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1 Introduction - Minkowski norms

Data mining frequently requires the comparison of data vectors. Typically, the

(dis-)similarity is judged in terms of a distance, mathematically denoted as a

metric. Many, but not all, metrics are generated by norms [6, 13]. Otherwise, for

an arbitrary norm ‖v‖ for vectors v of a vector space V , we can always define a

metric by

d‖•‖ (v1,v2) = ‖v1 − v2‖ . (1)

Yet, frequently weaker dissimilarity measures than metrics are considered in ma-

chine learning [1, 4, 5, 17]. For example, the squared Euclidean distance, usually

applied in neural networks, violates the triangle inequality, which is required to be

fulfilled by a metric. Hence, it is only a quasi-metric following the categorization

system suggested by Pekalska&Duin in [11]. Accordingly, we denote a measure

m (v) : V −→ R⊕ (2)

with R⊕ being the set of non-negative real numbers, as a quasi-norm, if all norm

properties are satisfied except the triangle inequality. Obviously, quasi-norms

generate by means of (1) quasi-metrics at least.

The lp-norm for vectors x ∈ Cn defined as

‖x‖p = p

√√√√
n∑

k=1

|xk|p (3)

with 1 ≤ p ≤ ∞ is a standard norm in data mining [8]. It is also denoted as the

Minkowski norm defining the Minkowski metric dp (x,y) = ‖x− y‖p. Note that

if 0 < p < 1 is valid, ‖x‖p is only a quasi-norm whereas (dp (x,y))p = ‖x− y‖pp
generates a metric [2].

For the Euclidean case p = 2, the pair
(
Cn, ‖•‖p

)
is a Hilbert space equipped

with the inner product

〈x,y〉E =
n∑

k=1

xkȳk (4)

where ȳk is the conjugate complex of yk. For p 6= 2 ,
(
C, ‖•‖p

)
forms only a

Banach space. For Banach spaces weaker counterparts to inner products exists.
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These are so-called semi-inner products (SIP, [10]), which are generally not unique

but also generating the norm.1 Yet, for the lp-norm it is uniquely given as

[x,y]p =
1

(
‖y‖p

)p−2

n∑

i=1

xi · ȳi · |yi|p−2 (9)

which becomes

[x,y]p =
1

(
‖y‖p

)p−2

n∑

i=1

xi |yi|p−1 sgn (yi)

in case of real valued vectors. Here

sgn (x) =





1

0

−1

x > 0

x = 0

x < 0

. (10)

is the signum function.

The continuity of the SIP as a map

[x,y]p : Cn × Cn −→ C :

1A semi-inner product (SIP) [•, •] of a general vector space V is a map

[•, •] : V × V −→ C (5)

with the following properties:

1. positive semi-definite

[x,x] ≥ 0 (6)

and [x,x] = 0 iff x = 0

2. linear with respect to the first argument for ξ ∈ C

ξ · [x, z] + [y, z] = [ξ · x + y, z] (7)

3. Cauchy-Schwarz inequality

|[x,y]|2 ≤ [x,x] [y,y] (8)

We emphasize that, in contradiction to inner products, SIPs may violate the symmetry condition,

i.e. we generally have [x,y] 6= [y,x]. However, each SIP generates a norm via ‖x‖ =
√

[x,x].

Vice versa, each norm corresponds to a SIP, which, however, not need to be unique. For further

reading we refer to [3, 10].
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can be related to the differentiability of the respective norm [3].

Accordingly, the Banach spaces L̂p of complex Lebesgue-integrable functions are

equipped with the respective SIP

[f, g]p =
1

(
‖g‖p

)p−2

ˆ

f · ḡ · |g|p−2 dt (11)

for complex functions g and f and

‖f‖p =
√

[f, f ]p (12)

In case of the space Lp of real Lebesgue-integrable functions we have

[f, g]p =
1

(
‖g‖p

)p−2

ˆ

f · |g|p−1 · sgn (g (t)) dt (13)

as SIP. Again, for p = 2 both spaces are Hilbert spaces with the usual inner

product.

