. 4. Overview of the dialog system. The dialog policy is meant to chose the best fitting response to
the behavior of the user. The decision is based on a knowledge base consisting of a task model, a user
model, a domain model, a history and a world model. The knowledge is a mixture of previously learned
information, predefined expert knowledge, and information collected directly from the user. The latter is
mainly based on speech input.

to model the human upper body. Crucial in that context is the correct assignment of the SOM
neurons to a specific region of the tracked person’s upper body. In [16] the best-matching neuron
(BMN) for a presented stimulus is determined based on the Euclidean distance with the three
spatial dimensions x, y and z. Computation of the minimal Euclidean distance seems to be the most
straight forward solution. However, it turned out to be insufficient for structured three-dimensional
objects like the upper body, irrespective of the applied learning paradigm. Furthermore, depending
on the specific technology used, additional problems may appear due to various sources of error
and noise. This leads to the situation that sometimes neurons migrate from one part of the upper
body to another. Without a verification of the SOM a future subsequent classification of the pose
will produce incorrect results and maybe lead to wrong interpretation of the actual situation.
Therefore we extended the approach in [16] by reshaping the trained SOM to a skeleton model to
estimate the anatomical correctness of the pose. Having generated the skeleton model, incorrect
Self-Organizing Maps will be rejected if the subsequent verification failed.

The goal of our approach is the generation of a problem specific parameter vector for a group
of neurons. Therefor, the weight vector of a SOM neuron is extended compared to [16] including
features like RGB color values, texture and neighborhood descriptors and the three spatial dimen-
sions. By determining the relevant dimensions, a parameter vector or matrix is computed which
includes a weight for each dimension of the weight vector of a group of neuron using GRLVQ or
GMLVQ respectively [17, 18]. The benefit of this method is binding neurons to a specific region
by considering additional parameters in the input vector - rather than only their coordinates.

3.4 Projection Correction

To be able to present the information on the exhibits, three steps need to be taken, from which
two are addressed throughout the paper. (1) The robot needs to find the way to the exhibit (2)
Arriving at the target position, the robot needs to localize itself ’well’ enough to have the exhibit
in the possible field of projection. (3) Finally, the distorted projection needs to be straightened to
fit the desired part of the exhibit.

For the first two problems the algorithms described in Section 2 are applied. With that, we can
localize our robot with satisfying precision so that we can assume our projection target is within

Workshop New Challenges in Neural Computation 2013

58 Machine Learning Reports



the area coverable by the projector as well as the camera’s field of view. Additionally, we restrict
ourself to just planar projection surfaces.

The final goal of the projection correction is to find a transformation, that when applied to the
projector image, results in a projection which fits a designated projection target. Our first step is
to identify the projection target in the camera image. To achieve this, a marker detection system
could be utilized. Our future goal is to use 3D object recognition instead. For now it is sufficient
to know the four outer corners of the projection target, since we assume the target to be planar
and aim for projecting into a rectangular area on the projection surface computing and applying
a homography transformation [19].

4 System Evaluation Strategy – Wizard-of-Oz

A complex system like a tour guide robot needs a thorough evaluation which has to consider
multiple aspects. User acceptance has to be evaluated as well as how well different methods work
within the given environment. For both the presence of unbiased visitors is necessary. Hence, the
system has to be fully functional all the time, even if some software components are not working
reliable enough or are not yet finished.

Furthermore, we believe that having a spoken dialog with museum visitors is an important
aspect of a tour guide robot. It attracts people and allows to demonstrate an intelligent system.
One reason why todays guide robots still lack complex dialog capabilities is, that speech recognition
is a major unresolved problem. Developing such a dialog system under real world conditions is
a challenging task. An unfinished system would leave the visitors unsatisfied or even frustrated.
Hence, we have decided to create the illusion for the visitor, that the robot is already able to talk
to them in a natural way. This is achieved by replacing the speech recognition system by a human
operator using a Wizard of Oz method [8].

For Wizard of Oz inspired experiments a hidden operator controls the robots dialog system. In
order to allow the operator to still react to the visitors, the images from the omni-directional camera
as well as an audio stream were transferred to the operators laptop. To select the available phrases,
different milestones of the dialog were defined. For all of those milestones answers or reactions to
possible questions or situations were assembled beforehand. The intended dialog should consist
of the following milestones: (1) greeting, (2) small talk, (3) introduction and explanation of the
robot, (4) suggestion of a tour through the exhibition, and (5) explanation of exhibits.

The operator can select the robots target position and initiate the driving mode, which is
completely autonomously. While the robot navigates, his head is facing in the direction of move-
ment. This allows persons walking towards the robot to guess the robots intention to pass. Such
a behavior is one of the many subtle steps towards a socially acceptable navigation. During the
dialogs, the head of the robot is facing the dialog partners.

5 Conclusion

The proposed methods and the way of combining and evaluating them is not limited to the museum
tour guide scenario. Most non-technical scenarios have to deal with the combination of navigation
and human-robot-interaction. Other possible applications can be found in a numerous way in the
literature. One of the most frequently discussed are elderly care scenarios, for which the robot is
meant to facilitate the routine work of nursing and security personal, as well as a help and support
for the retirees.

The paper describes an ongoing project. Hence, some of the described sub-systems are still in
prototypical state. The evaluation of these systems has already been published as it was mentioned
throughout the paper. However, an evaluation of the entire system is an open task.

Even though, the described project already offers an impressive gain for the visitors of the
exhibition, the number of problems and the possibilities to extend the scenario are still numerous.
The dialog system currently relies on text explicitly written by the curator of the exhibition.
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However, for example IBM’s Watson project shows that it is possible to integrate larger databases
offering more detailed information for the visitor.

Furthermore, a possible use of the museum tour guide might be to make it accessible online.
In that way, a visit over night or on less crowded days would be available from at home.

Since the goal is to be as user adaptive as possible, it is fundamental to get as much information
from the user as possible, without asking. Beside motion interpretation a ”large” cue for estimating
the users’ mood is its prosody. Since we already do audio processing for speech recognition, this
will be the next step.
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Abstract. In this paper we address the problem of dialog system mod-
eling for a tour guide robot whose task is to present exhibits to museum
visitors. We present an approach for multimodal, dialog-directed inter-
action using a Markov decision process. A user simulator built upon our
experience and data from Wizard-of-Oz experiments is used to train the
dialog manager. Experimental results confirm the suitability of our ap-
proach for the application and motivate its use in the real world setting.

Keywords: Tour Guide Robot, Dialog System, Reinforcement Learning

1 Introduction

In this paper we present ongoing work on a dialog system with application to an
autonomous tour guide robot. Motivated by frustrating and non-intuitive user
interfaces, our research goal is to improve human-machine communication by
methods that infer user goals (i.e. what users want) in function of their behavior
(i.e. user actions the machine can observe). The task in our scenario is as follows:
In a museum, our service robot looks for visitors to whom it can offer a museum
tour. Upon contacting persons and a short introduction, it will take them from
exhibit to exhibit, present information, and answer their questions. Crucial to
its success is to know how much and which information to present about each
exhibit, based on the actively estimated interest of the audience.

Fig. 1. The service robot interacts with visitors at
the museum site.

In real-world dialogs there
is a vast number of distinct
situations. With this in mind,
it makes sense to build a sys-
tem that can learn its policy
(a mapping from situations to
actions), avoiding laborious
hand-crafting of the dialog
manager behavior. Hence, re-
inforcement learning (RL) has
evolved within the past years
as state of the art for opti-
mizing dialog systems, which
gives various advantages:
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Multimodal observations are fused into an appropriate state representation,
which, by statistical knowledge, allows for probabilistic reasoning and inference
of user goals. Furthermore, RL frameworks can learn from experience, possibly
improving their policy the more they interact with their users.

Implementing a tour guide robot that learns from interactions with its users
has, to the best of our knowledge, not been addressed yet by the machine learning
community. Comparable guide robots possess either just basic dialog capabilities
[1] or focus on small talk [2]. Recent development has shown a growing interest for
optimizing dialogs in terms of user satisfaction [6], which is also in our interest.

2 Reinforcement Learning for Dialog Systems

Markov decision processes (MDPs) were used for spoken dialog systems since
more than a decade [5]. Formally, an MDP is a tuple M = {S,A, T,R} where
S is the set of states, A is the set of system actions, T (s′|s, a) is a set of state
transition probabilities, and R : S 7→ R is a reward function which maps states
to real-valued rewards. The MDP model for dialogs operates as follows: At each
time step the world is in some current state s ∈ S which is assumed to be known
exactly. Subsequently the machine selects an action a ∈ A and applies it. The
user’s reaction is observed thereafter, leading to a transition of the current state
s to a successor state s′, where s′ depends only on s and a. For this transition
the machine receives a real-valued reward which is defined by R.

For real-word applications the state of the world can not be known exactly.
Sensor noise and recognition errors result in faulty state assumptions and poor
decision making. A model that fits better to the real wold is the partially ob-
servable Markov decision process (POMDP), an extension to the MDP, which
maintains a probability distribution over states. Exact computation of this be-
lief state is intractable for most applications with more than a small number
of states, but approximation algorithms were developed, promising a tractable
solution for our dialog application [9].

In this early stage of development we preferred to use an MDP rather than
a POMDP model since a variety of complexity problems do not have to be ad-
dressed yet. This work aims primarily to investigate the usability of RL-methods
for our tour guide application and we chose the simpler model in order to save
time. However, we plan to cast our system as a POMDP in a future version, and
most of the model can be adopted without alteration.

3 Simulation of Museum Visitors

The transition function T (s′|s, a) in an MDP can be very complex, depending
on the state representation and size. Fortunately, we do not have to specify it
when using a learning algorithm that uses random sampling. To generate those
samples we built a simulated user for the system to interact with. This technique
has been applied soon after RL was first proposed to optimize dialog systems,
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Table 1. Behavior defining attributes of the simulated user. All attributes are proba-
bility distributions gathered from evaluated Wizard-of-Oz experiments.

• # exhibits wanted • action when frustrated (goodbye/leave)
• # information wanted per exhibit • likelihood of leaving when bored
• # mistakes tolerated before quitting • response on no question (negate/silence)
• # consecutive questions tolerated • response on question (ask/affirm/silence)
• response to goodbye (goodbye/silence) • likelihood of asking questions
• likelihood of attention when interested • likelihood of attention when bored
• reaction to correct question answer
(feedback/ask next question/silence)

• reaction to apology
(feedback/ask same/ask next/silence)

• response to the offer of change exhibit
(implicit/explicit/silence)

• response to the offer of more information
(implicit/explicit/silence)

• action when system talks too much
(request stop/request change/silence)

• action when system talks too little
(request more/silence)

• new question likelihood

because RL algorithms usually require a large number of training data, too much
to gather effectively from Wizard-of-Oz experiments [8].

State-of-the-art user simulators ensure consistent behavior by fixing a goal
before the dialog starts, which they try to achieve in the dialog thereafter. How-
ever in our scenario, users neither agree, nor stick to one single goal before the
interaction; it is rather influenced during the dialog by the system’s suggestions
or mistakes, as well as by user’s preferences and characteristics. The challenge
is to find a model able to explain the behavior of users in the given scenario.

We attempt to achieve this as follows: Before every dialog, the character
(child/adult) of the user is sampled with probabilities taken from Wizard-of-
Oz data. Depending on that, a number of behavior-determining attributes are
then fixed as probability distributions for this user (listed in Table 1). The actual
behavior is sampled from these distributions when an applicable situation occurs.
Furthermore, the user maintains a short-term-memory: Once a response is given,
it is memorized and repeated, in case the system asks the same question again.

For every exhibit the user is willing to visit, the number of desired information
is sampled before explanations start. This number is decreased by one in every
turn the system presents one information unit (e. g. a sentence) about it. If
it falls below zero, the user changes to a “bored” state and will now behave
according to other attributes, e. g. ask to change the exhibit, act distracted, or
leave.

Since MDPs operate on a turn-taking manner, the system expects a user
utterance after every action. This is not always the case in the real world, and
particularly when the system utters long explanations of exhibits, it can not
always perceive what visitors say due to its self-emitted noise. Therefore, the
simulator generates a silence action with high probability when the system
action is present. This forces the learning algorithm to pay more attention to
nonverbal cues, in order the anticipate interest during its presentations.
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In our experiments visitors occasionally asked questions to the robot. We do
not simulate actual questions being asked yet, only the fact that they occur,
and introduce simulated recognition errors. When a question was correctly rec-
ognized, an answer can be given to the user, otherwise the system may ask to
repeat or apologize for the error.

Additionally, there is a priority mechanism which aims to explain why users
not always give an expected answer: For instance, if the robot asked: “Do you
like to hear more?”, but the user has an urgent question on his mind, he might
ask it instead of answering the earlier prompt.

Much attention was paid to simulate some sort of frustration of users when
the dialog manager makes mistakes. Since we want to achieve user satisfaction
this is essential to the success of our application. Thus, every time the user
asks or requests something and does not immediately get the expected response,
a frustration counter is increased. If a tolerance threshold is overstepped, the
simulated user quits the dialog by leaving.

4 An MDP Representation of the Dialog System

In order to cast our dialog manager as an MDP, we need to define the state
space, the action set, and the reward function. We discuss them in the following.

Firstly, the state space S could be represented simply by real or natural
numbers. Since we want to describe dialog situations, it is much better inter-
pretable to use a set of discrete variables, where a particular assignment of which
represents one state of the dialog manager.

