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– Mathematical Treatment of the Corresponding Constrained Optimization Problem –

Sascha Saralajew1 and Thomas Villmann2

1 Dr. Ing. h.c. F. Porsche AG, Weissach (Germany),

2 University of Applied Sciences Mittweida (Germany)

Abstract
In this technical report, we consider the tangent distance concept more

deeply from a mathematical point of view. Particularly, we extend the
approach to be a minimization problem over a restricted domain whe-
reas tangent distances were treated as unrestricted problems so far. The
resulting distance allows to measure the shortest distance from a given
point to a well-determined subset of an affine subspace. In the context of
tangent distances, the interpretation is that we keep care about where the
defined tangent subspace approximation of the manifold structure is valid
in dependence on the approximation error. Contrary, the classical tan-
gent distance concept consists of the distance measurement regarding the
whole affine subspace and, further, regarding to the whole tangent sub-
space approximation of the manifold structure. Therefore, the fact that
the tangent subspace approximation is not globally valid is disregarded.

We introduce in this paper the restricted tangent distance over a r-
orthotope domain in Rn with the underlying distance as the Euclidean
metric. To obtain an applicable distance measure we construct the closed-
form solution of the resulting minimization problem. Moreover, we show
that the resulting distance measure is differentiable and, therefore, appli-
cable to a (stochastic) gradient optimization machine learning framework.
All the results are accompanied by the respective mathematical proofs.

1

Restricted Tangent Distances for Local Data Dissimilarities

Machine Learning Reports 3



1 Introduction
Automatic data processing in presence of distortions or significant data varia-
tions is still a challenging problem in machine learning. Simard proposed the
tangent distance to handle such data transformations in distance based machine
learning methods [1] or algorithms which are based on dissimilarities [2]. In ge-
neral, Simard assumed that the data points are representatives of unknown
manifold structures. Given two data points, the tangent distance is defined as
the smallest Euclidean distance between the two tangential subspaces of the ma-
nifolds for the considered points. Frequently in machine learning environments,
the tangent subspaces are estimated or determined in advance as a part of the
pre-processing.

The tangent distance concept was refined over the last years and applied to
several distinct machine learning methods [3, 4, 5]. A major advancement was
the investigation of single-sided (one-sided) tangent distances [6, 7]. At those
tangent distances the tangent subspace is assumed at only one point which leads
to a closed-form solution of the optimization problem.

In previous works, the authors of the present paper used the single-sided tan-
gent distance concept in the framework of Generalized Learning Vector Quanti-
zation (GLVQ) [8] and introduced this distance as the unrestricted optimization
problem

dRr (v,w(θ)) = min
θ∈Rr

d(v,w + Wθ) (1)

with d : Rn×Rn −→ R+
0 being an arbitrary chosen underlying distance measure.

The parameter r = dim(W) is the tangent subspace dimension. Here, the
argumentw(θ) = w+Wθ determines the tangent subspace at the point w ∈ Rn
with the tangent basis W ∈ Rn×r and the parameter vector θ ∈ Rr. We denote
this single-sided distance simply as tangent distance or tangent metric. It can be
proved that this definition is equivalent to a Hausdorff-metric if the underlying
distance is a translation invariant metric [9]. For example, the Euclidean metric

dE(x,y) =
√

(x− y)T (x− y) (2)

satisfies this requirement. In this case, the closed-form solution of the optimi-
zation problem (1) becomes

θ̂ = WT (v−w) (3)

provided WTW = Ir is valid, i. e. an orthonormal basis is assumed for the
subspace described by W. In the following, we suppose that this property
always holds.

Yet, the definition (1) of the tangent distance further presumes implicitly
that the tangent subspace is a globally valid approximation of the unknown
manifold structure [10]. Therefore, a natural extension of the model (1) is to
consider a restricted parameter domain D ⊂ Rr for the tangent subspace when
determining the distance, i. e. the previous unrestricted optimization problem
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(1) becomes a restricted optimization problem

dD (v,w(θ)) = min
θ∈D

d(v,w + Wθ) (4)

in order to reduce the approximation error.
The aim of this technical report is to solve the restricted optimization pro-

blem (4) in the case of an underlying Euclidean metric (2) and a r-orthotope1

domain D in Rn.
For this purpose, we define the used notations and give some principal de-

finitions in the first section. After that, we solve the optimization problem
by computing a Karush-Kuhn-Tucker point. It is followed by computing the
gradients of the closed-form solution of the derived distance and concluding
remarks.

2 Fundamentals
We denote by In the n × n-dimensional identity matrix and by ei the i-th n-
dimensional unit vector2. Further, the n-dimensional one vector is obtained by
1n =

∑n
i=1 ei. Additionally, we denote the n-dimensional zero vector by 0n.

The symbol xi indicates the i-th element of the vector x and, similarly, the
notation xij the element (i, j) of the matrix X. The set of non-negative real
values is defined by R≥0 = {x ∈ R|x ≥ 0} and, further, the set of positive real
values by R>0 = {x ∈ R|x > 0}.

Definition 1. The Heaviside function of a real value x ∈ R is defined as

H(x) =
{

0 if x < 0
1 else

and for a vector x ∈ Rn as

H (x) =




H(x1) 0 · · · 0
0 H(x2) · · · 0
...

... . . . ...
0 0 · · · H(xn)


 .

Definition 2. The signum function of a real value x ∈ R is defined as

sgn(x) =





−1 if x < 0
0 if x = 0
1 else

1It is also denoted as r-dimensional hyperrectangle or r-dimensional box.
2We skip an indexing of the dimension at the unit vector and suggest that the dimension

is clearly given from the context.
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and for a vector x ∈ Rn as

sgn (x) =




sgn(x1) 0 · · · 0
0 sgn(x2) · · · 0
...

... . . . ...
0 0 · · · sgn(xn)


 .

Definition 3. The absolute value function of a real value x ∈ R is defined as

|x| =
{
−x if x < 0
x else

and for a vector x ∈ Rn as

|x| =




|x1|
|x2|
...
|xn|


 .

Definition 4. For vectors x,y ∈ Rn the following relations are defined:

• x 5 y⇐⇒ xi ≤ yi ∀i = 1, ..., n

• x = y⇐⇒ xi ≥ yi ∀i = 1, ..., n

• x < y⇐⇒ xi < yi ∀i = 1, ..., n

• x > y⇐⇒ xi > yi ∀i = 1, ..., n

Definition 5. The standard form of an optimization problem (f,D) is

min
x
f(x)

subject to

gi(x) ≤ 0 , i = 1, 2, ...,m
hj(x) = 0 , j = 1, 2, ..., p

where f(x) : Rn −→ R is called the objective function to be minimized with
respect to the variable x. The constraints define the feasible domain (set of
feasible points or set of feasible solutions)

D = {x ∈ Rn|gi(x) ≤ 0, hj(x) = 0, i ∈ {1, 2, ...,m} , j ∈ {1, 2, ..., p}}

of the optimization problem.

