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MiWoCI Workshop - 2017

1 Ninth Mittweida Workshop on Computational Intelli-
gence

From 24 Juli to 26 Juli 2017 we had the pleasure to organize and attend the ninth
Mittweida Workshop on Computational Intelligence (MiWoCi 2017). Multiple scientists
from the University of Bielefeld, HTW Dresden, the University of Groningen (NL), the
University of Birmingham (UK), the University of Applied Sciences Mittweida,Hefei Uni-
versity (China), Honda Research Offenbach, Porsche AG met in Mittweida, Germany,
to continue the tradition of the Mittweida Workshops on Computational Intelligence -
MiWoCi’2017.

The aim was to present their current research, discuss scientific questions, and
exchange their ideas. The seminar centered around topics in machine learning, signal
processing and data analysis, covering fundamental theoretical aspects as well as
recent applications, partially in the frame of innovative industrial cooperations. This
volume contains a collection of abstracts which accompany some of the discussions
and presented work of the MiWoCi Workshop.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar and his PhD and Master students.

Mittweida, July, 2017
Frank-M. Schleif

1E-mail: frank-michael.schleif@fhws.de
2University of Appl. Sc. Wuerzburg-Schweinfurt, Wuerzburg, Germany

4 Machine Learning Reports



Learning Pharmakokinetic Models for Prednisone

Absoption

Kerstin Bunte1, David Smith2, Michael Chappell3, Zaki K.
Hassan-Smith2, Jon2, Wiebke Arlt2, and Peter Tiño2

1University of Groningen, Groningen, NL
2The University of Birmingham, Birmingham, UK
3University of Warwick, Coventry, Warwick, UK

Abstract

We propose a method for learning clusters of pharmacokinetic models
demonstrated on a clinical data set investigating the 11β-HSD1 activity
in healthy adults. Prednisone has an identical affinity for 11β-HSD1 as
cortisone and the interconversion of oral prednisone to prednisolone has
been used as a marker of the enzyme activity. The parameters of the
multi-compartment ordinary differential equation model are studied via
identifiability analysis and the observable measurements, which is used
to interpret the learned clusters. We approximate the model using the
pertubation method, which enables very efficient training of the proposed
Guassian mixture clustering technique optimized by Estimation Maxi-
mization (EM). The training on the clinical data results in 4 clusters
resembling the prednisone conversion rate in a period of 4 hours based on
venous blood samples taken at 20-minute intervals. The learned clusters
differ in prednisone absorption as well as prednisone/prednisolone conver-
sion rate, which can be seen from the analysis of the learned parameter
relationships. Consultation of further satellite data for each person not
used for training reveals a correlation of cluster membership and total fat
mass.

MiWoCI Workshop - 2017
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Computer aided diagnosis of inborn steroidogenic disorders

Sreejita Ghosh1, Elizabeth Sarah Baranowski2, Michael Biehl1,
Wiebke Arlt2, Peter Tino3, Kerstin Bunte1