For the museum guide application we use the variables listed in Table 2. They
divide into two main groups: user action and goal variables. Action variables are
given by the output of our user simulator and are updated during each turn of
the dialog, while goal variables are assigned through deterministic rules, based
on the previous state and user actions.

In particular, goals express the current user desire to hear more about the
current exhibit, to change to another exhibit, or the state of question answering
(QA). Applied to the robotic platform, user actions are perceived as follows:
Attention is regarded as the degree to which a person is focused on what the
machine says, and can be estimated e. g. by processing image data. Similarly,
the movement of a person is determined by trajectories provided by a people
tracker. The user speech action is obtained by classifying the output of a speech
recognizer using the nine categories as in Table 2.

Secondly, the dialog manager can choose from one of these eight actions: 1)
present utters the next sentence about the current exhibit 2) offer more asks
the visitors if they like to hear more information 3) offer change offers to move
on to another exhibit 4) offer questions offers the visitors to ask questions
about the current exhibit 5) change exhibit moves the robot to the next exhibit
6) answer question presents an answer to a question 7) apologize states an
apology when a question was not understood 8) goodbye finishes the dialog.
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Table 2. State variables of the tour guide dialog manager. There are variables to
capture the user’s last action (attention, movement, speech) and variables to describe
the current user goal status (more, change, QA). Additional history variables (end flag,
action counters) exist, but are not listed separately .

Variable Possible Values Meaning

attention attentive, distracted visually perceived interest
movement approaching, interacting, leaving visually perceived movement
speech affirm, negate response to a yes/no question

requestChange request to go to next exhibit
requestStop request to stop explaining
requestMore request to explain more
askQuestion question about an exhibit
feedback positive or negative feedback
goodbye quit dialog
silence nothing said

more nothingSaid, requestedStop,
requestedMore, affirmed, rejected,
notResponded

user goal w.r.t. the desire to hear
more information

change nothingSaid, requestedChange,
affirmed, rejected, notResponded

user goal w.r.t. the desire to
change the exhibit

QA nothingSaid, affirmed, noQuestion,
understood, notUnderstood,
answered, apologized, feedbackRe-
ceived, notResponded

state of question answering

Lastly, the reward function R compactly describes the desired dialog system
behavior. We want to keep it as simple as possible and therefore use the fol-
lowing rules. In every turn, the default reward is zero. When the agent presents
information about an exhibit, a small reward (+1) is received, expressing our
objective of providing preferably long museum tours. This also makes dialogs of
different length comparable. At the end of every dialog, a large reward (+20) is
received when the user did not leave by then and all the information he desired
was presented. If the user prematurely quits the dialog (caused by frustration), a
large penalty (-20) is given to the agent. Any other time the dialog is prematurely
quit by the system, it receives a medium large penalty (-5).

5 Experimental Results

When using a factored state representation, the number of states grows exponen-
tially with the number of state variables. In our prototype we have 7290 distinct
states given by only the state variables discussed above. A common solution to
this is to approximate the state space by a vector of features φ : S 7→ [0, 1]k,
where each state is mapped to k binary features. This dramatically reduces the
state space and allows a compact policy representation, where only a feature
weight vector θa of length k must be learned for every action a ∈ A.
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Table 3. Basis functions of the feature vector φ, used for state approximation. Each
basis function computes a binary value from the state, as listed below.

φ1 = more == nothingSaid φ12 = QA == rejected
φ2 = more == affirmed | requestedMore φ13 = QA == understood
φ3 = more == rejected | requestedStop φ14 = QA == notUnderstood
φ4 = more == notResponded φ15 = QA == answered
φ5 = change == nothingSaid φ16 = QA == apologized
φ6 = change == affirmed | requestedChange φ17 = QA == feedbackReceived
φ7 = change == rejected φ18 = QA == notResponded
φ8 = change == notResponded φ19 = #consec. distracted turns == 0
φ9 = QA == nothingSaid φ20 = #consec. distracted turns == 1
φ10 = QA == affirmed φ21 = #consec. distracted turns == 2
φ11 = QA == noQuestion φ22 = #consec. distracted turns > 2

With this approximation, the state-action value function Q(a, s) and optimal
policy π∗(s) of our MDP problem can be written as follows:

Q(a, s) ≈ θa · φ(s) (1)

π∗(s) = arg max
a

θa · φ(s) (2)

Table 3 lists the basis functions which have shown to be sufficient for our
prototype dialog system. Subsequently, several learning algorithms were applied
to train the dialog manager. First results with Natural Actor Critic (NAC) [7]
and Least Squares Policy Iteration (LSPI) [3], commonly used algorithms for
dialog systems, failed to learn a satisfying policy. They often got stuck applying
only one or two different actions regardless of the state.

The following is an attempt to explain this behavior: Both algorithms itera-
tively compute statistics over large batches of sampled dialogs (NAC computes
a policy gradient for each weight in θ, LSPI computes the average, per-feature
state-action value function). If no exploitation is performed or dialogs are sam-
pled randomly, every dialog is prematurely quit by the simulated user, yielding
a large penalty every time. This happens inevitably until a policy is found which
does not frustrate the user. However, the sequence of actions necessary to avoid
user frustration is very complex and hard to learn when all parameters are up-
dated at once (NAC and LSPI update the parameters θa after every batch).

A solution to this seems to be a gradual update of only some of the the pa-
rameters after a single-step reward is received, as opposed to computing statis-
tics over large sets of dialogs off-line. Temporal Difference algorithms such as
parameterized Q-Learning and SARSA [4] follow this intuition. We used a dis-
count factor γ of 0.9, an eligibility trace decay λ of 0.85, and a learning rate α
of 0.1 and applied these two algorithms to our problem. Figure 2 illustrates the
mean reward gathered during training of the dialog manager against the user
simulator. It can be seen that, as the exploration rate drops to zero, the dialog
manager gradually makes fewer mistakes and achieves more successful dialogs.
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Fig. 2. The chart graphs the mean reward over the last 100 sampled dialogs, averaged
from 50 training iterations using SARSA and Q-Learning. Apparently, policies trained
by the SARSA algorithm gather slightly more reward than those trained with Q-
Learning, and both algorithms converge after about 2500 training dialogs.

Caused by hardly predictable user behavior there is a fair amount of failed
(prematurely quit) dialogs in the Wizard-of-Oz corpus. We intend to replicate
this observation by introducing the same degree of randomness into the simulator
while hoping to find a policy that maximizes the rate of successful dialogs. As
shown in Figure 2, the success rates of the trained dialog managers yield about
45 - 50%, which does not yet exceed the success rate of our Wizard-of-Oz dialogs
(61%) and suggests further extensions of the dialog manager state representation.

6 Conclusion and Future Work

All proposed frameworks are part of ongoing research on a dialog system with
application to an autonomous robotic tour guide. Our primary goal was to inves-
tigate the utility of reinforcement learning for this dialog management problem.
Experiments with a simulated user showed that it is possible to learn the princi-
ple course of the interaction between a museum visitor and a tour guide robot.
In a future version we plan to extend our dialog manager toward more compre-
hensive interaction capabilities, e. g. introducing small talk behavior.

This work’s main contribution is a user simulator which the dialog manager
interacts with during the learning process. Using data from Wizard-of-Oz corpus
we built a model attempting to replicate the observed behavior. However, it is
still incomplete in many aspects and requires more data. For instance, so far we
did not attempt to frustrate users on purpose, which is necessary for a better
understanding of why visitors quit the interaction.

The generated dialogs reflect our experiences from actual users and motivate
further investigations of reinforcement learning methods for the tour guide sce-
nario. Nonetheless, it remains to be evaluated how well the simulator reproduces
real museum visitor behavior, e. g. by comparison of the output of the simulator
output with Wizard-of-Oz dialogs. Once work on the simulator is completed we
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Table 4. Shown is a sample dialog between dialog manager and simulator after training
using the SARSA algorithm. Interestingly, the dialog manager learned to offer questions
when the user was distracted for two consecutive turns. User movements are always
“interacting” in this dialog and are thus not listed separately.

Actor Speech action User Attention Actor Speech action User Attention
System: present System: present
User: silence attentive User: silence attentive
System: present System: present
User: silence attentive User: silence distracted
System: present System: present
User: silence attentive User: silence distracted
System: present System: offer questions
User: silence distracted User: ask on topic attentive
System: present System: answer question
User: silence distracted User: feedback attentive
System: offer questions System: offer questions
User: ask on topic attentive User: negate attentive
System: answer question System: offer next exhibit
User: request change attentive User: negate attentive
System: change exhibit System: offer more
User: silence attentive User: negate attentive
System: present System: goodbye
User: silence distracted User: goodbye attentive

plan to extend the dialog manager to the partially observable world, expecting
better error-recovery performance and scalability.
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Abstract. We propose a framework for classi�cation learning based on
generalized learning vector quantization using statistical quality mea-
sures as cost function. Statistical measures like the F -measure or the
Matthews correlation coe�cient re�ect better the performance for two-
class classi�cation problems than the simple accuracy, in particular if the
data classes are imbalanced. For this purpose, we introduce soft approxi-
mations of those quantities contained in the confusion matrix, which are
the basis for the calculation of the quality measures.

1 Introduction

Classi�cation of data is one of the most frequent task in machine learning and
statistical data analysis. Many methods and approaches were developed rang-
ing from linear discriminant analysis (LDA) to classi�cation trees. Among them,
prototype based classi�ers like Support Vector Machines (SVMs) or the family of
Learning Vector Quantizers (LVQ) frequently yield excellent results outperform-
ing classical statistical approaches. These approaches typically try to minimize
the classi�cation error or at least approximations thereof or, equivalently the
classi�cation accuracy.

Yet, the performance evaluation of a classi�er only based on the accuracy is not
the full truth. In case of imbalanced data the classi�cation accuracy might be
very high but ignoring completely underrepresented classes. This problem fre-
quently occurs in medicine, when only a few patient data are available compared
to the number of data of volunteers [4,5,22].

Therefore, evaluation of the whole confusion matrix provides much more detailed
information, which can be summarized in performance values like precision, sen-
sitivity etc. for two-class problems. These quantities are also important if the
di�erent types of misclassi�cations (false negatives / false positives) cause dif-
ferent costs [7]. We denote this scenario as an asymmetric classi�cation task
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(ACT). Several measures are known in statistical data analysis based on the
evaluation of the confusion matrix emphasizing di�erent aspect. Well-known are
the F -measure, the χ2-statistics or the Jaccard-Index. Thus, a direct optimiza-
tion of these quantities by a classi�er model would be desirable.

Instead of direct optimization of the F -measure as proposed in [2], we present
in this paper an approach to replace the accuracy based cost function in gener-
alized learning vector quantization (GLVQ) by statistical measures based on the
confusion matrix while keeping the idea of prototype based classi�cation models
and stochastic gradient descent learning. For this purpose, an adequate descrip-
tion of the confusion matrix entries in terms of the GLVQ classi�er function is
considered. We provide the theoretical basis to incorporate these quantities in
the framework of GLVQ.

2 Prototype Based Classi�cation by GLVQ

Prototype based classi�cation models provide a powerful strategy for nonlinear
classi�cation tasks. Prominent examples are Support Vector Machines (SVMs,
[20]) or Learning Vector Quantizers (LVQs, [9]). SVMs translate the classi�cation
task into a convex optimization problem whereas LVQs heuristically adjust the
prototypes to optimize a Bayes decision [8]. A cost function based variant of
LVQ was proposed by Sato&Yamada (Generalized LVQ - GLVQ, [19]. In the
following we will concentrate on GLVQ.

We suppose data vectors v ∈ V ⊆ R
n, and the prototypes of the GLVQ model

are the set W = {wk ∈ R
n, k = 1 . . .M}. Each data vector v of the training data

belongs to a class xv ∈ C = {1, . . . , C}. The prototypes are labeled by ywk
∈ C.

The cost function minimized by GLVQ is

EGLVQ (W ) =
1

2

∑

v∈V

f (µ (v)) (1)

where

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the classi�er function. We remark that µ (v) ∈ [−1, 1]. Further d+ (v) =
d (v,w+) denotes the dissimilarity between the data vector v and the closest
prototype w

+ with the same class label y
w

+ = xv, and d− (v) = d (v,w−) is
the dissimilarity degree for the best matching prototype w

− with a class label
y
w

− di�erent from xv.

The dissimilarity measure d (v,wk) is not necessarily required to be a metric [15]
but is assumed to be di�erentiable with respect to wk for stochastic gradient
learning. The transfer or squashing function f is a monotonically increasing
function usually chosen as sigmoid or the identity function.
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Learning in GLVQ of w+ and w
− is usually performed by the stochastic gradient

descent with respect to the cost function EGLVQ for a given data vector v. Recent
approaches include relational and median learning [3,13,24].

The recall for a given data point v is realized via a winner take all rule: Let

s (v) = argminM
k=1 (d (v,wk)) (3)

be the winner or best matching unit. The respective prototype label ys(v) is the
predicted class of the classi�er. Hence, µ (v) becomes negative if v is correctly
classi�ed, i.e. if xv = ys(v) is valid.

3 Classi�cation Accuracy and Statistical Measures in

GLVQ

3.1 Classi�cation Accuracy in the GLVQ Model

Obviously, the classi�er function µ (v) from (2) becomes negative if the data
point v is correctly classi�ed. Further, the transfer function f is frequently chosen
as the sigmoid function

fθ (x) =
1

1 + exp
(

−x
θ

) (4)

with the parameter θ determining the slope [23]. In the limit θ → 0 the sigmoid
fθ becomes the Heaviside function H (x), such that the cost function EGLVQ

approximately counts the misclassi�cations in the GLVQ for this case. Hence,
EGLVQ is implicitly based on the classi�cation accuracy evaluation.