Definition 6. Let (f1, D1) and (f2, D2) be two optimization problems. Further,
let X ∗1 ⊆ D1 be the set of optimal solutions for (f1, D1) and X ∗2 ⊆ D2 be the
set of optimal solutions for (f2, D2). The optimization problems are called
equivalent if there exist a bijective function q : X ∗1 −→ X ∗2 .

4

Restricted Tangent Distances for Local Data Dissimilarities

6 Machine Learning Reports



In the following we restrict the tangent distance (4) to the underlying distance
as the Euclidean metric (2) and define:
Definition 7. The rectangular restricted tangent distance dD̃

(
v, w̃(θ̃)

)
, abbre-

viated by rrTD, is defined as the minimal value of the optimization problem(
f̃ , D̃

)
with the objective function

f̃
(
θ̃
)

= dE(v, w̃ + Wθ̃)

and the feasible domain

D̃ = [a1, b1]× [a2, b2]× ...× [ar, br] ⊂ Rr

with ai ≤ bi, i = 1, 2, ..., r.
We collect the lower bounds ai into the vector a = (a1, a2, ..., ar)T and upper

bounds bi into the vector b = (b1, b2, ..., br)T . Note that D̃ is a r-orthotope and,
further, the set

{
x ∈ Rn|∃θ̃ ∈ D̃ : x = w̃ + Wθ̃

}
is also a r-orthotope in Rn or,

in other words, a r-dimensional hyperrectangle in Rn.
Lemma 1. The optimization problem (f,D) with

f (θ) = dE(v,w + Wθ)

where w = w̃ + 1
2 W(b + a) and

D = [−c1, c1]× [−c2, c2]× ...× [−cr, cr] ⊂ Rr

with c = 1
2 (b− a) and the function

q : Rr −→ Rr : q(x) = x + 1
2 (b + a)

is equivalent to
(
f̃ , D̃

)
according to the previous definition.

Proof. At first it is proven that for any x ∈ D the statement q(x) ∈ D̃ holds:

x = −c ∧ x 5 c

x = −1
2 (b− a) ∧ x 5 1

2 (b− a)

q(x)− 1
2 (b + a) = −1

2 (b− a) ∧ q(x)− 1
2 (b + a) 5 1

2 (b− a)

q(x) = a ∧ q(x) 5 b

Hence, the statement is valid. Further, the restriction of the function q : D −→
D̃ is injective since q is a shift function. Moreover, for an arbitrary x̃ ∈ D̃ we
can conclude:

x̃ = a ∧ x̃ 5 b

x̃ = −1
2 (b− a) + 1

2 (b + a) ∧ x̃ 5 1
2 (b− a) + 1

2 (b + a)

x̃− 1
2 (b + a) = −1

2 (b− a) ∧ x̃− 1
2 (b + a) 5 1

2 (b− a)

x̃− 1
2 (b + a) = −c ∧ x̃− 1

2 (b + a) 5 c

5
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and, therefore, x = x̃− 1
2 (b + a) ∈ D exist such that

q(x) = q

(
x̃− 1

2 (b + a)
)

= x̃

holds. This proves that the function q : D −→ D̃ is surjective. Injectivity and
surjectivity yield bijectivity.

In the next step we consider some properties of these optimization problems:
The feasible domains D and D̃ are compact and the objective functions of (f,D)
and

(
f̃ , D̃

)
are continuous. Thus, the extreme-value-theorem holds and states

that there exist sets of optimal solutions X ∗D and X ∗
D̃
. Moreover, the objective

functions are strictly convex and, therefore, the sets of optimal solutions are
singletons [11]. Thus, it is sufficient to prove that the optimal solution

{
θ∗
}

=

X ∗D is mapped to the optimal solution
{

θ̃
∗} = X ∗

D̃
by q(θ∗) = θ̃

∗. For θ∗ of
(f,D) holds:

min
θ∈D

dE(v,w + Wθ) = dE(v,w + Wθ∗)

= dE

(
v, w̃ + 1

2W(b + a) + W
(
q(θ∗)− 1

2 (b + a)
))

= dE (v, w̃ + Wq(θ∗)) (5)

Now, we construct a proof by contradiction: Suppose that q(θ∗) 6= θ̃
∗. By

the previous results we know that q(θ∗) ∈ D̃ holds and θ̃
∗ is unique. Therefore,

it follows that

dE (v, w̃ + Wq(θ∗)) > min
θ̃∈D̃

dE
(
v, w̃ + Wθ̃

)

= dE

(
v, w̃ + Wθ̃

∗)

= dE

(
v,w− 1

2W(b + a) + W
(
q−1(θ̃∗) + 1

2 (b + a)
))

= dE

(
v,w + Wq−1(θ̃∗)

)

is valid. Since q is bijective, the assumption implies that q−1(θ̃∗) 6= θ∗. Furt-
hermore, we know that q−1(θ̃∗) ∈ D holds and θ∗ is unique. Finally, taking
into account the solution Equation (5) of the minimal element we conclude that

dE (v, w̃ + Wq(θ∗)) < dE

(
v,w + Wq−1(θ̃∗)

)

which contradicts the previous inequality. Therefore, the assumption q(θ∗) 6= θ̃
∗

must be wrong and, hence, we show q(θ∗) = θ̃
∗.

Applying the Lemma 1, we know that it is sufficient to solve the optimi-
zation problem (f,D) for the centered r-orthotope D to get the solution of

6
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(
f̃ , D̃

)
. More precisely, the information of the non-centered r-orthotope D̃ can

be embedded into the point w of the restricted tangent distance. Hence, we will
concentrate on the optimization problem (f,D)

dD (v,w(θ)) = min
θ∈D

f (θ)

= min
θ∈D

dE(v,w + Wθ)

over the feasible domain

D = [−c1, c1]× [−c2, c2]× ...× [−cr, cr] ⊂ Rr

with c ∈ Rr≥0 to solve the rrTD problem.