1- University of Groningen - JBI of Mathematics and Computer Science, NL

2- University of Birmingham - IMSR, UK

3- University of Birmingham - School of Computer Science, UK

Abstract: Due to improved biochemical sensor technology, there is increase in both amount of
complex biomedical data, and the demand for automated interpretable interdisciplinary analysis tech-
niques. However biomedical data have the challenges of 1) heterogenous measures, 2) missingness,
and 3) imbalanced classes. The problem of imbalanced class becomes prominent especially for pa-
tients with rare diseases. For such datasets, even if all the patients are misclassififield as healthy the
overall class accuracy might still be close to ninety percent. Thus optimizing overall class accuracy
of the classification technique is not enough. It is the high detection rate of the minority classes
which is particularly desirable. We have dataset of rare inborn steroidogenic disorsders which are
caused by specific genetic mutation, and lead to defective production of any of the enzymes or a
cofactor responsible for catalysing salt and glucose homeostasis, sex differentiation and sex specific
development. Inborn steroidogenic disorders need to be diagnosed as early as possible, to avoid delay
of lifesaving glucocorticoid therapy for adrenal insufficiency, and to facilitate gender allocation and
surgical planning in patients with disordered sex development. Our dataset consist of urine GC/MS
measurements from 829 healthy controls (305 under 1 year of age) and 118 genetically confirmed
patients with steroidogenic disorders. Data samples are presented as 165 dimensional ratio vec-
tors of 34 distinct steroid metabolite concentrations constructed using domain knowledge [3]. Bunte
et al. [1] introduced an approach for the computer-aided diagnosis of the most prevalent condition,
21-hydroxylase deficiency (CYP21A2), and two other representative, 5α-reductase type 2 deficiency
(SRD5A2) and P450 oxidorectase deficiency (PORD), and simultaneously handling missing and het-
erogenous measurements in the urine data. In Ghosh et al. [3] we investigated two main strategies
for learning from imbalanced data: 1) penalizing misclassification of disease to healthy more severely
than of misclassification within-diseases. 2) re-sampling the original dataset by either under-sampling
the majority class and/or over-sampling the minority classes according to Chawla et al. [2]. We used
two variants of Learning vector quantization(LVQ) which are capable of dealing with missingness,
NaNLVQ and Angle-LVQ, as classifiers. In Ghosh et al. [3] we had just used the relevance vectors.
As next steps we investigated 2 and 3 dimension global matrices in the Angle-LVQ classifier, followed
by the corresponding local matrices, to see if we could gain further insights from these higher dimen-
sions and more complex models. From the 2 and 3 dimension global matrices we obtained Disease
Maps and Disease Globes which are the projection of the samples from 2D and 3D global matrices
of AngleLVQ respectively. The Disease Globes were then flattened out into maps using Mollweide
projection. Comparison between the relevance profiles obtained from local and global matrices gave us
better idea about the disease specific blokages in the steroidogenic pathway (extraction of important
decision boundares). Such an understanding will help us create a system for personalized medicine
and individual treatment titration. In this workshop we would like to discuss the results from the
above experiments and the issues we are trying to solve.

References

[1] K. Bunte, E. S. Baranowski, W. Arlt, and P. Tino. Relevance learning vector quantization in vari-
able dimensional spaces. Workshop of the GI-Fachgruppe Neuronale Netze and the German Neural Net-
works Society in connection to GCPR 2016, pages 20–23, Hannover, Germany, August 2016. LNCS. URL
https://www.techfak.uni-bielefeld.de/ fschleif/mlr/mlr042016.pdf.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique.
Journal of artificial intelligence research, 16:321–357, 2002.

[3] S. Ghosh, E. Baranowski, R. van Veen, G. de Vries, M. Biehl, W. Arlt, P. Tino, and K. Bunte. Comparison of
strategies to learn from imbalanced classes for computer aided diagnosis of inborn steroidogenic disorders. In Proc.
of the European Symposium on Artificial Neural Networks, 2017.
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Fast and precise identification of flow cytometry

cell populations

Markus Lux

Identification of cell populations is a critical part of flow cytometry data anal-
ysis and lays the groundwork for both clinical diagnostics and research discovery.
The current paradigm of manual analysis is time consuming and subjective. For
automated gating, supervised tools provide the best performance, however they
require fine parameterization to obtain the best results. In this ongoing work,
we present a semi-supervised approach for the identification of cell populations.
Using as few as one manually gated sample, it is able to predict gates on other
samples with high accuracy and speed.

1
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Feature Relevance

Christina Göpfert Barbara Hammer

Bielefeld University, CITEC - Center of Excellence, Germany

cgoepfert@techfak.uni-bielefeld.de

While the relevance of features or sets of features for a machine learning
task is frequently analyzed, the results can be difficult to interpret. This
is in part due to varying definitions of feature relevance and the feature
selection problem, some of which can show counter-intuitive behavior. In
my talk, I give an introduction into basic concepts for formalizing feature
relevance and feature selection problems and their pitfalls. Furthermore, I
introduce a general concept for formalizing the all-relevant problem in terms
of generalization error bounds.

MiWoCI Workshop - 2017

8 Machine Learning Reports



Using RSLVQ for prior distribution

Mohammad Mohammadi?