3.2 Statistical Measures for Classi�cation Evaluation

Yet, accuracy is not the best choice to evaluate a classi�er, in particular, if the
data are imbalanced [18]. For example, assigning every object to the larger set
achieves a high proportion of correct predictions, but is not generally a useful
classi�cation. In statistical analysis contingency table evaluations are well-known
to deal with this problem more properly. In case of two-class problems with
classes C+ and C− the table contains the confusion matrix Tab. 3.2.

Several measures were developed to judge the classi�cation quality based on
the confusion matrix emphasizing di�erent aspects. For example, the quantities
precision

π =
TP

TP + FP
=

TP

N+
(5)

and recall

ρ =
TP

TP + FN
=

TP

N+
(6)
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labels true

C+ C−

predicted C+ TP FP N̂+

C− FN TN N̂−

N+ N− N

Table 1. Confusion matrix: TP - true positives, FP - false positives, TN - true
negatives, FN - false negatives, N±- number of positive/negative data, N̂+ - number
of predicted positive/negative data.

are used in the widely applied Fβ-measure

Fβ =

(

1 + β2
)

· π · ρ

β2 · π + ρ

=

(

1 + β2
)

· TP

(1 + β2) · TP + β2 · FN + FP
(7)

developed by C.J. van Rijsbergen [16]. For the common choice β = 1 it is
the fraction of the harmonic and the arithmetic mean of precision and recall,
i.e. β controls the in�uence of both values. Another measure considering all four
quantities of the confusion matrix is the Matthews correlation coe�cient

MMC =
TP · TN − FP · FN

√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
, (8)

which is equivalent to the χ2-statistics for a 2Ö2 contingency table. In particular,

|MCC| =

√

χ2

N
(9)

is valid [11,18]. Further measures are the Jaccard index

J =
TP

FP + TP + FN
(10)

related to the Tanimoto distances [6,17] or the normalized mutual information

IC =
I

Hdata

(11)
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based on the mutual information [10]

I = −HS

(

TP

N
,
TN

N
,
FP

N
,
FN

N

)

−
TP

N
log

[

TP + FP

N
·
TP + FN

N

]

−
FN

N
log

[

TP + FN

N
·
TN + FN

N

]

−
FP

N
log

[

TP + FP

N
·
TN + FP

N

]

−
TN

N
log

[

TN + FN

N
·
TN + FP

N

]

withHS

(

TP
N

, TN
N

, FP
N

, FN
N

)

is the Shannon entropy of the confusion matrix rates
(probabilities) and

Hdata
S = −

TP + FN

N
log

[

TP + FN

N

]

−
TN + FP

N
log

[

TN + FP

N

]

(12)

is the Shannon entropy of the class distribution for the originally labeled data
[1,21].

While there is no perfect way to evaluate the confusion matrix of true and false
positives and negatives by a single number, the Matthews correlation coe�cient
is generally regarded as being one of the best such measures [1,21].

3.3 GLVQ based on Statistical Measures

As we pointed out in the previous section, there are alternatives to the simple
accuracy when evaluating the classi�cation performance, in particular for imbal-
anced data. In the following we propose a framework to integrate them into the
GLVQ. The idea behind is to keep the basic ingredients of GLVQ, which are

� prototype based classi�cation
� gradient descent learning
� dissimilarity based classi�er function µ (v)

At this point we restrict ourselves to the two-class scenario {C+, C−} of a pos-
itive class C+ with class label '⊕' and a negative class C− with class label '⊖'.
Following the observation that the sigmoid transfer function fθ (4) approximates
the Heaviside function H, we consider a modi�ed classi�er function

µ̂ (v) = fθ (−µ (v)) (13)
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with µ̂ (v) ≈ 1 i� the data point v is correctly classi�ed and µ̂ (v) ≈ 0 otherwise.
Now we can express all quantities of the confusion matrix in terms of the ne
classi�er function µ̂ (v), which yields

TP =
N
∑

j=1

δ⊕,xvj
· µ̂ (vj) , (14)

FP =
N
∑

j=1

δ⊖,xvj
· (1− µ̂ (vj)) , (15)

FN =
N
∑

j=1

δ⊕,xvj
· (1− µ̂ (vj)) , (16)

and

TN =
N
∑

j=1

δ⊖,xvj
· µ̂ (vj) (17)

with δ⊕,xvj
is the Kronecker symbol and δ⊖,xvj

= 1 − δ⊕,xvj
. Obviously, all

these quantities are di�erentiable with respect to µ̂ (vj) and, hence, also with
respect to the prototypes w, when used in stochastic gradient learning for GLVQ
according to the chain rule of di�erentiation.

Now, we suppose without loss of generality a statistical measure
S (TP, FP, FN, TN) ∈ C1 to be minimized, i.e. it is continuous and di�eren-
tiable. We immediately conclude that then the function S (TP, FP, FN, TN)
can serve as a new cost function in the GLVQ scheme. Hence, the GLVQ can be
used in a statistical framework.

Clearly, the above mentioned measures Fβ , MMC, J , and IC belong to this
function class and, therefore, can be plugged into the GLVQ scheme.

4 Conclusion

In the present paper we provide a theoretical framework for GLVQ using sta-
tistical measures as cost function. The statistical measures are assumed to be
continuously depending on the entries of the confusion matrix and di�erentiable.
Then, the key idea is to use the smooth approximations of the quantities of the
confusion matrix when the statistical measure is taken to replace the original
accuracy based cost function in GLVQ. In this way, the basic principles of GLVQ-
like prototype based classi�cation and gradient descent learning are kept.

Thus, the new approach is an alternative to recently proposed classi�er systems
based on SVM and multilayer perceptron optimizing the F1-objective [12,14].
Further, the general formulation allows the utilization of other statistical mea-
sures to re�ect di�erent aspects in classi�cation learning like imbalanced class
data and asymmetric classi�cation tasks.
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We presented the framework for a two-class scenario so far. Extensions to more
classes could be greedy strategies like hierarchical or weighted one-versus-all
classi�cation schemes as suggested in [1]. This is topic for future research as
well as the integration of such statistical measurements into fuzzy classi�cation
schemes.
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Abstract. Nonlinear dimensionality reduction (DR) techniques offer
the possibility to visually inspect a high-dimensional data set in two
dimensions, and such methods have recently been extended to also visu-
alize class boundaries as induced by a trained classifier on the data. In
this contribution, we investigate the effect of two different ways to shape
the involved dimensionality reduction technique in a discriminative way:
discrimination based on the data labels of the given data set, and dis-
crimination based on the labels as provided by the trained classifier.
We demonstrate that these two different techniques lead to semantically
different visualizations which allow us to further inspect the classifica-
tion behavior. Both approaches can uniformly be based on the Fisher
information matrix, which is estimated in two different ways.

Keywords: Visualization of Classifiers, Supervised Dimensionality Reduction,
Fisher Information

1 Introduction

Big data as well as complex settings cause the need of humans to interactively
process and interpret large, heterogeneous, high-dimensional data sets, specifying
the learning goals and appropriate data analysis tools based on obtained findings
[22, 8, 17]. Here, interpretability of the models and nonlinear data visualization
play a major role [20, 10, 14]. A classifier is not only judged by its classification
accuracy, rather, it moves into the focus which decision the classifier is taking and
why. In this context, it becomes interesting not only to visualize the given data
sets, but also the classifier inferred thereof. This possibility allows us to extract
information beyond the mere classification accuracy addressing questions such
as: are there data which are observable as outliers and hence are potentially
mis-labeled, are there noisy data regions where the classification is inherently
difficult, are there regions where the flexibility of the classifier is not yet sufficient,
what is the modality of single classes, etc.

At present, visualization in the context of classifiers is often restricted to
interfaces to set certain parameters: Brier [7] and ROC curves plot a point for
each setting of a certain parameter and, such, allow to choose the best setting
for a certain purpose. There exists relatively little work to visualize the un-
derlying classifier itself. Such include tour methods [3] allowing to interactively
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choose linear projections; nomograms [9] analyzing certainty measures provided
by the classifier, or linear projection techniques on top of this measures [13].
A few nonlinear techniques exist such as SVMV [21] where a SOM is utilized
as a projection method. Recently, a general framework how to visualize a gen-
eral classifier based on nonlinear dimensionality reduction techniques has been
proposed [15], which enables to project any given classifier and underlying data
points to two dimensions. One key aspect of this framework is the integration of
discriminative dimensionality reduction rather than classical DR methods, such
that conflicts arising from the projection of high-dimensional data are solved by
focussing on the discriminative dimensions of the data only.

In this contribution, we investigate two different ways to estimate discrimi-
native information of the data; in particular, we distinguish two different sources
of this information: the underlying data labels of a given training set, and the la-
beling provided by the classifier itself. We demonstrate that these two techniques
lead to two computationally different ways to estimate discriminative informa-
tion which have a strong influence on the information shown in the visualization:
we mainly see aspects of the data manifold for the first setting, while we can
have a view on the way the classifier labels the data in the second approach. We
demonstrate this difference in a first illustrative scenario.

Now we first shortly review the general framework how to visualize a given
classifier, and include discriminative dimensionality reduction based on the Fisher
information, afterwards. As a novel contribution, we explain two different ways
to estimate the Fisher information, and we demonstrate the effect in an experi-
ment.

2 The general framework

This section follows the description as provided in [15]. We assume the following
scenario: a finite data set of points xi ∈ X = Rn and labeling li ∈ L is given.
Furthermore, a classifier f : X → L has been trained on these data. which gen-
erates a label f(x). We assume that these labels are accompanied by a real value
r(x) ∈ R which is a monotonic function depending on the minimum distance
from the class boundary such as provided by most classification techniques.
The framework consists of the following three steps:

(I) Project the data xi using a DR technique leading to points π(xi) ∈ Y = R2.
(II) Sample the projection space Y leading to points z′i. Determine points zi in

the data space X which correspond to these projections π(zi) ≈ z′i.
(III) Visualize the training points xi together with the contours induced by the

sampled function (z′i, |r(zi)|).

Note that this procedure avoids problems which would be caused by a high
dimensionality of the data by two ingredients: DR of the given data points
only focuses on aspects defined by the data distribution, this way avoiding the
problem to correctly visualize the full input space in two dimensions which is
obviously not possible. Further, sampling of the feasible region to show the class
boundaries takes place in the low-dimensional projection space only, avoiding
computational intractability of sampling in the data space itself.
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Two questions remain open in this abstract framework: How can we deter-
mine inverse points zi for given projections z′i which correspond to inverse images
in the data manifold? What properties should the DR technique fulfill such that
only the important aspects of the setting are visualized? In this paper, we will
focus on the latter question and briefly discuss the first one in the next section
based on the description in [15].

In order to quantitatively evaluate the obtained visualization of the classifier,
we calculate the accordance between the original classification and the visualized
one: We compute the predicted label of the classifier f(xi) for those points xi

which have not been used to optimize the inverse mapping π−1 (see section 3).
Then we calculate the label which would be assigned by the visualized classifier to
the low-dimensional counterparts of these points xi. Calculating the agreement
of these labels gives a measure of the quality of the visualized classifier.

3 Inverse nonlinear dimensionality reduction

Given a nonlinear projection of points xi ∈ X to π(xi) = yi ∈ R2 and additional
data points z′i ∈ R2, what are points zi such that its projections approximate
z′i ≈ π(zi) and, in addition, zi are contained in the data manifold?

Following [15], we use an interpolation technique with the general form

π−1 : Y → X,y 7→
∑

i αik(yi,y)∑
i k(yi,y)

= Ak, (1)

where the parameters αi ∈ X can be interpreted as prototypical preimages of yi

for small bandwidths σ of the Gaussian kernel k(yi,y) = exp(−0.5‖yi−y‖2/σ2).
σ is chosen as c · Exi

{minj 6=i ‖xi − xj‖} where c is a predefined scaling factor.
The sum is either over a subset of m given data projections yi = π(xi), or over
m codebooks representing the yi. The matrix A ∈ Rn×m contains the αi in its
columns and k ∈ Rm×1 is a vector of normalized kernel values. The normalization
yields that the projected data points lie in the convex hull of the αi. The mapping
π−1 is trained on the points (xi, π(xi)) corresponding to the data manifold X
only. Due to this training set, an inversion of the projection π is emphasized
which maps points in Y to inverse points which lie in the original data manifold,
and ambiguities of the ill-posed problem to map the low-dimensional projection
space to the full high-dimensional data space are resolved.

The parameters αi can be obtained by minimizing the following supervised
error of the projection π−1 on the training set

E =
∑
i

d2J
(
xi, π

−1(yi)
)

=
∑
i

(
xi − π−1(yi)

)>
J(xi)

(
xi − π−1(yi)

)
. (2)

The matrix J refers to the Fisher information matrix as defined in section 4. In
contrast to a standard Euclidean error function, this function has the advantage
that those dimensions in X which are locally relevant for the classification are
emphasized. Minimization of these costs takes place by gradient techniques.

In contrasts to the error function used in [15], this function consists only of
one term such that a balance of an unsupervised and a supervised term does not
need to be found (this has already been done during the computation of J).
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4 Discriminative nonlinear visualization

The general framework yields reasonable results provided the data manifold is
intrinsically low-dimensional and the DR method is capable of taking this in-
formation into account. For data manifolds with intrinsic dimensionality larger
than two, a DR to two dimensions necessarily disrupts potentially relevant in-
formation. Due to this fact, it has been proposed in [15] to use a discriminative
dimensionality reduction technique in step (I) which allows the user to explicitly
specify which aspects of the data are regarded as relevant and which aspects of
the data can be neglected in the considered setting.