3 Solving the Optimization Problem
Theorem 1. The set of optimal solutions X ∗D of (f,D) is a singleton with the
element θ∗ ∈ X ∗D defined to be

θ∗ = H
(

c−
∣∣∣θ̂
∣∣∣
)

θ̂ + sgn
(

θ̂
)(

Ir −H
(

c−
∣∣∣θ̂
∣∣∣
))

c (6)

where θ̂ = WT (v−w) is the solution (3) of the unrestricted tangent distance
problem (1) with underlying distance as the Euclidean metric (2).
Proof. As stated in the proof of the Lemma 1, there exists a solution of (f,D)
and the solution is unique. We simplify the proof by solving (f,D) for the
squared distance, which is an equivalent optimization problem with q defined
to be the identity function. Hence, the standard form of (f,D) is given by

min
θ∈Rr

f(θ) = min
θ∈Rr

d2
E(v,w + Wθ) (7)

gi(θ) ≤ 0 , i = 1, 2, ..., 2r

with:

gi(θ) =
{

eTi (θ − c) if i ≤ r
−eTi−r (θ + c) else

(8)

Since (f,D) is a convex optimization problem and all constraints (8) are affine
functions, the Slater condition is satisfied. Moreover, because both the objective
function (7) and the constraints are differentiable, the vector θ∗ is optimal if
and only if there exists a Karush-Kuhn-Tucker (KKT) point (θ∗,µ∗) ∈ Rr+2r

[11]. A point (θ∗,µ∗) ∈ Rr+2r fits the KKT conditions and is called a KKT
point of (f,D) if

∇f(θ)|θ=θ∗ +
2r∑

i=1
µ∗i∇gi(θ)|θ=θ∗ = 0r

gi(θ∗) ≤ 0 , i = 1, 2, ..., 2r
µ∗i ≥ 0 , i = 1, 2, ..., 2r

µ∗i gi(θ∗) = 0 , i = 1, 2, ..., 2r

7
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with the gradients:

∇f(θ) = −2WT (v−w−Wθ)

∇gi(θ) =
{

ei if i ≤ r
−ei−r else

Thus, we can prove the theorem by showing the existence of a KKT point.
The stationarity condition can be simplified to

−2WT (v− (w + Wθ∗)) +
r∑

i=1
ei
(
µ∗i − µ∗i+r

)
= 0r

2
(
WT (v−w)− θ∗

)
=

r∑

i=1
ei
(
µ∗i − µ∗i+r

)

2
(

θ̂ − θ∗
)

=
r∑

i=1
ei
(
µ∗i − µ∗i+r

)

using the property WTW = Ir.
Now, we reformulate the KKT conditions of (f,D) as

2
(
θ̂i − θ∗i

)
= µ∗i − µ∗i+r (9)

θ∗i − ci
−θ∗i − ci

≤
≤

0
0 (10)

µ∗i
µ∗i+r

≥
≥

0
0 (11)

µ∗i (θ∗i − ci)
−µ∗i+r (θ∗i + ci)

=
=

0
0 (12)

for i = 1, 2, ...r. The element θ∗i is a function of only θ̂i and ci and, therefore,
the KKT conditions are separable regarding the index i. Hence, we simplify the
proof by showing that for each i ∈ {1, 2, ..., r} there exists a point (θ∗i , µ∗i , µ∗i+r) ∈
R3 such that the above conditions are satisfied.

In the following we assume i ∈ {1, 2, ..., r} to be arbitrary but fixed. Since
ci ∈ R≥0, we prove that θ∗i is primal feasible (10) by pooling of the equations to

θ∗i − ci ≤ 0
−θ∗i − ci ≤ 0 ⇐⇒ θ∗i ≤ ci

θ∗i ≥ −ci
⇐⇒ |θ∗i | ≤ ci

⇐⇒ θ∗i ∈ [−ci, ci]

and, further,
∣∣∣H
(
ci −

∣∣∣θ̂i
∣∣∣
)
θ̂i + sgn

(
θ̂i

)(
1−H

(
ci −

∣∣∣θ̂i
∣∣∣
))

ci

∣∣∣ ≤ ci . (13)

The validity of the equation (13) is obtained by a case analysis:
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Case 1. Suppose
∣∣∣θ̂i
∣∣∣ > ci. Since ci ∈ R≥0 it follows that

H
(
ci −

∣∣∣θ̂i
∣∣∣
)

= 0 and sgn(θ̂i) = ±1

which implies

θ∗i =
{
ci if θ̂i > ci

−ci if θ̂i < −ci
and, hence, the equation (13) simplifies to

|±ci| ≤ ci

which is true.

Case 2. Suppose
∣∣∣θ̂i
∣∣∣ ≤ ci. It follows that

H
(
ci −

∣∣∣θ̂i
∣∣∣
)

= 1

which implies
θ∗i = θ̂i

and, hence, the equation (13) simplifies to
∣∣∣θ̂i
∣∣∣ ≤ ci

which is true.

Combining both results for θ∗i of the above case analysis, we obtain

θ∗i =





ci if θ̂i > ci

θ̂i if
∣∣∣θ̂i
∣∣∣ ≤ ci

−ci else

which is equivalent to

θ∗i =





ci if θ̂i ≥ ci
θ̂i if

∣∣∣θ̂i
∣∣∣ < ci

−ci else
(14)

Finally, we show the remaining KKT conditions again by a case analysis:

Case 1. Assume ci = 0. This implies immediately that θ∗i = 0 and that both
constraints (10) are active, i. e. θ∗i − ci = 0 and −θ∗i − ci = 0. Moreo-
ver, the complementary slackness conditions (12) are satisfied for all
dual feasible points (11). The stationarity condition (9) simplifies to

2θ̂i = µ∗i − µ∗i+r .

9
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By defining

µ∗i =
{

2θ̂i if θ̂i ≥ 0
0 else

and

µ∗i+r =
{

0 if θ̂i ≥ 0
−2θ̂i else

all KKT conditions are fulfilled.

Case 2. Assume ci > 0 and θ̂i ≥ ci. By Equation (14), we know that θ∗i =
ci. Further, it follows that the first constraint of (10) is active, i. e.
θ∗i − ci = 0 and the second constraint is inactive, i.e. −θ∗i − ci =
−2ci < 0. Thus, the first complementary slackness condition (12)
is satisfied for all dual feasible points (11) µ∗i ≥ 0. By the second
complementary slackness condition we can conclude that µ∗i+r = 0.
Now, the stationarity condition (9) simplifies to

2
(
θ̂i − ci

)
= µ∗i .

Due to the assumption we can argue that 2
(
θ̂i − ci

)
≥ 0, such that

all KKT conditions are fulfilled.

Case 3. Assume ci > 0 and θ̂i ≤ −ci. By Equation (14) we know that
θ∗i = −ci. Further, it follows that the second constraint of (10) is
active, i. e. −θ∗i − ci = 0 and the first constraint is inactive, i.e.
θ∗i − ci = −2ci < 0. Thus, the second complementary slackness
condition (12) is satisfied for all dual feasible points (11) µ∗i+r ≥ 0.
By the first complementary slackness condition we can conclude that
µ∗i = 0. Now, the stationarity condition (9) simplifies to

−2
(
θ̂i + ci

)
= µ∗i+r .

Due to the assumption we can argue that −2
(
θ̂i + ci

)
≥ 0, such that

all KKT conditions are fulfilled.