?University of Groningen, Groningen, NL

Abstract

Fitting a probabilistic model for a given data set means we are try-
ing to find the best parameters for the model. In many application, it
is necessary to know about the uncertainty of the resulting parameters.
Bayesian approaches use posterior distributions to describe the uncer-
tainty of parameters. The posterior distribution depends on two factor:
prior distribution (what we expect about the parameters), and likelihood
function (what data tells us).

The prior distributions encode our knowledge or guess about the pa-
rameters. However, in many situations we do not have any knowledge
about it. In this scenario, data can give us a clue about parameters. One
option is to use prototypes’ distribution as a prior distribution. RSLVQ
can provide an approximation for prototypes’ distribution.

MiWoCI Workshop - 2017
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Soft-LVQ and Dependent Prototypes

M. Mohannazadeh and T. Villmann

Computational Intelligence Group,

University of Applied Sciences Mittweida, Germany

Soft LVQ (SLVQ) was introduced in [1] as a probabilistic variant for lear-

ning vector quantization (LVQ) networks. Yet, we show in this contribution

that the formulation of SLVQ does not describe a complete probabilistic

model in the mathematical sense. Therefore, a modification of the original

SLVQ is proposed to overcome this lack.

SLVQ assumes a data density p (x), which is a mixture of the class con-

ditional probabilities p (x|k), i.e.

p (x) =
C∑

k=1

p (x|c)P (c)

with P (c) is the prior of class c. The class conditional probabilities p (x|c)
are determined in SLVQ based on the prototype set W = {w1, . . . ,wM} with

class labels c (wj), i.e. we have the estimators p (x, c|W ) for p (x|c) as

p (x, c|W ) =
M∑

j=1

δc,c(wj)p (x|wj)PW (wj) (1)

where PW (wj) is the prior for the prototype wj and p (x|wj) is the proba-

bility that prototype wj has generated the data point x. The function

δc,c(wj) =





1 if c = c (wj)

0 if c 6= c (wj)

MiWoCI Workshop - 2017
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is known as the Kronecker symbol. Analogously, we have

p (x, c̄|W ) =
M∑

j=1

(
1− δc,c(wj)

)
p (x|wj)PW (wj) (2)

as the probability that x is not generated by the class c according to the

SLVQ model. Learning in SLVQ takes place as an optimization of the log-

likelihood

LSLV Q (W ) =
N∑

k=1

log

(
p (x, c|W )

p (x, c̄|W )

)
(3)

by stochastic gradient learning. However, the probabilities p (x, c|W ) and

p (x, c̄|W ) do note generate a complete probabilistic model because the equa-

lity

p (x, c|W ) + p (x, c̄|W ) = p (x|W )

holds and generally the inequality p (x|W ) = p (x) 6= 1 is valid. To obtain a

complete probabilistic model, we consider the normalized probabilities

pW (x, c) =
p (x, c|W )

p (x)
and pW (x, c̄) =

p (x, c̄|W )

p (x)
(4)

with

pW (x, c) + pW (x, c̄) = 1 (5)

and result the new log-likelihood

LSLV Q (W ) =
N∑

k=1

log

(
pW (x, c)

pW (x, c̄)

)
(6)

for optimization with the constraint (5). In this model the prototypes do

not longer act independently because they are mutually interacting via the

condition (5). Surprisingly, one easily verifies that LSLV Q (W ) = LSLV Q (W )

is valid. However, the new cost function allows the reformulation

LSLV Q (W ) =
N∑

k=1

log

(
pW (x, c)

1− pW (x, c)

)
(7)

according to the equality (5).

MiWoCI Workshop - 2017
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The consequence of this reformulation for optimization is a new stochas-

tic gradient learning scheme for SLVQ containing only an attraction term

for correctly classifying prototypes whereas the repulsion term known from

standard SLVQ is vanished. We denote this scheme as Attraction SLVQ

(ASLVQ). The other possibility is to treat (6) as an optimization problem

with constraints, which requires an Lagrangian approach for optimization

(L-SLVQ).

We will explain both approaches in detail during the talk at the MiWoCI-

workshop.