A variety of different discriminative DR techniques has been proposed, such
as Fisher’s linear discriminant analysis (LDA), partial least squares regression
(PLS), informed projections [4], global linear transformations of the metric [6,
2], or kernelization of such approaches [11, 1]. A rather general idea to include
supervision is to locally modify the metric [12, 5] by defining a Riemannian
manifold which takes into account auxiliary information of the data and which
measures the effect of directions of the data on this auxiliary information. This
modified metric can then be plugged into many modern DR techniques such as
t-SNE.

In our case, we assume that the auxiliary information is provided by dis-
crete class information c assigned to x, where c captures aspects relevant for
the class labeling, which should be visualized. This information can locally be
incorporated into the distance computation by setting the quadratic form of the
tangential space at x as d2J(x,x+ dx) = (dx)>J(x)(dx), where J(x) is the local
Fisher information matrix

J(x) = Ep(c|x)

{(
∂

∂x
log p(c|x)

)(
∂

∂x
log p(c|x)

)>}
. (3)

Thereby, p(c|x) denotes the probability of the class information c conditioned
on x. These local distances can be extended to the entire manifold by taking
minimum path integrals.

Since exact minimization and integration is usually computationally intractable,
approximations are used; a description of approximations with their correspond-
ing advantages and disadvantages can be found in [12]. In the following experi-
ments we will use linear piecewise distance approximations.

The Fisher information matrix can be directly included into all distance based
techniques. In this paper we integrate it into the popular non-parametric DR
method t-Distributed Stochastic Neighbor Embedding (t-SNE). This method
projects data points such that the probabilities of data pairs are preserved in
the low-dimensional space [19]. A Gaussian distribution is assumed in the high-
dimensional space and a Student-t distribution in the low-dimensional space,
addressing the crowding problem. We will refer to Fisher t-SNE when we replace
the Euclidean metric with the Fisher metric in t-SNE.

Due to the supervised selection of information in the high-dimensional space,
the variability of projections obtained by Fisher t-SNE is less as compared to
those by t-SNE.
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5 Estimating the Fisher information matrix

The central part of this modified distance computation consists in the estimation
of the probability p(c|x) of information c given a data point x. In our setting,
there are two essentially different possibilities how to choose this information:

(a) We can use the given class labels c := l or ci := li for data point xi, re-
spectively, as provided in the training set. This choice emphasizes the given
’ground truth’ of the data, and, in consequence, the visualization of the
classifier visualizes in which regions the obtained classification is simple or
complex as compared to this ground truth.

(b) We can use the labeling as provided by the trained classifier c := f(x). This
choice emphasizes aspects of the data which are regarded by the classifier as
interesting. Hence, those aspects of the data are visualized which influence
the trained classification; as an example one can detect regions of the data
where points are regarded as virtually identical by the classifier.

Apart from the different semantic meaning, this choice has consequences on
the possibilities how to compute the probability p(c|x). The Fisher matrix is
based on the local change of the probability distribution p(c|x), the latter of
which is usually unknown and needs to be approximated. A common way to do
this is to use the Parzen window non-parametric estimator as proposed in [12].
This yields a correct estimation of the probability density but is computationally
expensive, i.e. O(N2) for N data points, and, for finite data sets, the result
depends on the chosen bandwidth1 of the estimator. The resulting estimator
is differentiable and the derivatives are reported in [12], for example. As an
alternative, the authors in [12] suggest to use faster methods to approximate
p(c|x) which are less accurate, however. Essentially, these methods substitute
the non-parametric estimator by a parametric one such as a Gaussian mixture
model, the parameters of which are optimized on the data. Hence, the techniques
require an additional computational step to extract a model which approximates
p(c|x).

For the choice of c := f(x), a more direct method can be used. The classifier
itself provides a model for f(x), and, often, this output or its continuous coun-
terpart r(x) also naturally provide a probabilistic model for p(f(x)|x). Besides
the computational advantage of no longer having the need to train an additional
model, this alternative is also parameterless. Probabilities can be extracted from
the value r(x) for popular models such as SVM, see e.g. [23], alternatives such
as robust soft learning vector quantization [16] directly train a generative model
for classification. In all cases, derivatives can either be determined analytically
or numerically e.g. simply using a linear approximation of the derivatives.

6 Experiments

In this section we illustrate the difference between estimating the probability
distribution p(c|x) from the Parzen window estimator for the given labeling

1 We use the estimator ĥrot provided in the literature to specify this parameter, see
e.g. [18].
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Fig. 1. The three-dimensional data set shown from two different perspectives.

c := l and estimating p(c|x) from the trained classification model c := f(x)
using a direct computation of the gradient based on the classifier f . For this
purpose, we create an artificial data set which is intrinsically three-dimensional
and, hence, cannot be projected to two dimensions without information loss. The
data are arranged in a filled ball with a nonlinear class structure. The data set
is shown in Fig. 1 from two perspectives. The blue class consists of a continuous
tube with one gap and a noisy region.

An unsupervised projection of this data set with t-SNE is shown in Fig.
2. The projection distorts the continuous class structure. This constitutes an
obvious result since the data distribution is uniform and such doesn’t resem-
ble the class structure. It illustrates that unsupervised visualization techniques
might not always be well suited if intrinsically high-dimensional data should be
projected to low dimensions. In this example, the displayed information looks
almost arbitrary.

Now we train the classifier Robust Soft LVQ (RSLVQ)[16] on this data set.
This classification scheme learns a prototype based probabilistic model for the
data such that the likelihood of correct classification is optimized. The resulting
probability functions of the classifier are differentiable and, therefore, can be
easily integrated into the Fisher metric framework discussed in section 4. We
use four prototypes per class, which is small considering the complexity of the
data set. The trained classifier achieves a classification accuracy of 90%. Now,
a typical use case for the classifier visualization method occurs: How did the
classification method solve this problem? Which simplifications of the data did
the classifier use and which data points are regarded as similar by the classifier?

In order to answer these questions we visualize the classifier using the original
class labels li on the one hand and using the provided classification f(x) on
the other hand. We build the visualization of the classifier on top of these two
projections. The two resulting visualizations are depicted in Fig. 3. The left
visualization is based on the Parzen window estimator for the class labels p(l|x):
Basically, two clusters of points from class blue are shown and these are distinct
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Fig. 2. Projected data with t-SNE.

from each other. The visualization quality of the classifier amounts to 92%.
Interestingly, albeit this is not yet perfect, the visualization looks much more
reasonable than direct unsupervised t-SNE on the data. The right visualization
shows the same classifier, but this time based on the discriminative projection
obtained by using the probabilities of the classifier itself p(f(x)|x). The data from
class two form again two clusters, but this time, they are close to each other.
The quality is estimated to 95%. Furthermore, the shape of the class boundaries
resembles more the expected shape of the classifier, the latter usually being
related to convex regions. In the visualization based on the ground truth, the
original spherical shape of the data is much more pronounced.

The Parzen window estimator used in the left visualization estimates the
probability density accurately and finds the gap in the blue class tube. In his
part of the data space, the class distribution changes rapidly and, therefore,
the distances in this region grow large, which can directly be observed in the
visualization. The prototype distribution does not fit very well to the visualized
classifier, since in one region of the blue class there are three prototypes of that
class on top of each other and in another region there are none. But since the
visualized class distribution is correct as concerns a large part of the points, we
can see from this visualization that the largest part of the blue class tube is
classified correctly.

In the right visualization which is based on the classifier probabilities, the
two parts of the tube lie close together. This implies that in the probability
density of the classifier the class distribution does not change much, i.e. the data
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Fig. 3. Two visualization of the same RSLVQ classification model: The projection
methods Fisher t-SNE based on the Parzen window estimator (left) and Fisher t-SNE
based on the probabilities from the trained classifier (right) are applied.

lying in this gap of the tube are classified incorrectly. However, only because
this information is included in the projection via the class probability p(f(x)|x),
this fact can be seen directly in the visualization. This time, the location of the
prototypes is plausible in relation to the data: the prototypes of the blue class
are surrounded by those of the red class. Such a constellation is plausible in the
original data space.

From the latter visualization we can deduce more information as regards
potential errors as compared to the previous one; we see directly the source of
the remaining classification error: the classifier is not powerful enough and is
not able to classify this gap in the data correctly. Furthermore, there are a few
points from the blue class which lie in the cluster of points from the red class.
From the perspective of this visualization we would deduce that these are either
overlapping regions or too complex regions for our classifier (both aspects are
probably correct: in the high-dimensional data we can see that there is indeed a
region of overlapping classes).

For this toy example we can verify our interpretation by visualizing the posi-
tions of the prototypes in the original data space. Fig. 4 depicts the original data
set in conjunction with the prototypes of the classifier. The same positioning of
the prototypes as in the low-dimensional visualization emerges: the prototypes
of the blue class are surrounded by those of the red class.

7 Discussion

In this contribution, we have proposed two different ways how to integrate aux-
iliary class labeling into a classifier visualization, and we discussed the different
semantic meaning of the two techniques. We demonstrated in a simple toy ex-
ample that a visualization based on a classifier not only eases the computational
burden of density estimation for the Fisher metric, but also gives a clearer picture
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Fig. 4. Projected data with t-SNE.

about the classification principles as quantitatively evaluated by the accordance,
and as discussed by focusing on specific aspect of the data.

This preliminary research opens the way towards a more thorough evaluation
of the technique in benchmark examples and efforts to turn it to a ready-to-use
visualization tool for the behavior of classifiers for high-dimensional data sets.
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Abstract. Local learning approches subdivide the learning space into
regions to be approximated locally by linear models. An arrangement of
regions that conforms to the structure of the target function can lead
to learning with fewer resources and gives an insight into the function
being approximated. This paper introduces a covariance–based update
for the size and shape of each local region that is able to exploit linear
substructures in the target function. Initial tests show that the method
improves the structuring capabilities of state–of–the–art statistics–based
local learners, producing model populations that are shaped appropriately
to the functions being approximated.

Keywords: Function Approximation, Locally Weighted Regression, In-
put Space Structuring

1 Introduction

Locally weighted regression (LWR) approximates the target function with a
population of linear models, each localized in the input space. The output to a
given query is computed as a weighted (usually Gaussian) combination of the
outputs of the local models (Atkeson et al. [1997]). The principal advantage
that LWR offers over classical function approximation is its independence from
the choice of the class of the approximating function. This leads to learning
systems that are robust to destructive interference, and whose complexity can be
increased incrementally by adding new models. LWR is thus popular for learning
in online scenarios, such as the ones often encountered in robotics (Sigaud et al.
[2011]).

The locality of each model is defined by its position in the input space and
a distance metric, which is usually adapted as the learning progresses. The
adaption mechanism often aims to structure the input space by exploiting the
linear subspaces that are local to each model (Ormoneit and Hastie [1999]). A
reasonable structuring of the input space offers insights into the structure of the
function being approximated, and it may enable simpler functions to be learned
with fewer models.

It has been demonstrated (Stalph et al. [2010]) that the statistics–based
Locally Weighted Projection Regression (LWPR, Vijayakumar et al. [2005]), a
popular local learning system (Sigaud et al. [2011]) is not capable of structuring
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the input space well. LWPR produces tight–fitting, highly non–overlapping
spherical populations from which the structure is difficult to grasp.

This paper describes a work in progress1 on improving the structuring capabil-
ities of statistics–based LWR. We introduce a weighted covariance distance metric
update for approaches that utilize ellipsoidal neighborhoods, such as LWPR and
Local Linear Maps (LLM, Ritter et al. [1992]), a local learner that does not aim
to structure the input space. Training samples are weighted according to their
current local prediction error and the proximity to each model, and are either
included in the distance metric update or ignored. The initial tests show that such
an update improves the structuring over the existing distance metric updates,
producing populations that visually resemble the target function. Additionally,
the tests show that the improved structuring obtained by our method can lead
to reductions in population sizes and thus the number of resources necessary for
accurate learning.

The following section gives an overview of the distance metric adaption in
LWPR and LLM. Section 3 describes our weighted covariance distance metric
update method. Section 4 reports the results of an initial comparison between our
approach and the default distance metric updates in LWPR. Section 5 concludes.

2 Distance Metric Adaption in LWPR and LLM

LWPR, a descendant of the Receptive Field Weighted Regression (RFWR, Schaal
and Atkeson [1997]), performs input dimensionality reduction through partial
least squares (PLS) regression. The population size is incrementally increased
by allocating models in parts of the input space not covered by existing models.
The pseudocode is given in Algorithm 1.

Algorithm 1 The LWPR pseudocode. The PLS regression update (line 5) is
beyond the scope of this paper (details can be found in Vijayakumar et al. [2005]).