Although Lp and L̂p are function spaces, the respective norms as well as SIPs do

not explicitly take the functional character into account, i.e. the norm values are

invariant under such transformations of the function, which switch the function

values for two arbitrary arguments t1 and t2. The same property we observe for

the discrete versions according to the switch of vector dimensions. For this reasons

so-called functional norms come into play [12].

2 Functional norms

2.1 The Sobolev norm

As explained above, the Minkowski-norm is not a functional norm, i.e. it does not

explicitly take into account the functional character. One of the most prominent

functional norms is the Sobolev-norm

‖f‖K,p =


∑

|α|≤K

(
‖Dαf‖p

)p



1
p

(14)

assigned to the Sobolev-space WK,p = {f |Dαf ∈ Lp, |α| ≤ K} of (real) differen-

tiable functions up to order K where Dα = ∂|α|
∂α1...∂α|α|

is the differential operator.

4



It is well-known that WK,p is a Hilbert spaces only for p = 2 as Lp does. The

related SIP

[f, g]K,p =
1

‖g‖p−2
K,p

∑

|α|≤K

ˆ

f (α) ·
∣∣g(α)

∣∣p−1
sgn

(
g(α)
)
dt

is similar to (13) for Lp [7]. We observe that the Sobolev-norm requires the

differentiability of the functions, which might be a disadvantage, if this property

cannot be ensured.

However, frequently only discrete approximations of functions are considered in

data mining, i.e. vectors x ∈ Rn are discrete representations of functions. Thus,

vector entries xk and xk+j are functionally related depending on the index differ-

ence j. Obviously, the lp-norm (3) does not make use of these relations. Otherwise,

machine learning algorithms in data mining may benefit from those functional data

properties [14, 15, 16].

2.2 The functional measure LTSp from Lee and Verleysen

An attempt to generate an alternative discrete functional norm was made by

Lee&Verleysen in [9]. To this extend, they considered time series xk collected in

a vector x = (x0, . . . , xD+1) ∈ Rn with n = D+2 and introduced their dissimilarity

measure

δp (x,y) = LTSp (x− y, τ) (15)

with

LTSp (x, τ) =

(
D∑

i=1

(gi (x, τ))p
) 1

p

(16)

where the local function gi (x, τ) is the sum

gi (x, τ) = Ai (x, τ) +Bi (x, τ) (17)

of the areas Ai and Bi assigned to the left and right sides of xi, respectively, as

depicted in Fig.1.

The parameter τ can be interpreted as sampling period if x represents a time

series xi = x (ti) of discrete time points ti. The areas Ai and Bi are calculated

case-dependently as

Ai (x, τ) =





τ
2
|xi| 0 ≤ xixi−1

τ
2

|xi|2
|xi|+|xi−1| 0 > xixi−1

(18)
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Figure 1: Visualization of the quasi-norm LTSp taken from [9]. This quasi-norm

involves the areas of the triangles placed on the left (Ai) and right (Bi) side of

each coordinate.

and

Bi (x, τ) =





τ
2
|xi| 0 ≤ xixi+1

τ
2

|xi|2
|xi|+|xi+1| 0 > xixi+1

(19)

respectively. Further it is assumed that x0 = xD+1 = 0 is valid. The quantity

LTSp (x, τ) defined in (16) was proposed in [9] to be a norm. However, this state-

ment has to be corrected. One can easily verify that the triangle inequality may be

violated.2 Hence, LTSp (x, τ) is only a quasi-norm and, consequently, the quantity

δp (x,y) from (15) is only a quasi-metric.