References

[1] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation,

15:1589–1604, 2003.
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Task-Driven Sparse Coding

for Classi�cation of Motion Data

Babak Hosseini Barbara Hammer
∗†

One of the current trends in the areas of image processing and motion
analysis is to extract semantic entities in order to facilitate doing semantic
search in the data bases and also to improve performance of high level ap-
proaches such as classi�cation and clustering. In that scope, we investigate
in how far natural priors such as sparsity allow an automatic extraction of
semantically meaningful entities based on the given data.

To that aim, We utilize a non-negative variant of sparse coding (SC) based
on a similarity kernel. The kernel is formed by using Dynamic time warping
(DTW) which o�ers particularly successful pairwise motion data comparison.
This combination leads to decomposition of motion data into a sparse linear
composition of base functions which enables e�cient data processing.

The other concern is having the mentioned decomposition and extraction
in such a way that increases the classi�cation performance of the motion data.
As the approach we choose the linear classi�er based on the generated sparse
codes. And to formulate the joint �sparse coding-classi�cation� framework
we use the task-driven optimization which relates one of the optimization
parts (classi�er) to the closed form solution of the other part (SC).

Although the coupled optimization framework converges to an optimal
point, there are challenges regarding the quality of this optimal point. The
constrained optimization framework is consist of two di�erent objective func-
tion and being solved in an alternating fashion and is prone to be trapped in
the local minimum points. Therefore we are looking for optimization tech-
niques and conditions to overcome this problem and converges to a global
optimum point or to an optimum point with satisfactory optimality.

∗This research was supported by the Cluster of Excellence Cognitive Interaction Tech-
nology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German Re-
search Foundation (DFG).

†Babak Hosseini (bhosseini@techfak.uni-bielefeld.de) and Barbara Hammer are with
the Theoretical Computer Science group of CITEC Bielefeld, Germany.
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Extending RFSOM with DeepFeatures

Sven Hellbach, Thomas Neumann, Mathias Klingner,
Hans-Joachim Böhme ?

?University of Applied Sciences Dresden

Klingner et al. [3] proposes an algorithm for posture estimation of a human body.
The algorithm takes the approach from Haker et al. [2] and extends it using Generalized
Matrix Learning Vector Quantization (GMLVQ).

The original approach [2] uses only a three dimensional space, i. e. direct spatial
coordinates, as feature space to fit a self-organizing feature map (SOM) with a body-like
topology. This leads to problems when individual regions of the person are in close
proximity.

Hence, [3] decided to add textural information by training prototypical description of
the body parts texture using GMLVQ. A bunch of typical texture descriptors, like RGB,
HSV, HOG, LBP, GLCM, are precomputed. Interpreting the matrix Ω describing the
adaptive metric in GMLVQ as relevance matrix gives a weighting of feature combination
to discriminate the individual body regions. The learning metric together with the class
prototypes are then used in the SOM.

Deep learning offers a possibility due to the deep architecture to learn the necessary
features for a given problem. Hence, we decided to exchange the mentioned predefined
textural features with the activities of earlier layers of a pre-trained deep network. We
use VGG16 [4] as a convolutional neural network (CNN) specifically trained for image
classification problems.

A similar approach to train the features was suggested by Giotis et al. [1]. However,
they are focusing on feature with an analytic description, like Gabor wavelets, while the
use of deep learning can be regarded as a more generalized formulation.

References

[1] Ioannis Giotis, Kerstin Bunte, Nicolai Petkov, and Michael Biehl. Adaptive matrices
and filters for color texture classification. Journal of Mathematical Imaging and
Vision, 47(1):79–92, Sep 2013.
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[2] Martin Haker, Martin Böhme, Thomas Martinetz, and Erhardt Barth. Self-
organizing maps for pose estimation with a time-of-flight camera. In Proceedings
of the DAGM 2009 Workshop on Dynamic 3D Imaging, Dyn3D ’09, pages 142–153,
Berlin, Heidelberg, 2009. Springer-Verlag.