1: Initialize LWPR with no local models
2: for a new training sample (x,y) do
3: for each local model M do
4: Calculate the activation of M by (x,y)
5: Update the regression of M
6: Update the distance metric D of M (Equation 2)
7: end for
8: if no model was activated by more than the wgen parameter then
9: Create a new model centered at x and initialize it using the default parameters

10: end if
11: end for

1 Parts of which have been submitted to the Thirteenth International Conference on
Advances in Artificial Intelligence, AI*IA 2013.
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The receptive field (RF) of each local model is described by an ellipsoid fixed
at a point c in the input space and a distance metric D, a positive semi–definite
matrix:

(x− c)TD(x− c) = 1 (1)

A function of c, D, and an incoming training sample returns an activation weight
w ∈ [0, 1] for that sample. The higher the activation w, the more influence the
sample has on the model during training. To try to adapt a receptive field’s
shape and size to the local linear region, D is Cholesky–decomposed into M,
which is then trained by minimizing the cost function J of the leave–one–out
cross–validation error for each iteration step t and a given learning rate α:

Mt = Mt−1 + α
∂J

∂Mt−1
,Dt = MT

t Mt (2)

Unlike LWPR, the default LLM implementation uses a fixed number of models
whose positions in the input space can be adapted during training, e.g. by vector
quantization. The local models learn to approximate the underlying function
using ordinary least squares regression. The default distance metric update adapts
each receptive field along the input dimensions, increasing the coverage of the
input space:

dt = dt−1 + α(||xt − ct|| − dt−1),Dt = diag[dt]
−1 (3)

As no information about the output space is given to the update, the populations
of the models after training do not resemble the structure of the target function.

3 The Covariance–based Distance Metric Update

We consider a representation of the receptive fields identical to LWPR (Equa-
tion 1). Given a training sample (xt,yt) at step t, we model the distance metric
Dt of each receptive field as the inverse of the incremental covariance Σt:

Dt = (Σt)
−1,Σt =

St

Φt
(4)

St is the matrix of weighted incremental sums (employing the stable covariance
update from Finch [2009]):

St = (1− γ) · St−1 + γ · φ(p) · (xt − c)(xt − c)T (5)

where γ ∈ [0, 1] is the forgetting factor, φ(p) is the weighting function with
parameters p, and c is the center of the receptive field. Φt is the sum of weights:

Φt = (1− γ) · Φt−1 + γ · φ(p) (6)

The weighting function φ should be such that the local training samples
that produce a small error are included in the covariance update, and the local
samples that produce a large error are excluded. The derivation of φ with these
characteristics is given below, followed by a brief discussion on the values of the
parameter vector p.
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3.1 The Weighting Function and its Parameters

The covariance update will prompt a receptive field to shrink to include samples
that have large weights assigned by φ and a high activation w. Similarly, a
receptive field will grow to include samples that have large weights and a low
w. The samples with very small weights will be excluded from the covariance
update regardless of their location, prompting no change in the distance metric.
These dynamics must be taken into account for weight assignment: φ needs to
be a function of both the current local prediction error and the activation.

Given the magnitude of the error err (low or high) and the proximity g = 1−w
of a training sample to the center of the field (high, low, or not local), we identify
five cases A1, . . . , A5 (shown in Figure 1(a)) to which that sample can belong.
The cases A1, . . . , A4 are modeled by functions A1(p1), . . . , A4(p4) that have the
value 1 in the corresponding regions. The weighting function φ is written as a
combination of A1(p1), . . . , A4(p4) multiplied by A5(p5), which has the value 0 in
the region A5. Figure 1(b) shows a weighting function where A1 = A3 = A5 = 0
and A2 = A4 = 1.
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Fig. 1. (a) Regions in which a training sample may fall: high error and low
proximity (A1), high error and high proximity (A2), low error and high prox-
imity (A3), low error and low proximity (A4), or not local (A5). The param-
eters kerr, kin, and kout control the extents of the regions. (b) A weighting
function φ with A1 = A3 = A5 = 0 and A2 = A4 = 1.

Let σ+ and σ− be one–dimensional logistic functions:

σ+(x, s, k) = 1
1+e−s(|x|−k)

σ−(x, s, k) = −1
1+e−s(|x|−k) + 1

(7)
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where s is the slope and k is the position of each sigmoid. The functions Ai(pi)
with parameters pi are products of the sigmoids:

A1(err, serr1 , kerr1 , g, sg1, k
g
1) = σ+(err, serr1 , kerr1 )σ+(g, sg1, k

g
1)

A2(err, serr2 , kerr2 , g, sg2, k
g
2) = σ+(err, serr2 , kerr2 )σ−(g, sg2, k

g
2)

A3(err, serr3 , kerr3 , g, sg3, k
g
3) = σ−(err, serr3 , kerr3 )σ−(g, sg3, k

g
3)

A4(err, serr4 , kerr4 , g, sg4, k
g
4) = σ−(err, serr4 , kerr4 )σ+(g, sg4, k

g
4)

A5(g, sg5, k
g
5) = σ−(g, sg5, k

g
5)

(8)

where serri , kerri are the slope and the position in the error direction and sgi , k
g
i

are the slope and the position in the proximity direction of Ai.
Ideally, φ should assign large weights to high proximity samples producing high

errors to trigger shrinking (A2), it should assign large weights to low proximity
samples producing low errors to trigger growth (A4), and it should assign zero
weights in all other cases (A1 and A3):

φ(p) = A5(p5) · (A2(p2) +A4(p4)) (9)

The parameter values that merge or produce gaps between A2 and A4 cause
unwanted behavior. This is avoided by grouping like parameters: serr2 and serr4

into serr, kerr2 and kerr4 into kerr, sg2, sg4, and sg5 into sg, kg2 and kg4 into kin, and
kg5 into kout. The parameters are thus:

p = (err, serr, kerr, g, sg, kin, kout)
p2 = (err, serr, kerr, g, sg, kin)
p4 = (err, serr, kerr, g, sg, kin)
p5 = (g, sg, kout)

(10)

3.2 Setting Parameter Values

Given the weighting function φ(p) (Equation 9) and a reasonable choice of the
values for parameters p (Equation 10), a receptive field can shape itself to cover
a region up to an error of kerr. The following discussion is based on observations
and results of trial learning runs.

The kerr parameter determines which samples are included in the distance
metric update. Smaller values result in (generally) smaller fields that approximates
the underlying region well, while larger values include more points and thus cover
more space. kerr requires tuning, as it affects the overall error, and the size of the
fields (and thus their number, given the model allocation strategy in LWPR).

The kin parameter determines the proximity at which the weights change
between exclusion and inclusion. Smaller values cause inclusion of the points with
a high proximity, shrinking the field too much. Larger values assign large weights
to points with a high error that are at a lower proximity, possibly making the
field grow incorrectly. A good value for kin was found to be around 1 standard
deviation, in the interval [0.30, 0.40].

The kout parameter determines the locality of the field with respect to the
distance metric update. Smaller values void the growth, making the fields only

Workshop New Challenges in Neural Computation 2013

Machine Learning Reports 91



shrink, while larger values enable the fields to observe more of the input space.
The update performed as desired when the value of kout was set in the interval
[0.80, 0.95].

Finally, the slope parameters serr and sg determine the rate of the transition of
other parameters. Smaller values cause smoother, slower updates to the distance
metric, while larger values lead to quick, abrupt updates. A reasonable setting
for serr is ≥ 100, since a sharp threshold between the errors is required. sg should
be set in the range [30, 50], as abrupt updates are not desirable.

4 Evaluation

We evaluate our distance metric update by comparing it to the default LWPR
distance metric update (Equation 2) on learning two two–dimensional functions
(shown in Figure 2) defined in the [−1, 1]2 interval:

1. the Crossed Ridge function, containing a mixture of linear and non–linear
regions

y = max[exp(−10x21), exp(−50x22), 1.25exp(−5(x21 + x22))], and

2. the Sine function, which is linear in the (1,−1) direction but highly non–linear
in the perpendicular (1, 1) direction

y = sin(2π(x1 + x2))

−1
0

1 −1
0

1
0

1

Crossed Ridge

−1
0

1 −1
0

1

−1

0

1

Sine

Fig. 2. The two target functions.

We do not include the default LLM distance metric update (Equation 3) in the
evaluation, as it only aims to provide the coverage of the input space without
structuring it.

Two implementations of our distance metric update (Equation 4) are incor-
porated in the comparison:

1. CovLWPR, replacing the default LWPR distance metric update by our
covariance update, and

2. CovLLM, replacing the default LWPR distance metric update by our covari-
ance update and the default LWPR PLS regression with the LLM regression.
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Of interest is the comparison of accuracy, the populations, and the input space
structuring between LWPR, CovLWPR, and CovLLM. The metrics include the
mean absolute error (MAE), the population size, the visually–judged structuring
of the input space, and the averege field volume.

Ten independent runs of the three systems on each function were performed.
Each run consisted of 50,000 learning iterations of noiseless samples from a
uniform–random distribution in the input space. The values for the non–default
parameters used are summarized in Figure 3. The values of kerr used in CovLWPR
and CovLLM were 0.0080 for the Crossed Ridge and 0.0350 for the Sine. The
performance after learning is shown in Figure 4, and the resulting population
plots for the three functions are given in Figure 5.

Value Meaning

init D 500 Initial size of RFs
alpha 200 Distance metric learning rate
w gen 0.05 RF insertion treshold
w prune 0.75 RF removal treshold

(a) LWPR

Value

kin 0.4
kout 0.8
serr 500
sg 30
γ 5 × 10−4

(b) The weighting
function φ

Value Meaning

εA 0.45 Linear model learning rate
εout 0.45 Output weights learning rate

(c) LLM

Fig. 3. Values for the non–default parameters used in the evaluation.

CovLLM and LWPR reach the same error on both functions. CovLLM pro-
duces a smaller final population with a greater average field volume than LWPR.
This is due to the growth resulting from our distance metric update and the
consequent pruning of overlapping fields. The population plots illustrate that the
final structure of the CovLLM populations resemble the learned functions, while
it is difficult to grasp the structure of the functions from LWPR’s populations.
LWPR tends to produce circular receptive fields by shrinking them from all
directions. Similar characteristics have been reported in Stalph et al. [2010].

CovLWPR is the least accurate of the three systems. Unlike the regression
in LLM, the PLS regression retains the history of the training samples seen
previously, making it difficult to recover from incorrect shape updates while
the regression is still being trained. This restrains the system from learning
responsively, and is illustrated both by the higher error and the population plots.
Although a rough structure can be identified, the resulting fields are not as
slender in the non–linear directions, they are not as long in the linear directions,
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MAE Number of RFs Average Volume

LWPR 1.17 × 10−2 ± 1.34 × 10−7 220.4 ± 15.1 1.36 × 10−2 ± 2.03 × 10−9

CovLLM 1.13 × 10−2 ± 2.07 × 10−7 159.8 ± 20.6 1.58 × 10−2 ± 3.28 × 10−7

CovLWPR 1.23 × 10−2 ± 2.65 × 10−7 172.6 ± 11.6 1.49 × 10−2 ± 1.46 × 10−7

(a) The Crossed Ridge results

MAE Number of RFs Average Volume

LWPR 2.64 × 10−2 ± 3.80 × 10−7 220.4 ± 10.7 1.26 × 10−2 ± 1.53 × 10−9

CovLLM 2.67 × 10−2 ± 3.95 × 10−6 138.3 ± 25.6 1.91 × 10−2 ± 4.43 × 10−7

CovLWPR 4.25 × 10−2 ± 2.07 × 10−5 187.4 ± 28.3 1.25 × 10−2 ± 1.94 × 10−7

(b) The Sine results

Fig. 4. The prediction errors, population sizes, and field volumes (E ± σ)
after learning.
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(a) Populations after learning the Crossed Ridge
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(b) Populations after learning the Sine

Fig. 5. The population plots for a sample run.
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and some fields are misaligned. The amount of history kept can be reduced but,
unfortunately, the PLS regression in such cases becomes unreliable, causing the
mutual dependency between the shape and the regression to interfere with the
ability to learn.

5 Conclusion

We introduced a weighted covariance distance metric update for statistics–based
LWR algorithms. The initial tests show that the method allows the receptive fields
to exploit the local linear substructures of target functions more readily than the
default LWPR update. This property may lead to accurate learning with smaller
populations, particularly of functions that exhibit large linear substructures.
In addition, the structure of the target function can be inferred from model
populations.

The future work will focus on studying the relationship between the parameters
of the weighting function used in the covariance update and the global error, and
the convergence behavior of the distance metric update. We will also evaluate
the method in learning higher–dimensional problems.
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Abstract. Similarity functions are a very flexible container under which
to express knowledge about a problem as well as to capture the meaning-
ful relations in input space. In this paper we describe ongoing research
using similarity functions to find more convenient representations for a
problem –a crucial factor for successful learning– such that subsequent
processing can be delivered to linear or non-linear modeling methods.
The idea is tested in a set of challenging problems, characterized by a
mixture of data types and different amounts of missing values. We re-
port a series of experiments testing the idea against two more traditional
approaches, one ignoring the knowledge about the dataset and another
using this knowledge to pre-process it. The preliminary results demon-
strate competitive or better generalization performance than that found
in the literature. In addition, there is a considerable enhancement in the
interpretability of the obtained models.

Key words: Similarity representations; Classification; Neural Networks

1 Introduction

The intuitive notion of similarity is very useful to group objects under specific
criteria and has been used with great success in several fields like Case Based Rea-
soning [1] or Information Retrieval [2]. Interest around purely similarity-based
techniques has never faded way; on the contrary, it has grown considerably since
the appearance of kernel-based methods [3]. In learning systems, a non-written
principle states that similar inputs should have similar outputs for the model to
be successful. While this is no guarantee of good performance –specially near
class boundaries, where the principle is violated– it certainly is a sine qua non
condition. If the principle is not true, generalization becomes almost impossible.
For a learning system, the trick is then to capture (that is, to learn) meaningful
similarity relations in relation to the prescribed target variable.