Case 4. Assume ci > 0 and
∣∣∣θ̂i
∣∣∣ < ci. By Equation (14), we know that

θ∗i = θ̂i. Further, it follows that both constraints of (10) are inactive,
i. e. θ∗i −ci < 0 and −θ∗i −ci < 0. Hence, the complementary slackness
conditions (12) are satisfied if µ∗i = 0 and µ∗i+r = 0. Moreover, the
stationarity condition (9) simplifies to

2
(
θ̂i − θ̂i

)
= 0

which is true such that all KKT conditions are fulfilled.

10
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Since i was arbitrarily chosen, we have proved the theorem.

Summarizing the above results the KKT point (θ∗,µ∗) ∈ Rr+2r is given by
the optimal solution θ∗ and the vector µ∗ defined to be

µ∗i =





2θ̂i if ci = 0 and θ̂i ≥ 0
0 if ci = 0 and θ̂i < 0
2
(
θ̂i − ci

)
if ci > 0 and θ̂i ≥ ci

0 if ci > 0 and
∣∣∣θ̂i
∣∣∣ < ci

0 if ci > 0 and θ̂i ≤ −ci

µ∗i+r =





0 if ci = 0 and θ̂i ≥ 0
−2θ̂i if ci = 0 and θ̂i < 0
0 if ci > 0 and θ̂i ≥ ci
0 if ci > 0 and

∣∣∣θ̂i
∣∣∣ < ci

−2
(
θ̂i + ci

)
if ci > 0 and θ̂i ≤ −ci

for i ∈ {1, 2, ..., r}.

4 Computing the Derivatives
In the previous section, we defined a closed-form solution of the rrTD which
can be plugged into a machine learning framework. If the training of the ma-
chine learning approach is based on the optimization of a respective energy/ cost
function, like stochastic gradient learning [12], we might need the gradients of
this function regarding the tunable parameters. Moreover, we assume that the
tunable parameters of the rrTD are the parameters of the subset description of
the affine subspace, i. e. w, W and c in our problem. In the following we prove
that the rrTD is differentiable with respect to the variables w, W and c and
derive the respective formulas for the gradients.

Theorem 2. Let v ∈ Rn arbitrary but fixed. The function dD (v,w(θ)) with
the variables w, W and c is differentiable over

Dv =
{

(w,W, c) ∈ Rn × Rn×r × Rr≥0
∣∣v−w 6= Wθ∗, c > 0r

}
.

Before we start the proof we state some useful remarks, which later needed
in the proof: The set Dv is constructed over the whole domain of the rrTD with
two additional restrictions to ensure the differentiability.

The rrTD with the solution (6) yields

dD (v,w(θ)) =
∥∥∥v−w−W

(
Hθ̂ + S (Ir −H) c

)∥∥∥
E

=
∥∥v−w−WHWT (v−w)−WS (Ir −H) c

∥∥
E

=
∥∥(In −WHWT

)
(v−w)−WS (Ir −H) c

∥∥
E

11
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with
H = H

(
c−

∣∣∣θ̂
∣∣∣
)

= H
(
c−

∣∣WT (v−w)
∣∣)

S = sgn
(

θ̂
)

= sgn
(
WT (v−w)

)

and ‖·‖E as the Euclidean norm. Moreover, the matrix P = In −WHWT is
idempotent:

PP =
(
In −WHWT

) (
In −WHWT

)

= In −WHWT −WHWT + WHWTWHWT

= In −WHWT −WHWT + WHWT

= In −WHWT

= P

We need this property to prove the following lemma.

Lemma 2. The following statements are equivalent:

d2
D (v,w(θ))

= ‖P(v−w)−WS (Ir −H) c‖2
E

= (v−w)TP(v−w) +
(
cT − 2(v−w)TWS

)
(Ir −H) c (15)

Proof. By expansion we obtain:

d2
D (v,w(θ))

= (P(v−w)−WS (Ir −H) c)T (P(v−w)−WS (Ir −H) c)
= (v−w)TPP(v−w)− (v−w)TPWS (Ir −H) c
−cT (Ir −H) SWTP(v−w) + cT (Ir −H) SWTWS (Ir −H) c

The expression PW simplifies to

PW =
(
In −WHWT

)
W

= W (Ir −H)

using the property WTW = Ir and, similarly,

WTP = (Ir −H) WT .

Thus the above expression yields:

d2
D (v,w(θ))

= (v−w)TP(v−w)− (v−w)TW (Ir −H) S (Ir −H) c
−cT (Ir −H) S (Ir −H) WT (v−w) + cT (Ir −H) SS (Ir −H) c

12
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The quantities S and (Ir −H) are diagonal matrices. Therefore, we can change
the order of multiplication. Further, the matrix (Ir −H) is idempotent be-
cause it is additionally a 0-1-matrix. At least, the second and third part of the
expression are symmetric and we obtain:

d2
D (v,w(θ))

= (v−w)TP(v−w)− 2(v−w)TWS (Ir −H) c + cTSS (Ir −H) c

In the last step, we simplify the term cTSS (Ir −H) c. For this purpose, we can
rewrite the elements of the diagonal matrix SS (Ir −H) as

∣∣∣sgn
(
θ̂i

)∣∣∣
(

1−H
(
ci −

∣∣∣θ̂i
∣∣∣
))

=
{

0 if θ̂i = 0 or
∣∣∣θ̂i
∣∣∣ ≤ ci

1 else

Since ci ∈ R≥0 holds, we can conclude that the above equation is equivalent to

1−H
(
ci −

∣∣∣θ̂i
∣∣∣
)

=
{

0 if θ̂i = 0 or
∣∣∣θ̂i
∣∣∣ ≤ ci

1 else

such that
SS (Ir −H) = (Ir −H) . (16)

Applying this result, we can complete the proof of the Lemma:

d2
D (v,w(θ))

= (v−w)TP(v−w)− 2(v−w)TWS (Ir −H) c + cT (Ir −H) c
= (v−w)TP(v−w) +

(
cT − 2(v−w)TWS

)
(Ir −H) c

Now, we are able to compute the formal partial derivatives3 of dD (v,w(θ)).
We apply straightforward the rules of differentiation [13]. Doing so, we have
to determine the derivative of the square root for the differentiation for each
variable. For example we have to consider

∂dD (v,w(θ))
∂w = 1

2dD (v,w(θ))
∂d2

D (v,w(θ))
∂w (17)

To simplify the following calculations, we consider the squared rrTD, only, and
keep the coefficient (17) in mind.