[3] Mathias Klingner, Sven Hellbach, Martin Riedel, Marika Kaden, Thomas Villmann,
and Hans-Joachim Böhme. RFSOM Extending Self-Organizing Feature Maps with
Adaptive Metrics to Combine Spatial and Textural Features for Body Pose Estima-
tion. In Advances in Self-Organizing Maps and Learning Vector Quantization, vol-
ume 295 of Advances in Intelligent Systems and Computing, pages 157–166. Springer
International Publishing, 2014.

[4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.
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Deep Learning and LVQ

Some first Results in Image Classification

Thomas Neumann?, Sven Hellbach?, and Markus Wacker?

?University of Applied Sciences, Dresden, Germany

Since the influential work by Krizhevsky, Sutskever, and Hinton [3], deep
convolutional neural networks (ConvNets) have become the predominant ap-
proach for image classification, showing excellent performance especially when
large amounts of training data is available. Recent work in this area mostly
focused on novel network architectures, new activation functions, or clever op-
timisation algorithms. However, the final classification module on top of such a
ConvNet essentially remained the same for years: a fully-connected layer with
softmax activation, whose output is optimised with the cross-entropy loss. Dif-
ferent loss functions were studied only very recently [2].

Villmann et al. [4] propose another alternative: their theoretical arguments
prove that generalised learning vector quantisation (GLVQ) can be combined
with an (arbitrarily deep) neural network. With a similar idea in mind, Vries,
Memisevic, and Courville [5] were already successful in providing first evidence
for the practicability of this general idea - at least when the network is aug-
mented with a supervised neural gas based loss. Our experiments show that
modern ConvNets architectures such as pre-activation residual networks [1] and
wide residual networks [7], architectures that contain over 10 million parame-
ters, can be successfully trained directly with the classical GLVQ loss. These
networks achieve up to 5.25% test error on the CIFAR-10 dataset, reaching
almost the same accuracy as their softmax/cross-entropy counterparts (4.81%
according to [7], 5.16% in our reimplementation of their paper). These first
results show: deep learning quantizers seem to work in practice.

However, we also identified several problems with the feature representation
that is discovered by these deep GLVQ networks. Their feature space seems
unnecessarily sparse, especially when compared to the representations recovered
by softmax/cross-entropy networks. Prototypes seem to latch onto individual,
independent axes in feature space. Visualisation of the filter responses using
the method by Yosinski et al. [6] reveal noisy and unintuitive prototypes.

We do not yet know if these observations actually hint at an inherent problem
with our deep learning vector quantisers, or if they are just a manifestation of
the intrinsic properties of one of the components, e.g. the GLVQ loss function
itself or the metric used to measure distances to the prototypes. In any case,

MiWoCI Workshop - 2017
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these observations provoke interesting questions:

• Is `2 the most suitable metric for deep GLVQ?

• Do we need completely different network architectures or training hyper-
parameters when training deep learning quantisers in order for them to
converge to better solutions?

• Do we need to augment the loss function to further constrain the solution
space - after all, this solution space is extremely large due to the immense
number of degrees of freedom in a deep neural network?

• Do we need new visualisation techniques to uncover the feature represen-
tation of deep GLVQ networks?

• Is it hopeless to expect from deep learning vector quantisers that they
yield intuitive feature dimensions and intuitive prototypes?

• How do we correctly recover and interpret the deep prototypes?

We aim to answer these questions in future work. Our hope is to establish the
GLVQ scheme as a viable alternative to classical loss functions in the deep learn-
ing community, while at the same time expanding the capabilities of classical
learning vector quantisation.

References

[1] Kaiming He et al. “Identity Mappings in Deep Residual Networks”. In:
(2016). arXiv: 1603.05027.

[2] Katarzyna Janocha and Wojciech Marian Czarnecki. “On Loss Functions
for Deep Neural Networks in Classification”. In: (2017). arXiv: 1702.05659.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. 2012, pp. 1097–1105.

[4] Thomas Villmann et al. “Combination of Deep Learning Architectures,
Multilayer Feedforward Networks and Learning Vector Quantizers for Deep
Classification Learning”. In: Advances in Self-Organizing Maps and Learn-
ing Vector Quantization: Proceedings of the 12th International Workshop
WSOM 2017. to appear.

[5] Harm de Vries, Roland Memisevic, and Aaron Courville. “Deep Learning
Vector Quantization”. In: European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning. 2016.