Specific similarity functions from the point of view of data analysis have been
used with success since the early days of pattern recognition. Modern modelling
problems are difficult for a number of reasons, including dealing with mixtures
of data types and a significant amount of missing information [4]. For example,
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in the well-known UCI repository [5] over half of the problems contain explicitly
declared nominal variables, let alone other data types (e.g., ordinal), usually
unreported. In many cases this heterogeneous information has to be encoded
in the form of real-valued quantities, although there is often enough domain
knowledge to characterize the nature of the variables.

The aim of this paper is to demonstrate the learning abilities of simple layered
architectures, where the first layer computes a user-defined similarity function
between inputs and weights. The basic idea is that a combination of partial simi-
larity functions, comparing variables independently, is more capable at capturing
the specific properties of an heterogeneous dataset than other methods, which
require a priori data transformations. An appealing advantage is found in the
enhanced interpretability of the models, so often neglected in the neural network
community. In order to develop the idea, we propose to compute the similarities
among the elements in the learning dataset, and then use a reduction method
to select a small subset thereof. These selected observations are the centers of
the first hidden layer. In other words, the first hidden layer is a change of the
representation space from the original feature space to a similarity space [6].

2 Methodology

2.1 Preliminaries

We depart from a training data matrix DN×d composed of N observations x
described by d variables, plus a target matrix DN×t containing the known tar-
gets of the N observations. For simplicity, in this paper we concentrate in clas-
sification problems only (two-class or multiclass) and set t = 1.

Given a similarity function s, we first compute the associated symmetric
similarity matrix SN×N , where Sij = s(xi,xj). An algorithm is then needed to
select a number d′ of prototypes, that best represent the learning data in the
following sense:

1. the prototypes must be known elements of the input space (observations);
2. all observations that are not prototypes must show a high similarity to (only)

one of the prototypes in relation to their similarity to the other prototypes;
3. d′ should be set much smaller than N .

This is an ideal task for a clustering algorithm, although not all clustering
methods are adequate, and certainly alternative techniques could be possible.
As an example, artificial immune systems have been used for prototype selection
tasks using nearest-neighbor classifiers [7].

The result of this process is a layer of d′ units, which we call S-neurons. Any
learning method can now operate in the representation space spanned by the
layer of d′ S-neurons. However, it pays to start using linear methods, both for
computational (they are fast) and analytical (they have a single optimum) rea-
sons. It also turns out that the resulting model can be much more interpretable.
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2.2 Detailed description

Let us represent the observations as belonging to a space X ̸= ∅ as a vector x
of d components, where each component xk represents the value of a particular
feature k. A similarity measure is a unique number expressing how “like” two
observations are, given these features. It can be defined as an upper bounded,
exhaustive and total function s : X ×X → Is ⊂ R such that Is has at least two
different elements (therefore Is is upper bounded and smax ≡ sup

R
Is exists).

A basic but very useful S-neuron can be devised using a Gower-like similarity
index, well-known in the literature on multivariate data analysis [8]. For any
two vector objects xi,xj to be compared on the basis of feature k, a score sijk
is defined, described below. First set δijk = 0 when the comparison of xi,xj

cannot be performed on the basis of feature k for some reason; for example,
by the presence of missing values, by the feature semantics, etc; δijk = 1 when
such comparison is meaningful. If δijk = 0 for all the features, then s(xi,xj) is
undefined. The partial scores sijk are defined as follows:

Binary (dichotomous) variables indicate the presence/absence of a trait,
marked by the symbols + and −. Their similarities are computed according
to Table 1, leading to a partial coefficient introduced by Jaccard and well known
in numerical taxonomy as the Jaccard Coefficient [9].

Table 1: Similarities for dichotomous (binary) variables.

Values of feature k

Object xi + + − −
Object xj + − + −

sijk 1 0 0 0
δijk 1 1 1 0

Categorical variables can take a number of discrete values, which are com-
monly known as modalities. For these variables no order relation can be assumed.
Their overlap similarity is sijk = 1 if xik = xjk and sijk = 0 if xik ̸= xjk.

Real-valued variables are compared with the standard metric in R: sijk =
1−|xik−xjk|/Rk, where Rk is the range of feature k (the difference between the
maximum and minimum values). The overall coefficient of similarity is defined
as the average score over all partial comparisons:

Sij = s(xi,xj) =

∑n
k=1 sijkδijk∑n

k=1 δijk

Ignorance of the absent elements and normalization by the number of the
present ones has been found superior to other treatments in standard data anal-
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ysis experiments [10]1. This coefficient has been extended to deal with other data
types, like ordinal and circular variables [11]. Notice that we now have smax = 1.

As for the clustering, we choose the PAM algorithm, which partitions data
into k clusters, very much like k-means. However, PAM offers two advantages:
first, the cluster centers (called medoids) are chosen among the data points;
second, the algorithm first looks for a good initial set of medoids and then finds
a suboptimal solution such that there is no single switch of an observation with
a medoid that will decrease the reconstruction error (the sum of distances of the
observations to their closest medoid). The algorithm is fully described in [12].

3 Experiments

In this section we report on experimental work in which the previous ideas are ap-
plied both to linear learners –logistic and multinomial regression (LogReg and
Multinom)– and linear discriminant analysis (LDA) and also to a non-linear
learner (a standard SVM using the RBF kernel). All methods are deterministic
and use the same data partitions. The smoothing parameter in the RBF kernel
is estimated using the sigest method, based upon the 10% and 90% quantiles of
the sample distribution of ∥xi − xj∥2 [13]; the cost parameter C is set to 1.

All datasets are split into learning and test parts (respecting original parti-
tions, if available). For missing value imputation, we use the Multivariate Im-
putation by Chained Equations (MICE) method [14], which generates multiple
imputations for incomplete multivariate data by Gibbs sampling. This method
is attractive because, if the data contains categorical variables, these are also
used in the regressions on the other variables.

We study three approaches:

raw There is no effort in identifying variable types (all information is considered
numerical, and scaled); missing values are either not identified or left as they
come (for example, treated as zeros).

std All variable types are properly identified; non-numerical information is bi-
narized with a standard dummy code [15]. Missing values are identified and
imputed with MICE.

sim Same as before with a first layer of S-neurons, as described in Section (2.2);
then PAM selects d′ = ⌊0.05 · N⌋ prototypes in the learning part. Notice
that, in this case, the model has the architecture of a neural network.

3.1 Datasets

Some challenging problems have been selected as characteristic of modern mod-
eling datasets because of the diversity in data heterogeneity and the presence of

1 It is not difficult to realize that this is equivalent to the replacement of the missing
similarities by the average of the non-missing ones. Therefore, the conjecture is that
the missing values, if known, would not change the overall similarity significantly.
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missing values. The problem descriptions and the datasets are taken from the
UCI repository [5]. The available documentation has been analyzed for an assess-
ment on the more appropriate treatment. Missing information is also properly
identified – see Table 2. The Horse Colic dataset has been investigated with two
different targets (variables #23 and #24, resp.).

Table 2: Basic characteristics of the datasets: #Obs (learning, test). Def. (default
accuracy), Missing (percentage of missing values). In→Out (no. of inputs and
outputs). The last column shows variable types: (R)eal, (N)ominal, or(D)inal.

Name #Obs Def. Missing In→Out Data

Pima Diabetes 768 (500,268) 65.1% 10.6% 8 → 2 8R, 0N, 0D
Horse Colic-23 363 (295,68) 61.4% 25.6% 22 → 3 7R, 7N,8D
Horse Colic-24 364 (296,68) 63.5% 25.6% 22 → 2 7R, 7N,8D
Audiology 226 (200,26) 66.3% 2.1% 31 → 4 0R, 24N, 7D

Pima Diabetes. This is a much studied dataset, in which a population
of Pima Indian women living near Phoenix, Arizona, was tested for diabetes
according to World Health Organization criteria. In this dataset, most of the
variables show impossible zero values (e.g, the diastolic blood pressure), which
are actually missing values [15]. Upon careful analysis, it turns out that only 392
out of the 768 observations are unaffected by missing values.

Horse Colic. This dataset makes an excellent case study, because of the
diversity in data heterogeneity and a significant amount of missing values; it has
been used as a paradigmatic example in some textbooks [16]. Each observation
is the clinical record of a horse and the variables are specially well documented2.

Audiology. This problem is interesting for many reasons: it is multiclass,
has a low number of observations and all variables are categorical (with different
numbers of modalities, and some of them ordered)3. We have reduced the original
24 classes to 4 by grouping and eliminated non-informative variables.

3.2 Results

The results are displayed in Tables 3, 4, and 5. At a first look, it is surprising how
the learning methods are able to grasp the task using the raw method. In this
sense, the std method is markedly better for LogReg and the SVM, but not
for Multinom or LDA. However, the difference for Multinom is very small; for
LDA, the std method increases input dimension quite a lot (specially if there
are many categorical variables or these have many modalities). The explosion in

2 This dataset is made available thanks to M. McLeish and M. Cecile (Computer
Science Dept., Univ. of Guelph, Ontario, Canada).

3 Original owner: Professor Jergen at Baylor College of Medicine.
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the number of binary variables (due to the dummy coding) changes the data dis-
tribution to something extremely non-gaussian, and this causes trouble to LDA
(this is specially acute in Audiology). The sim method presents similar results
for LogReg and the SVM, and much better for both LDA and Multinom.

We would like to point out the good results delivered by linear models, like
LogReg –when applicable– and LDA, specially for the sim method. On the
other hand, few efforts have been devoted to a fine tuning of the SVM models
beyond educated guesses, but this issue affects all approaches. Finally, no effort
has been put in selecting the optimal number of centers for the sim approach.

Table 3: Generalization errors for the raw method.
LogReg Multinom SVM LDA

Pima 0.201 0.187 0.194 0.187
HorseColic-23 − 0.309 0.279 0.279
HorseColic-24 0.176 0.162 0.162 0.162

Audiology − 0.231 0.154 0.269

AVERAGE 0.189 0.222 0.197 0.224

Table 4: Generalization errors for the std method.
LogReg Multinom SVM LDA

Pima 0.190 0.198 0.205 0.201
HorseColic-23 − 0.265 0.279 0.353
HorseColic-24 0.147 0.191 0.147 0.147

Audiology − 0.269 0.038 0.731

AVERAGE 0.169 0.231 0.168 0.358

Table 5: Generalization errors for the sim method.
LogReg Multinom SVM LDA

Pima 0.183 0.190 0.194 0.175
HorseColic-23 − 0.324 0.294 0.309
HorseColic-24 0.162 0.176 0.176 0.191

Audiology − 0.115 0.000 0.038

AVERAGE 0.172 0.201 0.166 0.178
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3.3 Discussion

When comparing to related previous work, the obtained results are very com-
petitive in relation to those typically reported for these problems, sometimes
achieved using very sophisticated techniques. For example, for the Pima dataset,
the best reported results are around 20%, topping at 19.8% [15], while typical
results are in the range 21%-25% [17]. Our best result is 17.5% using LDA and
the sim method. Among other causes, this is due to the bad identification or
treatment of missing values, something that has been advocated elsewhere [15].
What is more, many (if not most) of these reported results are cross-validation
ones, which means that there is no independent assessment of true generaliza-
tion ability. In our case, the Pima results are reported in a test set that is large,
compared to the learning set size (35%). For HorseColic-23, the best reported
result seems to be 13.6% [17], while typical results are in the range 14%-23%
[18]. Our best result is 14.7%, achieved using three different learners and the
std method. There seems to be no comparable previous work for HorseColic-24.
Finally, for Audiology it is difficult to compare because in this paper we have
cleaned the dataset prior to learning; in any event, both the SVM and LDA
achieve very good results with the sim method.

Another important issue is the distribution of the similarities across the ob-
servations and the classes. Fig. 1 shows this distribution for the different datasets.
It can be seen that in all cases similarities are rather high and well-behaved (fairly
symmetrical, unimodal). Given the assumed relation between similarity compu-
tations and learning ability, we computed the intra-class similarities. These were:
Cochlear (0.847), Mixed (0.822), Normal (0.914) and Other (0.794) for Audiol-
ogy, No (0.811) and Yes (0.788) for Pima, Died (0.646), Euthanized (0.634) and
Lived (0.673) for HorseColic-23 and No (0.688) and Yes (0.673) for HorseColic-
24. These numbers not only reflect how relatively compact the different classes
are, they also indicate the hardness for a learning method based on distances
or similarities (however they are computed). For example, HorseColic-23 and
HorseColic-24 show markedly less compact classes. The relation to overall per-
formance and to class-by-class performance is left for a further dedicated study.

Fig. 1: Similarity distributions for the different datasets.
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4 Conclusions and Future Work

A shortcoming of many existent learning methods –and, in particular, neural
networks– is the difficulty of adding prior knowledge to the model in a principled
way. Current practice assumes that input vectors may be faithfully represented as
a point in Rd, and the geometry of this space is meant to capture the meaningful
relations in input space. There is no particular reason why this should be the
case, at least not with small numbers of hidden neurons. This paper has described
ongoing research on more flexible learning frameworks, offering means for the
injection of prior knowledge, and permitting a natural extension to operate in
problems with non-numerical data types and showing missing values.

When talking about real problems, however, accuracy may not tell the whole
picture about a model. Other performance criteria include development cost,
interpretability and usability.