In the next step we briefly study the approximation properties of the quasi-norm

LTSp (x, τ) with respect to the function norm

Lp [x (t)] = p

√
ˆ

|x (t)|p dt . (20)

For this purpose, we consider, as suggested when introduced in [9], the vector x

to be a discrete representation of a continuous function x (t). Then the difference

i − (i− 1) corresponds to a small interval ∆t scaled by sampling period τ in the

model. We consider the function

α (x (t) , t, τ,∆t) =
τ

2
|x (t)| ·

(
H (x (t) · x (t−∆t)) +

1−H (x (t) · x (t−∆t))

1 + |x(t−∆t)|
|x(t)|

)

(21)

2Consider the following example: x = (0, 10, 1, 10, 1, 0)
T

, y = (0, 10,−1, 10,−1, 0)
T

, which

yield x+y = (0, 20, 0, 20, 0, 0)
T

. For p = 2 and τ = 1 we obtain LTS
p (x, τ) ≈ 14.21, LTS

p (y, τ) ≈
13.19 and LTS

p (x + y, τ) ≈ 28.28. Thus LTS
p (x + y, τ) > LTS

p (x, τ) + LTS
p (y, τ) is obtained,

violating the triangle inequality.
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playing the role of the functional counterpart of Ai (x, τ). Here

H (z) =





1 ; z ≥ 0

0 ; z < 0

is the Heaviside function. Analogously, we have

β (x (t) , t, τ,∆t) =
τ

2
|x (t)| ·

(
H (x (t) · x (t+ ∆t)) +

1−H (x (t) · x (t+ ∆t))

1 + |x(t+∆t)|
|x(t)|

)

as the functional complement to Bi (x, τ). Summation of both yields

γ (x (t) , t, τ,∆t) = α (x (t) , t, τ,∆t) + β (x (t) , t, τ,∆t) (22)

as a τ ·∆t-dependent counterpart of the local function gi (x, τ) from (17) for the

discrete case. Interpreting the term

ϑx (t, τ,∆t) =H (x (t) · x (t−∆t)) +H (x (t) · x (t+ ∆t))

+
1−H (x (t) · x (t−∆t))

1 + |x(t−∆t)|
|x(t)|

+
1−H (x (t) · x (t+ ∆t))

1 + |x(t+∆t)|
|x(t)|

(23)

as a multiplicative deviation of x (t) we rewrite the local function (22) as

γ (x (t) , t, τ,∆t) =
τ

2
|x (t) · ϑx (t, τ,∆t)| (24)

where we made use of the observation that ϑx (t, τ,∆t) ≥ 0 is valid.

The deviation function ϑx (t, τ,∆t) is not necessarily continuous everywhere with

respect to the difference ∆t, although x (t) is assumed to be a continuous function.

To see this, we suppose a continuous time-dependent function x (t) on the interval

[a, b] with x (a) · x (b) < 0. We suppose w.l.o.g. x (a) < 0. Then exists at

least one t0 with x (t0) = 0 together with an ε > 0 determining the interval

Iε (t0) = [t0 − ε, t0 + ε] such that the following statements hold:

1. Iε (t0) ⊆ [a, b],

2. x (t0 − ε) · x (t0 + ε) < 0,

3. x (t) is monotonically increasing in Iε (t0),

4. x (t) < 0 for t ∈ [t0 − ε, t0) and x (t) > 0 for t ∈ (t0, t0 + ε].
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Let t∗ ∈ (t0 − ε, t0) arbitrarily but fixed and ∆t = t − t∗ < ε
2
. We recognize the

strong inequality x (t0) > x (t∗) and consider the limit t∗ → t. In this case we

obtain

lim
∆t↘0

α (x (t0) , t0, τ,∆t) = lim
∆t↘0

τ

2
· |x (t0)|

1 + |x(t0−∆t)|
|x(t0)|

=
τ

4
· |x (t0)| 6= α (x (t0) , t0, τ, 0)

for the function α (x (t) , t, τ,∆t) from (21) because of α (x (t0) , t0, τ, 0) = τ
2
·|x (t0)|

is valid. Analogously, the function term β (x (t) , t, τ,∆t) can be treated. Hence,

the deviation ϑx (t, τ,∆t) in (24) is not necessarily continuous and, therefore, we

can not obtain a continuous approximation of the function norm Lp from (20) by

means of LTSp (x, τ).

3 Conclusion

In this paper we considered dissimilarities for functional data. We briefly discussed

their properties. One particular focus was the functional measure LTSp . In contra-

diction to earlier statements, it violates the triangle inequality and, therefore, is

only a quasi-norm.
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