[6] Jason Yosinski et al. “Understanding Neural Networks Through Deep Vi-
sualization”. In: (2015). arXiv: 1506.06579.

[7] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In:
(2016). arXiv: 1605.07146.
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Differential Privacy for GLVQ

Johannes Brinkrolf Barbara Hammer

Bielefeld University, CITEC - Center of Excellence, Germany

jbrinkro@techfak.uni-bielefeld.de

Abstract

Digital information is collected daily in growing volumes. Mutual bene-
fits drive the demand for the exchange and publication of data among par-
ties. It is often unclear how to handle these data properly because the orig-
inal data typically contains sensitive information. It is shown that simple
anonymization of the data does not ensure de-identification, e.g., by link-
ing the anonymized database with another one [2]. Differential privacy has
become a powerful principle for privacy-preserving data analysis tasks in
the last few years, which entails a formal privacy guarantee by separating
the utility of the database and the risk due to individual participation. We
briefly review the problem of statistical disclosure control under differential
privacy model and show one example how the training of a GLVQ model
can be change obey differential privacy. We first enhance the initialization
by a simple differential private mechanism, and then use one differential pri-
vate version of the stochastic gradient decent by Abadi et al. [1] for GLVQ
training.

References
[1] Martín Abadi et al. “Deep Learning with Differential Privacy”. In: Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. 2016, pp. 308–
318.

[2] Arvind Narayanan and Vitaly Shmatikov. “Robust De-anonymization
of Large Sparse Datasets”. In: 2008 IEEE Symposium on Security and
Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA. 2008,
pp. 111–125.
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Going beyond global and static: Extending

supervised linear transfer learning to more

complex models

Alexander Schulz Benjamin Paaßen Barbara Hammer

June 29, 2017

The aim of transfer learning is to re-use knowledge from existing models in
new domains and thereby avoid to train an entirely new model. This methodol-
ogy is particularly promising if the trained model is complex but the relationship
between the old and the new domain is simple, for example an approximately
linear function. Recently, the framework of linear supervised transfer learning
has been suggested which learns a mapping from target to source domain such
that the original model combined with the mapping minimizes the model error
on target space training data [2]. This framework has been applied successfully
to counteract disturbances in bionic prosthesis control as well as transferring
models trained on one hyper-spectral sensor to a different hyper-spectral sen-
sor [2, 1]. However, in these cases the re-used model was a relatively simple
GMLVQ model, which is fast to re-train. Linear supervised transfer learning
promises even more added value for models which require substantially more
data due to there inherent complexity. This contribution kicks off the journey
toward transfer learning for more complex models.

References
[1] K. Berger, A. Schulz, B. Paaen, and B. Hammer. Linear supervised transfer learning for

the large margin nearest neighbor classifier. In submitted to the AIAI2017, 2017.

[2] B. Paaßen, A. Schulz, J. Hahne, and B. Hammer. An EM transfer learning algorithm
with applications in bionic hand prostheses. In M. Verleysen, editor, Proceedings of the
25th European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN 2017), pages 129–134. i6doc.com, 2017.
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Restricted Tangent Distances in Learning Vector
Quantization

S. Saralajew1 and T. Villmann2

1 Electrical/ Electronics Driver Assistance Platform/ Systems,
Dr. Ing. h.c. F. Porsche AG Weissach, Germany

2 Computational Intelligence Group,
University of Applied Sciences Mittweida, Germany

The classical tangent distance concept applied to the Learning Vector Quan-
tization (LVQ,[1]) framework can be considered as an extension of the LVQ-
prototype concept [2, 3, 4]. More precisely, in the original LVQ the prototypes 
are points in a vector space whereas in the tangent distance approach pro-
totypes represent affine subspaces [5, 6].

In this contribution we present a modification of the tangent distance con-
cept. Particularly, we restrict the affine subspaces to be only patches of affine
subspaces, i.e. we consider a local representation. This idea leads to a modified
tangent distance measure for LVQ learning, which is differentiable regarding the
parameters of interest and, hence, can be adapted during training.