Using the result of Lemma 2, the partial derivative with respect to w is given
by:

3Here, “formal derivative” means that we ignore singularities and domain restrictions.
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∂d2
D (v,w(θ))
∂w

=
∂
(
(v−w)TP(v−w) +

(
cT − 2(v−w)TWS

)
(Ir −H) c

)

∂w

= −2P(v−w) +
∂
(
cT − 2(v−w)TWS

)
(Ir −H) c

∂w

= −2P(v−w) +
∂
(
cT (Ir −H) c− 2(v−w)TWS (Ir −H) c

)

∂w
The derivative of the Heaviside function is almost everywhere zero, such that it
remains:

∂d2
D (v,w(θ))
∂w

= −2P(v−w)− 2
∂
(
(v−w)TWS (Ir −H) c

)

∂w

= −2P(v−w)− 2
∂
(
(vTWS (Ir −H) c−wTWS (Ir −H) c

)

∂w
Again, the first expression is zero. Further, after applying the product rule of
differentiation we observe that only one remaining expression is not equal to
zero:

∂d2
D (v,w(θ))
∂w

= −2P(v−w) + 2∂wTWS (Ir −H) c
∂w

= −2P(v−w) + 2∂wT

∂w WS (Ir −H) c

= −2P(v−w) + 2WS (Ir −H) c
= −2(v−w) + 2Wθ∗ (18)

Similar, we obtain the partial derivative with respect to W by:
∂d2

D (v,w(θ))
∂W

=
∂
(
(v−w)TP(v−w) +

(
cT − 2(v−w)TWS

)
(Ir −H) c

)

∂W

= −2(v−w)(v−w)TWH +
∂
(
cT (Ir −H) c− 2(v−w)TWS (Ir −H) c

)

∂W

= −2(v−w)(v−w)TWH− 2(v−w)T ∂WS (Ir −H) c
∂W

= −2(v−w)(v−w)TWH− 2(v−w)T ∂W
∂WS (Ir −H) c

= −2(v−w)(v−w)TWH− 2(v−w)cTS (Ir −H)
= −2(v−w) (θ∗)T (19)

14

Restricted Tangent Distances for Local Data Dissimilarities

16 Machine Learning Reports



If H = Ir the expressions are equal to the unrestricted case of the tangent
distance with underlying Euclidean metric [8, 9] which should be intuitively
true.

At least we derive the partial derivative with respect to c:

∂d2
D (v,w(θ))

∂c

=
∂
(
(v−w)TP(v−w) +

(
cT − 2(v−w)TWS

)
(Ir −H) c

)

∂c

=
∂
(
cT (Ir −H) c− 2(v−w)TWS (Ir −H) c

)

∂c

= 2 (Ir −H) c− 2(v−w)TWS∂ (Ir −H) c
∂c

= 2 (Ir −H)
(
c− SWT (v−w)

)

Applying the Equation (16) we can simplify the formula to:

∂d2
D (v,w(θ))

∂c = 2S
(

S (Ir −H) c + Hθ̂ − θ̂
)

= 2S
(

θ∗ − θ̂
)

= −2
∣∣∣θ∗ − θ̂

∣∣∣ (20)

Now we have collected all preliminaries to proof the Theorem 2.

Proof of Theorem 2. It is well-known that a function f(x) over an open set
x ∈ D(f) ⊆ Rn with the properties:

1. f(x) is continuous over D(f);

2. the partial derivatives ∂f(x)
∂xi

exist over D(f) for all i;

3. the partial derivatives ∂f(x)
∂xi

are continuous over D(f) for all i;

is differentiable [14]. Note that the three conditions are sufficient for the diffe-
rentiability of f . We prove our theorem by validating these three conditions.

At first, it is obvious that the set

Dv =
{

(w,W, c) ∈ Rn × Rn×r × Rr≥0
∣∣v−w 6= Wθ∗, c > 0r

}

in the theorem is an open set since we exclude the boundary points of the
domain of c from the general domain of dD. Thus, the overall assumption of
the statement is fulfilled. This assumption is necessary since a function is, in
general, not differentiable at boundary points.
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Condition 1. The Euclidean distance dE is a continuous function. Furt-
her, the rrTD can be expressed as Euclidean distance:

dD (v,w(θ)) = dE (v,w + Wθ∗)

The optimal solution θ∗ is a function of the variables v, w, W and c, i. e.
θ∗ = θ∗ (v,w,W, c). By equation (14) it is clear, that this function is contin-
uous. Therefore, the argument w + Wθ∗ is also continuous and, finally, dD is
continuous since it is a composition of continuous functions.

Condition 2. Above we derived the formulas of the formal partial de-
rivatives. Now, we show that they are valid over Dv and, further, we prove
their existence. Obviously, the derivative of a real square root only exists if the
argument is greater zero. Due to the metric properties of dE we know that:

dE (v,w + Wθ∗) = 0 ⇐⇒ v = w + Wθ∗

⇐⇒ v−w = Wθ∗

Since we exclude such points in Dv, the derivative of the (real) square root of
dD (see Equation (17)) exists over Dv.

We obtain the formulas of the partial derivatives by neglecting the discon-
tinuities of the Heaviside and signum function and the break point of the abso-
lute value function. Beside these points, the partial derivatives exist over Dv,
because of the well-known rules of differentiation. Now, it remains to prove
that the derivative also exists at the discontinuities and the break point. Inte-
restingly, the closed-form solution of θ∗ is continuous although it is a compo-
sition of discontinuous functions. Moreover, formulating the Equation (14) of
the closed-form solution θ∗i in a piecewise manner, it becomes obvious that the
function has a break point if

∣∣∣θ̂i
∣∣∣ = ci. Therefore, we only have to prove that

the partial derivatives exist at these exceptional points. For this purpose, by
the previous discussion, it is sufficient to prove that the partial derivatives exist
over the squared rrTD.

The formula of the squared rrTD can be expressed by

d2
D (v,w(θ)) = (v−w−Wθ∗)T (v−w−Wθ∗)

= (v−w)T (v−w)− 2 (θ∗)T WT (v−w) + (θ∗)T θ∗

=
n∑

i=1
(vi − wi)2 +

r∑

j=1

((
θ∗j
)2 − 2θ∗j ŵT

j (v−w)
)

=
n∑

i=1
(vi − wi)2 +

r∑

j=1

((
θ∗j
)2 − 2θ∗j θ̂j

)
(21)

using the notation W = (ŵ1, ŵ2, . . . , ŵj , . . . , ŵr) where ŵj is the j-th column
vector of W.

We proof the existence of the partial derivatives at the break points by
showing that the two one-sided limits from above and below of the partial
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differential quotient exist and are equal. Doing so we can conclude that the
two-sided limit exists and it is equal to both one-sided limits. Further, we can
easily show that the value of the limits is equal to the value of the general
formula of the partial derivative of the respective component, which implies the
correctness of the derived formulas, respectively.

In the following, we denote by arguments like θ∗j (x), c(x), W(x) , etc. the
argument which is obtained by substituting the variable of interest by the new
variable x. The slogan “variable of interest” means the variable which is consi-
dered during the limit computation. Moreover, we write

d (v,w,W, c) = dD (v,w(θ))

to indicate the dependencies regarding these variables. Finally, to simplify the
mathematical notation of the proof we abbreviate

θj = θ∗j .