– The cost here refers to how much pre-processing effort we need in order to
build the model. Undoubtedly, all but the raw method require more analysis
time compared to doing (almost) nothing. Prior to learning the variable types
must be identified and coded properly; for the S-neurons, suitable similarity
measures must be chosen, using available background knowledge;

– The interpretability refers to the complexity of the obtained model in hu-
man terms. It is generally believed that accuracy and interpretability are
in conflict [19]. In the present case, the methods based on similarity have a
clear advantage in this case when combined with a linear learner: the pre-
diction is a weigthed combination of the similarity of the input to a selected
(and small) subset of prototypes. This framework resembles that of an SVM;
however, in SVMs the kernel is providing an implicit transformation of the
input space rather than a purely similarity-based representation. Moreover,
the chosen similarity should be a valid kernel function;

– Finally, models must be useful in practice: in a real deployment of the model,
new and unseen observations emerge which we need to classify, which display
the same variable types and may contain missing values (that certainly could
not be imputed at learning time). The similarity approaches are able to face
this situation without further effort.

Current lines of research include the extension to new data types (a suitable
similarity measure is needed in each case) and the design of formal measures
to compute the relation between overall and, particularly, intra-class similarities
with class distribution itself. A measure of similarity that is maximized for ob-
servations of the same class and minimized for observations of different classes
is envisaged via the introduction of weights into the comparisons. This approach
would permit the optimization of the similarity measure to some extent. Another
important issue is the selection of the best centers, which could be performed
in a supervised way. For example, performing a separate clustering per class
and merging the results, or by using GLVQ methods [20]. This latter family of
algorithms makes good use about the classes to which the input vector and the
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winning codevector belong at prototype selection time. It is conjectured that a
supervised reduction method will deliver better modelling results when coupled
with subsequent stages of the method.
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Abstract. In this paper we present an online approach to human ac-
tivity classification based on Online Growing Neural Gas (OGNG). In
contrast to state-of-the-art approaches that perform training in an offline
fashion, our approach is online in the sense that it circumvents the need
to store any training examples, processing the data on the fly and in
one pass. The approach is thus particularly suitable in life-long learning
settings where never-ending streams of data arise. We propose an archi-
tecture that consists of two layers, allowing the storage of human actions
in a more memory efficient structure. While the first layer (feature map)
dynamically clusters Space-Time Interest Points (STIP) and serves as
basis for the creation of histogram-based signatures of human actions,
the second layer (class map) builds a classification model that relies on
these human action signatures. We present experimental results on the
KTH activity dataset showing that our approach has comparable per-
formance to a Support Vector Machine (SVM) while performing online
and avoiding to store examples explicitly.

Keywords: artificial neural networks, online growing neural gas, human
action recognition, space-time, online classification

1 Introduction

The recognition and classification of human activity is important in many appli-
cation domains including smart homes [1], surveillance systems [2], ambient in-
telligence [3], etc. In particular, we address the task of classifying human activity
into a given set of activity types on the basis of video data, sequences of 2D im-
ages in particular. State-of-the-art approaches extract features from space-time
volumes, e.g. space-time interest points (STIP) as introduced by Ivan Laptev [4].
Their advantage lies in their compact and robust representation of human ac-
tions, as they reduce the input space by identifying local feature points. Training
a human action classifier model based on STIPs typically includes the clustering
(with e.g. k-Means) of video features to yield bag-of-visual-words clusters that
can be used to derive a histogram-based representation of a video clip by indi-
cating the number of STIPs being assigned to each cluster. Then a classifier (e.g.
SVM) is trained to learn to classify image sequences into a set of given human
activity types.
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There are several drawbacks in this classical approach. First of all, the ap-
proach requires an architecture that comprises heterogeneous algorithms, e.g. a
feature extractor, a clustering algorithm and a classification algorithm. An ar-
chitecture that is more uniform and compact relying on one algorithm would be
simpler, easier to implement and thus preferable. Further, the approach is not
online, requiring to store a number of examples in memory or on disk in order
to recompute the cluster and retrain the classifier at regular intervals.

To circumvent these limitations, we present a new architecture which is based
on Online Growing Neural Gas (OGNG), which has been presented earlier [5]. In
this paper we present a two-layer architecture which consists of two maps that
we call feature map and class map, respectively. In the first layer (feature map),
STIPs are dynamically clustered according to their similarity in the feature
space, yielding a growing set of “visual words” that can also change over time.
A human activity signature (HAS) for each space-time volume is then formed
by a histogram indicating the activity of each prototype / neuron in the feature
map. In the second layer (class map), space-time volumes are clustered by their
HAS and labelled according to the corresponding activity.

Our contributions can be listed as follows:

– Online classification: We provide an architecture that grows incrementally
and is capable of processing space-time volumes in an online fashion as new
data arrives.

– Compact model: We provide a compact human activity model as both
layers are based on STIPs and OGNG which represent the high dimensional
input space in a low dimensional map.

– Uniform architecture: We provide an architecture which is uniformly
based on OGNG, in contrast to existing approaches that rely on more het-
erogeneous structures.

We compare our architecture to the classical architecture proposed by Laptev
[4] based on a k-means based feature discretization as well as an SVM-based
classification, showing that our approach yields comparable results to the latter
approach, while proposing a uniform architecture based on two OGNG maps and
circumventing the need to store examples to process them offline. Our approach is
thus suitable in a life-long learning setting, in which there is a never-ending data
stream that needs to be processed on-the-fly as in the applications mentioned
above.

The paper is structured as follows: in Section 2 we describe the OGNG al-
gorithm in order to make this paper self-contained. In Section 3 we describe
our online approach to human action classification with OGNG, including a de-
scription of the features we use. In Section 4 our experiments, including the
methodology of our evaluation, the used baseline and our results are described.
We then conclude and provide an overview over the related work in Section 5.
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2 Online Growing Neural Gas (OGNG)

Online Growing Neural Gas (OGNG) as introduced by Beyer and Cimiano [5],
extends Growing Neural Gas to an online classifier by integrating additional on-
line labeling and prediction strategies. In the following we will briefly describe the
OGNG algorithm. The algorithm is depicted in Algorithm 1 and modifications
are highlighted. A detailed description of OGNG and a comparison of several
online labeling and prediction strategies can be found in Beyer and Cimiano. [5].

Algorithm 1 Online Growing Neural Gas (OGNG)

1: Start with two units i and j at random positions in the input space.
2: Present an input vector x ∈ Rn from the input set or according to input distribution.
3: Find the nearest unit n1 and the second nearest unit n2.
4: Assign the label of x to n1 according to the present labeling strategy.
5: Increment the age of all edges emanating from n1.
6: Update the local error variable by adding the squared distance between wn1

and x.

∆error(n1) = |wn1
− x|

2

7: Move n1 and all its topological neighbours (i.e. all the nodes connected to n1 by an edge) towards
x by fractions of eb and en of the distance:

∆wn1
= eb(x − wn1

)

∆wn = en(x − wn)

for all direct neighbours of n1.
8: If n1 and n2 are connected by an edge, set the age of the edge to 0 (refresh). If there is no such

edge, create one.
9: Remove edges with their age larger than amax. If this results in nodes having no emanating

edges, remove them as well.
10: If the number of input vectors presented or generated so far is an integer or multiple of a

parameter λ, insert a new node nr as follows:
Determine unit nq with the largest error.
Among the neighbours of nq, find node nf with the largest error.
Insert a new node nr halfway between nq and nf as follows:

wr =
wq + wf

2

Create edges between nr and nq , and nr and nf . Remove the edge between nq and nf .
Decrease the error variable of nq and nf by multiplying them with a constant α. Set the error
nr with the new error variable of nq .

11: Decrease all error variables of all nodes i by a factor β.
12: If the stopping criterion is not met, go back to step (2).

In steps 1-3, the network is initialized and the first winner n1 and second
winner n2, according to a presented stimulus, are determined. In step 4 we assign
the label of our stimulus ξ to the winner neuron n1 according to the selected
labeling strategy. The selected labeling strategy is the relabeling method (relabel),
because of its simplicity and effectiveness as shown in Beyer and Cimiano [5].
In steps 5-7, the age of all edges emanating from n1 are incremented by one.
Furthermore, the local error gets updated, and n1 and its topological neighbors
n are adapted towards the stimulus by the learning rates eb (for n1) and en (for
the topological neighbors). In steps 8-9, n1 and n2 get connected by an edge and
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Fig. 1. Online and offline processing pipelines.

the edges with an age larger than amax are removed. In step 10, a new neuron nr

is introduced between the neuron nq with the largest local error and its neighbor
nf , having the largest error of its neighborhood. We only insert a new neuron
if nmax, the maximal number of neurons per class, is not exceeded for the class
of ξ. In step 11 all error variables are decreased by the factor β. In the last step
12, the algorithm continues with step 2 if the stopping criterion (mostly when a
predefined maximum number of neurons has been reached) is met.1

3 Human Activity Classification with OGNG

In this section we describe our two-layer online approach to human activity clas-
sification that exploits topological maps - Growing Neural Gas maps in particular
- at both layers. We call our approach Online Human Action Classifier (OHAC).
A typical processing pipeline in human activity recognition is comprised of the
following three steps:

1. Extraction of video features: Extraction of distinctive features from a sequence
of video frames.

2. Representation of video features: Calculating video signatures from the ex-
tracted features that capture the similarity between different video sequences.

3. Classification of video signatures: Training a classifier to learn to recognize a
set of previously observed classes of human actions.

Our algorithm covers steps 2 and 3 of the typical processing pipeline. For the
first step, the extraction of video features, we use HOG+HOF features calculated
around sparsely detected spatio-temporal interest points (STIPS) as proposed by
Laptev [4]. The detection of the points and the extraction of the feature descrip-
tors are completely online in the sense that no global information is required.
STIPs are detected as local maxima of a Harris-Corner-Function extended into
the spatio-temporal domain. The spacial Harris-Corner-Function characterizes
the ”‘cornerness”’ of an image point by the strength of its intensity gradients in
all directions. The spatio-temporal Harris-Corner-Function responds to points
in space-time where the motion of local image structures is non-constant. Aside
from sensor noise and other disruptions, the motion of local image structures is

1 For our experiments we additionally introduce new neurons for novel categories in
the learning process. Furthermore, we only stop inserting new neurons when the
maximum number of neurons is reached, instead of stopping the training process.
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primarily the result of forces acting on the corresponding physical objects. Hence
the local neighbourhood of the detected points can be expected to provide mean-
ingful information about motion primitives in that point of space-time. The
combination of STIPs and HOG+HOF feature descriptors has already shown
promising results in several synthetic [4] and real world datasets [4, 6].

3.1 Static Human Action Classifier according to Laptev

As baseline we use an offline approach proposed by Laptev [4]. This approach
uses k-means for clustering and an SVM for classification. The video sequence
is represented as a bag of visual words histogram. The visual vocabulary is built
by clustering the feature vectors in the training set into a predetermined number
of clusters.

Algorithm 2 Static Human Action Classifier according to Laptev
1: Cluster the training set into a predetermined number of clusters using kMeans.
2: Initialize Histogram H with one entry for each prototype vector.
3: Present an input vector x ∈ S from the extracted features of the video sequence.
4: Find the nearest prototype px to the presented input.
5: Increment the corresponding histogram entry px by one.
6: repeat step 3 until all features are processed.
7: Normalize H using L1 norm
8: Train the SVM with the normalized histogram and the label l of the current sequence.

In step 1 the visual vocabulary is built in advance by clustering all feature vec-
tors in the training set into a predetermined number of clusters2 using kMeans.
Each cluster stands with its prototype vector for one distinct visual word in the
visual vocabulary. Steps 3-6 iterate over the feature vectors in the current train-
ing sequence. Each feature vector is assigned to its nearest prototype vector and
incorporated into the histogram. The resulting histogram represents the given
video sequence as a bag of visual words. To compensate for different counts of
features in different sequences, the histogram is normalized using the L1 norm. In
step 8 the SVM is trained with the normalized histogram and the corresponding
label of the current sequence.

3.2 Online Human Action Classifier (OHAC)

The Online Human Action Classifier consists of two independent OGNG net-
works. The first network is what we call the feature map. It utilizes the OGNG
algorithm for clustering incoming data in feature space. The second network is
called the class map, as it uses the label information from a training sequence
to assign class labels to the nodes in the network according to the relabel strat-
egy presented in section 2. Video sequences are represented as human activity
signatures (HAS ), which are represented by a histogram indicating the activity
of each neuron in the feature map, while iterating through the respective video
sequence.

2 We use k = 4000 for the number of clusters following Laptev [6]
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Algorithm 3 Online Human Action Classifier (OHAC)

1: Initialize the feature- and class-maps.
2: Initialize the HAS histogram H with two (number of initial nodes in the feature map) entries

h1 = 0, h2 = 0.
3: Present an input vector x ∈ S from the extracted features of the video sequence.
4: Find the nearest unit nx from the feature map.
5: if node nx is new then

6: insert new entry into the histogram at position x
7: end if

8: Increment the corresponding histogram entry hx by one.
9: repeat step 3 until all features are processed.
10: Normalize H using L2 norm.
11: Update the OGNG class map with the normalized HAS histogram H and label l of the video

sequence.

Algorithm 3 is initialized by first initializing the OGNG network and creating
an empty bag of visual words histogram (steps 1-2). The histogram starts with
two entries, one for each of the two initial nodes in the OGNG network. In steps
3-5 the next input vector x is presented to the feature map, and the node nx that
is closest to the presented stimulus is located. If the located node nx is newly
inserted into the feature map, a new histogram entry is created at position x. In
step 8 the histogram entry at position x is incremented. When all input vectors
in the sequence are processed, the histogram is normalized by L2 norm. The
normalization compensates for different numbers of extracted feature vectors in
different video sequences. The normalized histogram is then used to update the
class map OGNG network with the label l of the video sequence. To predict
the label of a previously unseen video sequence S, all input vectors x ∈ S are
incorporated into the histogram H by the number of the feature map node nx

nearest to them (steps 3-5). The histogram is then normalized and the label l
is predicted by the class map according to the single linkage strategy (see Beyer
and Cimiano [5]).