Obviously, the new distance measure can be plugged into an arbitrary distance-
based machine learning framework and, therefore, is of general interest.

In the workshop contribution we demonstrate the working principles of the
method for two toy data sets. Further, we address related open questions to
stimulate ongoing research.

References
[1] Teuvo Kohonen. Learning Vector Quantization. Neural Networks, 1(Supple-

ment 1):303, 1988.

[2] P. Simard, Y. LeCun, and J.S. Denker. Efficient pattern recognition using a
new transformation distance. In S.J. Hanson, J.D. Cowan, and C.L. Giles,
editors, Advances in Neural Information Processing Systems 5, pages 50–58.
Morgan-Kaufmann, 1993.
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Grassmann Manifolds, Hankel Matrices and

Tangent Metric Models in Classification

Learning

T. Villmann

Computational Intelligence Group,

University of Applied Sciences Mittweida, Germany

Pattern recognition frequently has to deal with noisy data describing ob-

jects or with different representations of objects, for example different illumi-

nation or rotations in image processing. Those data can be seen as particular

sample vectors x ∈ Rn belonging to a data space describing the object and its

variations. A mathematical frame work for robust and adequate data proces-

sing is the concept of Grassmann manifolds equipped with the Riemannian

geometry [1].

Supposing a k-frame of (orthogonal) sample vectors assigned to an object

which are collected into a matrix X ∈ Rn×k with 0 < k ≤ n. Then the

matrix X generates a linear subspace Hk (X). The Grassmann manifold Gnk
is the space of k-dimensional linear subspaces (hyperplanes) Hk, i.e. the

matrix X determines a certain point in the Grassmann manifold Gnk , see

Fig. (1). Comparing of object representations X and Y is done as the

calculation of distances between the linear subspaces Hk (X) and Hk (Y).

For this purpose, several dissimilarity measures are known, most of them

based on subspace angles θ1, . . . , θk between the subspaces [2]. For example,
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Figure 1: Illustration of a Grassmann manifold Gnk . Objects variations col-

lected in a matrix generate linear subspaces Hk, which are points at the

manifold. Distances between points are measured in terms of manifold dis-

tances. The geodesic distance dg (Hk (X) ,Hk (Y)) from (1) is the path length

along the geodesic path within the manifold.
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the geodesic distance along the geodesic path in the manifold (see Fig.(1)) is

dg (Hk (X) ,Hk (Y)) =

√√√√
k∑

j=1

θ2j (1)

whereas

dc (Hk (X) ,Hk (Y)) =

√√√√
k∑

j=1

sin2 (θj) (2)

is the chordal distance [3]. For the latter distance exists an isometrically

embedding into the Euclidean space [4]. The geodesic distance realizes a non-

Euclidean embedding. Both metrics can be seen also as examples to compare

sets of vectors stored in the matrices X and Y, i.e. they are particular

realizations of a Hausdorff-metric [5].

Both distances can be immediately used in median (geodesic) or relational

variants (chordal) of learning vector quantization for classification learning

[6, 7]. Further, the geodesic distance can be used also in online learning

vector quantizers using the derivative representation proposed and explained

in [4] based on the mathematical considerations provided by [8].

In the contribution at the MiWoCI-workshop we explain the mathemati-

cal foundations of the Grassmannian approach and discuss basic properties

related to classification learning. Further we show that this framework can

be used also to compare tangent metric models in transfer learning or Hankel

matrices in sequence discrimination learning as proposed for learning vector

quantization in [9, 10].
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Causal inference to mitigate redundancy in

feature selection

Lukas Pfannschmidt
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Abstract

In a classical learning scenario, feature selection is used to find relevant
parts of the input space. In the past we lookeda gct the problem of finding
feature relevance bounds for the all-relevant feature set on biomedical
data. While previously relying on the statistical dependency between
features to find correlated feature subsets, we now want to extend this
approach by incorporating causal inference to add an ordering of features.
This would enable a focused analysis of the causal factors in biomedical
experiments and reduce redundancies. In this talk we want to present
the problem of causal inference, in the context of feature selection and its
potential in biomedical analysis, to encourage the audience to contribute
their own ideas into this ongoing project.
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Lifelong (machine) learning of drifting concepts in

prototype-based classifiers

Michael Biehl?, Fthi Abadi?, and Christina Göpfert, Barbara
Hammer1
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1University of Bielefeld, Bielefeld, Germany

Abstract

Most frequently, frameworks of machine learning comprise of two dif-
ferent stages: First, in a training phase, a given set of example data
is analysed, information is extracted and a corresponding hypothesis is
parameterized in terms of, say, a classifier or regression system. In a
subsequent working phase, this hypothesis is then applied to novel data.