Using these conventions, the Equation (21) simplifies to:

d2
D (v,w(θ)) = d2 (v,w,W, c)

=
n∑

i=1
(vi − wi)2 +

r∑

j=1

(
θ2
j − 2θj θ̂j

)
(22)

Without loss of generality, we assume l ∈ {1, 2, ..., r} to be arbitrary but
fixed. Further, we analyze the partial derivative

∂d2 (v,w,W, c)
∂cl

at the break point θ̂l = cl. It follows immediately that θl = cl. The limit from
below is given by:

lim
x↗cj

d2 (v,w,W, c(x))− d2 (v,w,W, c)
x− cl

= lim
x↗cl

θ2
l (x)− 2θl(x)θ̂l − θ2

l + 2θlθ̂l
x− cl

= lim
x↗cl

(θl(x)− θl) ((θl(x) + θl)− 2cl)
x− cl

= lim
x↗cl

(x− cl) ((x+ cl)− 2cl)
x− cl

= lim
x↗cl

((x+ cl)− 2cl)

= 2cl − 2cl
= 0
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Similarly, we obtain the limit from above:

lim
x↘cl

d2 (v,w,W, c(x))− d2 (v,w,W, c)
x− cl

= lim
x↘cl

(θl(x)− θl) ((θl(x) + θl)− 2cl)
x− cl

= lim
x↘cl

(
θ̂l − cl

)((
θ̂l + cl

)
− 2cl

)

x− cl

= lim
x↘cl

(
θ̂l − θ̂l

)((
θ̂l + θ̂l

)
− 2θ̂l

)

x− cl
= 0

Hence, the two one-sided limits are equal and, moreover, equivalent to the com-
ponent l of the formula (20):

∂d2 (v,w,W, c)
∂cl

∣∣∣∣
θ̂l=cl

= 2
(

1−H
(
cl −

∣∣∣θ̂l
∣∣∣
))(

cl −
∣∣∣θ̂l
∣∣∣
)∣∣∣
θ̂l=cl

= 0

Analogously, we derive the same result for the assumption θ̂l = −cl. Thus, the
partial derivatives with respect to c exist over Dv.

We continue by proving that the partial derivatives exist for

∂d2 (v,w,W, c)
∂W .

Without loss of generality, we assume l ∈ {1, 2, ..., r} and k ∈ {1, 2, ..., n} to be
arbitrary but fixed. Again, we analyze the partial derivative at the break point
θ̂l = cl such that the equality θl = θ̂l follows immediately. Further, the function
θ̂l(x) is linear in x and can be expressed by:

θ̂l(x) = ŵT
l (x) (v−w)

= (ŵl + ek (x−Wkl))T (v−w)
= ŵT

l (v−w) + (vk − wk) (x−Wkl)

Now, without loss of generality, we can assume that x ↗ Wkl implies the in-
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equality θ̂l(x) ≤ cl. The limit from below is given by:

lim
x↗Wkl

d2(v,w,W(x), c)− d2(v,w,W, c)
x−Wkl

= lim
x↗Wkl

∑r
j=1

(
θ2
j (x)− 2θj(x)θ̂j(x)

)
−∑r

j=1

(
θ2
j − 2θj θ̂j

)

x−Wkl

= lim
x↗Wkl

(
θ̂2
l (x)− 2θ̂2

l (x)
)
−
(
θ̂2
l − 2θ̂2

l

)

x−Wkl

= lim
x↗Wkl

−
(
θ̂2
l (x)− θ̂2

l

)

x−Wkl

= lim
x↗Wkl

−
(
θ̂l(x)− θ̂l

)(
θ̂l(x) + θ̂l

)

x−Wkl

= lim
x↗Wkl

− (x−Wkl) (vk − wk)
(
θ̂l(x) + θ̂l

)

x−Wkl

= −2 (vk − wk) θ̂l

By the last assumption, it follows that x↘Wkl implies the inequality θ̂l(x) ≥ cl
and, hence, the limit from above is obtained as

lim
x↘Wkl

d2(v,w,W(x), c)− d2(v,w,W, c)
x−Wkl

= lim
x↘Wkl

∑r
j=1

(
θ2
j (x)− 2θj(x)θ̂j(x)

)
−∑r

j=1

(
θ2
j − 2θj θ̂j

)

x−Wkl

= lim
x↘Wkl

(
θ̂2
l − 2θ̂lθ̂l(x)

)
−
(
θ̂2
l − 2θ̂2

l

)

x−Wkl

= lim
x↘Wkl

−2θ̂l
(
θ̂l(x)− θ̂l

)

x−Wkl

= lim
x↘Wkl

−2 (x−Wkl) (vk − wk) θ̂l
x−Wkl

= −2 (vk − wk) θ̂l
Again, the two one-sided limits are equal and, moreover, equivalent to the com-
ponent (k, l) of the formula (19):

∂d2 (v,w,W, c)
∂Wkl

∣∣∣∣
θ̂l=cl

= −2(vk − wk)
(
θ̂lH

(
cl −

∣∣∣θ̂l
∣∣∣
)

+ clsgn
(
θ̂l

)(
1−H

(
cl −

∣∣∣θ̂l
∣∣∣
)))∣∣∣

θ̂l=cl

= −2 (vk − wk) θ̂l
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Analogously, we derive the same result for the assumption θ̂l = −cl. In conclu-
sion, the partial derivatives with respect to W exist over Dv.

Finally, we have to prove the existence of

∂d2 (v,w,W, c)
∂wk

where k ∈ {1, 2, ..., r} is, without loss of generality, arbitrary but fixed. For this
purpose, we define the following subsets:

I−= :=
{
j ∈ {1, 2, . . . , r} |θ̂j = −cj

}

I+
= :=

{
j ∈ {1, 2, . . . , r} |θ̂j = cj

}

I− :=
{
j ∈ {1, 2, . . . , r} |θ̂j < −cj

}

I+ :=
{
j ∈ {1, 2, . . . , r} |θ̂j > cj

}

I :=
{
j ∈ {1, 2, . . . , r} |

∣∣∣θ̂j
∣∣∣ < cj

}

Since the function θ̂j(x) is linear in the new variable x according to

θ̂j(x) = ŵT
j (v−w− ek(x− wk))

= ŵT
j (v−w)−Wkj (x− wk) (23)

we can conclude the implication: if the limit x ↗ wk is valid, the value θ̂j(x)
converges uniquely from above or below to θ̂j . Therefore, it is intuitive to define
the refined subsets:

J−< :=
{
j ∈ I−= |θ̂j(x) ≤ −cj if x↗ wk ∧Wkj 6= 0

}

J−> :=
{
j ∈ I−= |θ̂j(x) ≥ −cj if x↗ wk

}

J+
< :=

{
j ∈ I+

= |θ̂j(x) ≤ cj if x↗ wk

}

J+
> :=

{
j ∈ I+

= |θ̂j(x) ≥ cj if x↗ wk ∧Wkj 6= 0
}

These reformulations allow the following implications:

j ∈ J−< =⇒ θj(x) = −cj ∧ θj = −cj if x↗ wk

j ∈ J−> =⇒ θj(x) = θ̂j(x) ∧ θj = −cj if x↗ wk

j ∈ J+
< =⇒ θj(x) = θ̂j(x) ∧ θj = cj if x↗ wk

j ∈ J+
> =⇒ θj(x) = cj ∧ θj = cj if x↗ wk

(24)

Since cj > 0, we can write the set {1, 2, ..., r} as the union

{1, 2, . . . , r} = J−< ∪ J−> ∪ J+
< ∪ J+

> ∪ I− ∪ I+ ∪ I
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over pairwise disjoint sets. We take

J =
{
J−< , J

−
> , J

+
< , J

+
> , I

−, I+, I
}

as the family of sets.
Using Equation (22), the distance d2 (v,w,W, c) can be rewritten as4

d2 (v,w,W, c)

=
n∑

j=1
(vj − wj)2 +

∑

M∈J

∑

j∈M

(
θ2
j − 2θj θ̂j

)

=
n∑

j=1
(vj − wj)2 −

∑

j∈J−
<

c2
j −

∑

j∈J−
>

c2
j

−
∑

j∈J+
<

c2
j −

∑

j∈J+
>

c2
j +

∑

j∈I−

(
c2
j + 2cj θ̂j

)

+
∑

j∈I+

(
c2
j − 2cj θ̂j

)
−
∑

j∈I
θ̂2
j

and, analogously, d2 (v,w(x),W, c):

d2 (v,w(x),W, c)

=
n∑

j=1;j 6=k
(vj − wj)2 + (vk − x)2 +

∑

M∈J

∑

j∈M

(
θ2
j (x)− 2θj(x)θ̂j(x)

)

=
n∑

j=1;j 6=k
(vj − wj)2 + (vk − x)2 +

∑

j∈J−
<

(
c2
j + 2cj θ̂j(x)

)
−
∑

j∈J−
>

θ̂2
j (x)

−
∑

j∈J+
<

θ̂2
j (x) +

∑

j∈J+
>

(
c2
j − 2cj θ̂j(x)

)
+
∑

j∈I−

(
c2
j + 2cj θ̂j(x)

)

+
∑

j∈I+

(
c2
j − 2cj θ̂j(x)

)
−
∑

j∈I
θ̂2
j (x)

4To avoid a too heavy mathematical notation, we use the same summation index for all
sums and define that the scope of the sum is only the immediately following expression.
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Using all these results, we obtain for the limit from below:

lim
x↗wk

d2 (v,w(x),W, c)− d2 (v,w,W, c)
x− wk

= lim
x↗wk




(vk − x)2 − (vk − wk)2 + 2
∑
j∈J−

<
cj

(
cj + θ̂j(x)

)

x− wk

+
−∑j∈J−

>

(
θ̂2
j (x)− c2

j

)
−∑j∈J+

<

(
θ̂2
j (x)− c2

j

)

x− wk

+
2
∑
j∈J+

>
cj

(
cj − θ̂j(x)

)
+ 2

∑
j∈I− cj

(
θ̂j(x)− θ̂j

)

x− wk

+
−2
∑
j∈I+ cj

(
θ̂j(x)− θ̂j

)
−∑j∈I

(
θ̂2
j (x)− θ̂2

j

)

x− wk




We use the following simplification principles for the respective expressions to
simplify the limit: a) Sums of the form

∑
j∈J−

<
cj

(
cj + θ̂j(x)

)
are simplified by

the corresponding property of Equation (24) and the formula (23)

cj

(
cj + θ̂j(x)

)
= −cj

(
−cj − θ̂j(x)

)

= −cj
(
ŵT
j (v−w)− ŵT

j (v−w(x))
)

= −cjŵT
j ek (x− wk)

= −cjWkj (x− wk)

and b) sums of the type
∑
j∈J+

<

(
θ̂2
j (x)− c2

j

)
to:

(
θ̂2
j (x)− c2

j

)
=

(
θ̂j(x)− θ̂j

)(
θ̂j(x) + cj

)

=
(
ŵT
j (v−w(x))− ŵT

j (v−w)
) (
θ̂j(x) + cj

)

= −ŵT
j ek (x− wk)

(
θ̂j(x) + cj

)

= −Wkj (x− wk)
(
θ̂j(x) + cj

)

Applying both concepts a) and b) for simplification to all sums we obtain for
the limit from below:
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lim
x↗wk

d2 (v,w(x),W, c)− d2 (v,w,W, c)
x− wk

= lim
x↗wk

(− (2vk − x− wk) (x− wk)− 2
∑
j∈J−

<
cjWkj (x− wk)

x− wk

+

∑
j∈J−

>
Wkj (x− wk)

(
θ̂j(x)− cj

)
+
∑
j∈J+

<
Wkj (x− wk)

(
θ̂j(x) + cj

)

x− wk

+
2
∑
j∈J+

>
cjWkj (x− wk)− 2

∑
j∈I− cjWkj (x− wk)

x− wk

+
2
∑
j∈I+ cjWkj (x− wk) +

∑
j∈IWkj (x− wk)

(
θ̂j(x) + θ̂j

)

x− wk




= lim
x↗wk


− (2vk − x− wk)− 2

∑

j∈J−
<

cjWkj +
∑

j∈J−
>

Wkj

(
θ̂j(x)− cj

)

+
∑

j∈J+
<

Wkj

(
θ̂j(x) + cj

)
+ 2

∑

j∈J+
>

cjWkj − 2
∑

j∈I−

cjWkj

+2
∑

j∈I+

cjWkj +
∑

j∈I
Wkj

(
θ̂j(x) + θ̂j

)



= −2 (vk − wk)− 2
∑

j∈J−
<

cjWkj − 2
∑

j∈J−
>

cjWkj

+2
∑

j∈J+
<

cjWkj + 2
∑

j∈J+
>

cjWkj − 2
∑

j∈I−

cjWkj

+2
∑

j∈I+

cjWkj + 2
∑

j∈I
Wkj θ̂j

= −2 (vk − wk)− 2
∑

j∈I−
=∪I−

cjWkj + 2
∑

j∈I+
=∪I+

cjWkj + 2
∑

j∈I
Wkj θ̂j

In the next step, we calculate the limit from above x↘ wk and, again, start
with analogous definitions of index sets:

K−< :=
{
j ∈ I−= |θ̂j(x) ≤ −cj if x↘ wk ∧Wkj 6= 0

}

K−> :=
{
j ∈ I−= |θ̂j(x) ≥ −cj if x↘ wk

}

K+
< :=

{
j ∈ I+

= |θ̂j(x) ≤ cj if x↘ wk

}

K+
> :=

{
j ∈ I+

= |θ̂j(x) ≥ cj if x↘ wk ∧Wkj 6= 0
}
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As before, we are able to formulate the following implications regarding these
sets

j ∈ K−< =⇒ θj(x) = −cj ∧ θj = −cj if x↘ wk

j ∈ K−> =⇒ θj(x) = θ̂j(x) ∧ θj = −cj if x↘ wk

j ∈ K+
< =⇒ θj(x) = θ̂j(x) ∧ θj = cj if x↘ wk

j ∈ K+
> =⇒ θj(x) = cj ∧ θj = cj if x↘ wk

which allow the explicit calculation of the limits according to

lim
x↘wk

d2 (v,w(x),W, c)− d2 (v,w,W, c)
x− wk

= −2 (vk − wk)− 2
∑

j∈K−
<

cjWkj − 2
∑

j∈K−
>

cjWkj

+2
∑

j∈K+
<

cjWkj + 2
∑

j∈K+
>

cjWkj − 2
∑

j∈I−

cjWkj

+2
∑

j∈I+

cjWkj + 2
∑

j∈I
Wkj θ̂j

= −2 (vk − wk)− 2
∑

j∈I−
=∪I−

cjWkj + 2
∑

j∈I+
=∪I+

cjWkj + 2
∑

j∈I
Wkj θ̂j

Again, both one-sided limits are equal and, moreover, equivalent to the compo-
nent k of the formula (18)

∂d2 (v,w,W, c)
∂wk

= −2eTk
(
In −WHWT

)
(v−w) + 2eTk WS (Ir −H) c

= −2(vk − wk) + 2w̌k

(
Hθ̂ + S (Ir −H) c

)

= −2(vk − wk) + 2w̌kθ∗ (25)

where w̌k is the k-the row vector of W. Thus, the partial derivatives with
respect to w exist over Dv, which proves the overall partial differentiability of
d2
D (v,w(θ)).

Condition 3. Considering the Equations (17) – (20), it is straightforward
to see that the partial derivatives are continuous over Dv.

Corollary 1. Since the function is differentiable over Dv it follows that the
relation between the gradient ∇f(x) and the partial derivatives ∂f(x)

∂x holds as

∇f(x) = ∂f(x)
∂x
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such that we can compute the gradients of d2
D (v,w(θ)) over Dv by simply ap-

plying the formulas (17) – (20).

5 Conclusion
We have shown in this paper that the restricted minimization problem (4) can
be solved analytically and, therefore, the shortest distance problem has a close
solution formula (15). Further, we have proven that the closed-form solution
is differentiable almost everywhere and derive the gradients with respect to
the variables of interest, see Equation (17) – (20). Using these formulas, it is
possible to plug the distance measure in existing distance based machine learning
frameworks, where the training procedure optimizes a given energy function by
a gradient learning scheme. A respective framework is the GLVQ method. The
application of the proposed concept for the GLVQ approach will be the topic of
ongoing research.

Acknowledgment
The authors would like to thank Mehrdad Mohannazadeh Bakhtiari from the
Computational Intelligence Group of the University of Applied Sciences Mitt-
weida for proofreading.

References
[1] P. Simard, Y. LeCun, and J.S. Denker. Efficient pattern recognition using a

new transformation distance. In S.J. Hanson, J.D. Cowan, and C.L. Giles,
editors, Advances in Neural Information Processing Systems 5, pages 50–
58. Morgan-Kaufmann, 1993.

[2] D. Nebel, M. Kaden, A. Bohnsack, and T. Villmann. Types of
(dis−)similarities and adaptive mixtures thereof for improved classification
learning. Neurocomputing, 268:42–54, 2017.

[3] T. Hastie, P. Simard, and E. Säckinger. Learning prototype models for
tangent distance. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors,
Advances in Neural Information Processing Systems 7, pages 999–1006.
MIT Press, 1995.

[4] B. Haasdonk and D. Keysers. Tangent distance kernels for support vector
machines. In R. Kasturi, D. Laurendeau, and C. Suen, editors, Proceedings
of the 16th International Conference on Pattern Recognition (ICPR), Qué-
bec City, volume 2, pages 864–868. IEEE Press, Los Alamitos, California,
2002.

25

Restricted Tangent Distances for Local Data Dissimilarities

Machine Learning Reports 27



[5] D. Keysers, W. Macherey, H. Ney, and J. Dahmen. Adaptation in statistical
pattern recognition using tangent vectors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):269–274, 2004.

[6] D. Sona, A. Sperduti, and A. Starita. Discriminant pattern recognition
using transformation-invariant neurons. Neural Computation, 12:1355–
1370, 2000.

[7] D. Keysers, J. Dahmen, T. Theiner, and H. Ney. Experiments with an
extended tangent distance. In A. Sanfeliu, J. J. Villanueva, M. Vanrell,
R. Alquékzar, J. Crowley, and Y. Shirai, editors, Proceedings of the 15th
International Conference on Pattern Recognition, Barcelona, volume 2, pa-
ges 38–42. IEEE Press, Los Alamitos, California, 2000.

[8] S. Saralajew and T. Villmann. Adaptive tangent metrics in generalized le-
arning vector quantization for transformation and distortion invariant clas-
sification learning. In Proceedings of the International Joint Conference on
Neural networks (IJCNN) , Vancouver, pages 2672–2679. IEEE Computer
Society Press, 2016.

[9] S. Saralajew, D. Nebel, and T. Villmann. Adaptive Hausdorff distances and
tangent distance adaptation for transformation invariant classification lear-
ning. In A. Hirose, editor, Proceedings of the International Conference on
Neural Information Processing (ICONIP) , Kyoto, volume 9949 of LNCS,
pages 362–371. Springer, 2016.

[10] S. Saralajew and T. Villmann. Transfer learning in classification based on
manifold models and its relation to tangent metric learning. In Procee-
dings of the International Joint Conference on Neural Networks (IJCNN),
Anchorage, pages 1756–1765. IEEE Computer Society Press, 2017.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press„ 2004.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[13] K. Brand Petersen and M. Syskind Pedersen. The Matrix Cookbook.
http://matrixcookbook.com, 2012.

[14] A.N. Kolmogorov and S.V. Fomin. Reelle Funktionen und Funktionalana-
lysis. VEB Deutscher Verlag der Wissenschaften, Berlin, 1975.

26

Restricted Tangent Distances for Local Data Dissimilarities

28 Machine Learning Reports



MACHINE LEARNING REPORTS

Report 02/2016

Impressum
Machine Learning Reports ISSN: 1865-3960
5 Publisher/Editors

Prof. Dr. rer. nat. Thomas Villmann
University of Applied Sciences Mittweida
Technikumplatz 17, 09648 Mittweida, Germany
• http://www.mni.hs-mittweida.de/

Dr. rer. nat. Frank-Michael Schleif
University of Bielefeld
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