4 Experiments and Evaluation

4.1 Dataset

As a dataset for evaluation we use the KTH human action dataset [7] 3. This
video database consists of six categories of human actions (walking, jogging,
running, boxing, hand waving and hand clapping). All actions are performed
several times by 25 subjects in four different scenarios (outdoors, outdoors with
scale variations, outdoors with different clothes and indoors). Each combination
of 25 subjects, 6 actions in 4 scenarios gives a total of 600 video files.

4.2 Evaluation Methodology

We evaluated the accuracy of OHAC and our baseline on the KTH human action
dataset. We generated 15 training and test sets by separating the 600 video clips

3 Examples of the six actions are shown on the following website
http://www.nada.kth.se/cvap/actions/
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into 300 training examples and 300 test examples for each set. We furthermore
took care that each of the six categories was equally distributed in the train-
ing and test set. We averaged our accuracy results over the 15 runs and also
determined a best and worst result of the 15 runs.

The OGNG parameters are set as follows: insertion parameter λ = 50; max-
imum age amax = 120; adaptation parameter for winner eb = 0.3; adaptation
parameter for neighbourhood en = 0.0018; error variable decrease α = 0.5; error
variable decrease β = 0.0005. We also allowed a maximum of 4000 neurons for
the feature map and 200 for the class map.

4.3 Results

Our results are depicted in Table 1. The matrices show the confusion matrix
of our Baseline (left) and OHAC (right). Thereby, each row represents the to
be classified human action category, while each column holds the percentage of
examples that have been classified into the category written on top of the ma-
trices. Overall, OHAC achieves an averaged accuracy of 93%, while our Baseline
holds an accuracy of 95%. We performed a t-test and could not prove that the
results of both approaches are statistically significant. We thus consider the clas-
sification performance of the algorithms to be comparable. The confusion matrix
shows that both algorithms are having issues to distinguish between jogging and
running, which is intuitively understandable as we as humans also would con-
sider those two activities to be closer to each other compared to the other four.
Furthermore, it is interesting that OHAC slightly less confuses the human action
categories of “hand clapping” and “running” with 93.2% and 72.2% compared to
89.8% and 66.8% of our Baseline. It also should be mentioned that the confusion
of OHAC is spread more uniformly compared to the Baseline approach, which
could be explained by the generative approach of OHAC compared to the dis-
criminative character of our Baseline and i.e. of the underlying SVM classifier.

5 Related Work & Conclusion

In this paper we have presented a novel human activity classifier model based
on Online Growing Neural Gas (OGNG). The model provides a compact archi-
tecture and consists of two layers, allowing the storage of human actions in a
more memory efficient structure. While the first layer (feature map) dynamically
clusters STIPs and serves as base for the creation of histogram-based signatures
of a human action, the second layer (class map) builds a classification model
that builds upon those human action signatures. The advantage of this novel
architecture lies in its ability to perform a human action classification task on-
line as the model stepwise adapts to new data and grows incrementally. The
uniform character of the algorithm is desirable, as that its simplicity allows an
easy implementation and integration into existing systems. In most cases, het-
erogeneous offline human action recognition approaches have been proposed [4,

Workshop New Challenges in Neural Computation 2013

112 Machine Learning Reports



      

      

      

      

      

      

 

































88.2 3.2 3.2 1.4 2.7 1.4

1.8 89.4 1.8 3.4 1.2 2.4

2.8 1.3 93.2 1.3 0.8 0.5

1.7 1.8 1.7 85.4 6.3 3.1

3 2.5 3.7 10.5 65.4 15

1.3 2 2.9 4 17.5 72.2

handwaving

boxing

handclapping

walking

jogging

running

average 82.2%

h
an

d
w

av
in

g
b
o
xi

n
g

h
an

d
cl

ap
p
in

g
w

al
ki

n
g

jo
gg

in
g

ru
n
n
in

g

Table 1. Confusion matrix of our Baseline (left) and OHAC (right) on the KTH human
action database, averaged over 15 runs.

8], that generate action signatures by clustering STIPs with static clustering
algorithms (such as k-Means) and classifying them with an offline classifier that
needs to be retrained as new data arrives. We have experimentally shown on the
KTH dataset that our approach reaches comparable performance to a classical
offline SVM-based classification approach while performing online and avoiding
the need to store training examples explicitly, thus being suitable in lifelong
stream data settings.
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Abstract. In this paper we consider the Robust Soft Learning Vector
Quantization and the Soft Nearest Prototype Classi�cation as variants of
the learning vector quantization paradigm proposed by T. Kohonen for
prototype based classi�cation models. We show that, although separately
introduced, the latter one is a special case of the other model.

1 Introduction

Robust Soft Learning Vector Quantization (RSLVQ) and Soft Nearest Prototype
Classi�cation (SNPC) are two famous learning vector quantizers for prototype
based classi�cation learning [6,5]. Both approaches can be understood as prob-
abilistic variants of the Bayesian motivated but heuristic learning vector quan-
tization schemes introduced by T. Kohonen [1]. Whereas RSLVQ maximizes a
log-likelihood cost function, SNPC uses a soft variant of the classi�cation error
to quantify the classi�cation performance. Thus, these algorithms can be seen as
alternatives to the generalized learning vector quantization approach (GLVQ),
which takes an approximation of the classi�cation error as cost function for a
LVQ-like prototype based classi�cation system [4].

Although both methods, RSLVQ and SNPC, were introduced independently,
there are inherent similarities in methodology: RSLVQ as well as SNPC can be
seen as probabilistic models of classi�cation based on prototypes. These proto-
types are interpreted as centers of local probability models of the class distribu-
tion.

In this paper we show that SNPC is mathematically equivalent to RSLVQ for a
particular parameter setting in RSLVQ. Thus, both models can be identi�ed as
the same mathematical model. For this purpose, a unifying description is pre-
sented. In consequence, SNPC can be optimized via an expectation maximization
scheme as recently proposed for RSLVQ [2] and GLVQ [3].
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2 The RSLVQ model

In following we brie�y describe the RSLVQ as introduced by Seo&Obermayer
in [5]. We suppose data points xi ∈ X (i = 1, ..., N) and prototypes θj ∈ Θ

(j = 1, ...,M). Further, let c(·) be the formal class labeling function, which as-
signs to each data point the class label c (xi). Analogously, c (wj) returns the
class label of the prototype.

In RSLVQ, the data density is modeled by a Gaussian mixture approach: Let
p(θj) =

1
M

be the prior probability that data points are generated by the j-th
single component of the mixture. Let

p(xi|θj) =
1

√

(2πσ2)D
exp

(

−
(xi − θj)

2

2σ2

)

(1)

be the conditional probability that the j-th component of the Gaussian mixture
generates the data point xi ∈ R

D. Then the probability density for the data
point xi is given by

p(xi|Θ) =

M
∑

j=1

p(θj)p(xi|θj)

and the conditional probability

pc(xi|Θ) =
∑

{j:c(xi)=c(θj)}

p(θj)p(xi|θj)

is the probability density that a data point xi is generated by the mixture model
for the correct class. The cost function of the RSLVQ is based on the likelihood
ratio

Lr =
N
∏

i=1

pc(xi|Θ)

p(xi|Θ)
. (2)

The resulting cost function to be maximized in RSLVQ is obtained as

KRSLV Q(X, Θ) =

N
∑

i=1

log

(

pc(xi|Θ)

p(xi|Θ)

)

(3)

which can be optimized using a (stochastic) gradient ascent scheme, see [5].
Recently, a generalized expectation maximization (gEM) scheme for RSLVQ was
proposed as an alternative to the gradient learning [2], if only relational data or

Workshop New Challenges in Neural Computation 2013

Machine Learning Reports 115



dissimilarities between data are available. For this purpose, the cost function (3)
can be rewritten as

KRSLV Q(X, Θ) =
N
∑

i=1

log





∑

{j:c(xi)=c(θj)}

g(xi, θj)



 (4)

with the functions

g(xi, θj) =
exp

(

−
(xi−θj)

2

2σ2

)

∑M

k=1 exp
(

− (xi−θk)
2

2σ2

) . (5)

In the following we use this formulation of the cost function to show its relation
to the SNPC.

3 SNPC revisited: equivalence to RSLVQ

The SNPC classi�er is a soft variant of nearest prototype classi�cation (NPC)
approach. For the NPC the cost function

Cerr =
1

N

N
∑

i=1

M
∑

j=1

[1− δ (c(θj) = c(xi))] δ(θj = θbmu(i)) (6)

counts the misclassi�cations whereby

δ(x = y) =

{

1, x = y

0, else

is the Kronecker symbol and

bmu(i) = argmin
l={1,...,M}

d (xi, θl)

is the index of the best matching unit (prototype) for a given data point xi

with respect to a prede�ned dissimilarity measure d (xi, θl), frequently chosen
as the squared Euclidean distance. The original cost function of SNPC is the
probabilistic version

KSNPC(X, Θ) =
1

N

N
∑

i=1

M
∑

j=1

[1− δ (c(θj) = c(xi))]P (θj |xi) → min
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of (6) with the conditional probability

P (θj |xi) =
exp (−d(xi, θj))

∑M

k=1 exp (−d(xi, θk))

that the data point xi is assigned to the prototype θj [5]. We remark at this point,
that these probabilities are structurally equivalent to the functions g (xi, θj) from
(5) Equivalently to minimization of KSNPC(X, Θ), we could maximize

K(X, Θ) =
1

N

N
∑

i=1

M
∑

j=1

δ (c(θj) = c(xi))P (θj |xi)

=
1

N

N
∑

i=1

∑

{j:c(θj)=c(xi)}

P (θj |xi)

instead of KSNPC(X, Θ). Further, the maximization does not change under an
application of a monotonically increasing function. Hence, we consider the equiv-
alent cost function

K̂SNPC(X, Θ) =
1

N

N
∑

i=1

log





∑

{j:c(θj)=c(xi)}

P (θj |xi)



 (7)

Yet, this is exactly the cost function of RSLVQ (4) if we set σ =
√

1
2 in (4) and

ignore the scaling factor 1
N

in (7). Hence, SNPC can be seen as a special case of
RSLVQ.

4 Conclusion

In the present paper we have shown the mathematical equivalence between
separately introduced RSLVQ and SNPC, which were both invented by
Seo&Obermayer. Using the recently in [2] published result for RSLVQ, it
follows immediately, that SNPC also can be maximized using the gEM opti-
mization procedure presented in [2] for RSLVQ.
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Sparse Coding aims at finding a dictionary for a given data set, such that
each sample can be represented by a linear combination of only few dictionary
atoms. Generally, sparse coding dictionaries are overcomplete and not orthogo-
nal. Thus, the processing substep to determine the optimal k-sparse representa-
tion of a given sample by the current dictionary is NP -hard. Usually, the solution
is approximated by a greedy algorithm or by l1 convex relaxation. With an or-
thogonal dictionary, however, an optimal k-sparse representation can not only
be efficiently, but exactly computed, because a corresponding k-sparse coefficient
vector is given by the k largest absolute projections.

In this paper, we present the novel online learning algorithm Orthogonal
Sparse Coding (OSC), that is designed to find an orthogonal basis U =(u1, ...,ud)
for a given data set X ∈ Rd×L, such that for any k ∈ {1, ..., d}, the optimal k-
sparse coefficient vectors A ∈ Rd×L minimize the average representation error
E = 1

dL‖X − UA‖2F. At each learning step t, OSC randomly selects a sample
x from X and determines an index sequence h1, ..., hd of decreasing overlaps
|uT

hi
x| between x and the basis vectors in U . In the order of that sequence, each

(a) Learned basis from 1,000 synthetic
image patches of size 16×16 pixel.

(b) Learned basis from 20,000 natural
image patches of size 16×16 pixel.

Fig. 1: Basis patches learned with OSC.
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basis vector uhi is updated by the Hebbian learning rule ∆uhi = εt(u
T
hi
x)x

with a subsequent unit length normalization. After each basis vector update, x
and the next basis vector uhi+1

to be adapted are projected onto the orthogonal
complement span({uh1

, ...,uhi
})⊥ wherein the next update takes place.

We applied OSC to (i) 1,000 synthetic (k=50)-sparse patches of size 16×16
pixel, randomly generated with a 2D Haar basis, and (ii) 20,000 natural image
patches of size 16×16 pixel, that were randomly sampled from the first image
set of the nature scene collection [1] (308 images of nature scenes containing no
man-made objects or people). The basis patches learned by OSC are shown in
Figure 1 and demonstrate that OSC reliably recovers the generating basis from
synthetic data (see Figure 1a). Figure 1b illustrates that the OSC basis learned
on the natural image patches resembles a wavelet decomposition, and is distinct
from PCA, DCT, and Haar bases.

In Figure 2, the average k-term approximation performance of the OSC basis
is compared with PCA, DCT, Haar and JPEG 2000 wavelets on the natural
image patch data set. For this data set, OSC yields a consistently better k-term
approximation performance than any of the alternative methods.
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Fig. 2: Average k-term approximation performance of 20,000 natural image
patches of size 16×16 pixel.
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