For many practical applications of machine learning this separation is
convenient and appears natural. A - by now - classical example would be
the automated classification of handwritten digits by means of a neural
network that has previously been trained from a large number of labeled
input examples.

Obviously, the conceptual and temporal separation of training and
working phase is not a very plausible assumption for human and other
biological learning processes. Moreover, it becomes inappropriate if the
actual task of learning, e.g. the target rule in a classification problem,
changes continuously in time. In such a situation, the learning system
must be able to detect and track the concept drift, i.e. forget irrelevant,
older information while continuously adapting to more recent inputs.

In this contribution we present a mathematical model of learning drift-
ing concepts in prototype-based classifiers, which are trained from high-
dimensional data. Methods borrowed from statistical physics allow for
the study of the typical learning dynamics for different training strategies
in the presence of various drift scenarios. The mathematical framework
is outlined, first results are presented and open questions are discussed.
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3D Head Reconstruction via Convolutional
Neural Networks Trained on Synthetic Images

Jan Philip Göpfert

Bielefeld University, CITEC - Center of Excellence, Germany

jgoepfert@techfak.uni-bielefeld.de

Convolutional Neural Networks can learn complicated mappings on im-
ages that would otherwise be difficult to formulate. However, a lack of labeled
data can preclude the training of such networks. This is the case in the re-
construction of 3-dimensional human heads from 2-dimensional photographs.
Approaching the problem backwards, starting from 3-dimensional heads and
using photo-realistic rendering, one can create any number of training data
to tackle the problem. This way, fine control over the data allows for new
insights into how a Convolutional Neural Network interprets data and how
hidden variables affect its performance.
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Short Summary of Relational and Median Variants
of Possibilistic Fuzzy C-Means

Tina Geweniger
Faculty Applied Computer Sciences and Biosciences

University of Applied Sciences Mittweida
Mittweida, Germany

Email: tgewenig@hs-mittweida.de

Abstract—Possibilistic Fuzzy c-Means is a clustering technique
introduced by Pal et al. in 2005. To position cluster representative
prototypes the method takes probabilistic and possibilistic cluster
assignments into account. We extend this method to handle non-
vectorial data. Thereby, we first assume that a Euclidean data
embedding is possible and derive a relational variant. The second
proposed modification aims to perform a clustering based on
abstract data objects. Here only their dissimilarities are known
and representative data samples are selected as prototypes.

I. I NTRODUCTION

In [1] Pal et. al proposed a special kind of c-Means taking
probabilistic and possibilistic cluster assignments intoaccount.
They combined both paradigms in one cost function balancing
their influence by user-defined parameters. This way a soft
clustering can be obtained, where each data point belongs to
one or more clusters depending on the distance or similarity
to all other clusters. Yet there is a difference between the
interpretation of probabilistic and possibilistic assignments.
If a data point is equidistant to two arbitrary clusters, the
probabilistic membership values to both cluster centers are
the same no matter of the actual distance to both clusters.
Therefore, in this case the membership value does not hold
much information about the similarity between data point and
prototypes. To circumvent this problem possibilistic assign-
ments are integrated into the algorithm. These assignmentsare
treated differently and can also be interpreted astypicalities.
The higher the similarity between data point and cluster center,
the higher the typicality value. Therefore, while probabilistic
restrictions force data points to belong to one ore more
clusters, the possibilistic assignments allow to detect outliers
[1]. Figure 1 illustrates the difference between probabilistic
membership and typicality. Yet as for the common C-Means
the data points have to be provided in vectorial form and a
Euclidean embedding is assumed.

If only dissimilarity data exists, this algorithm has to be
modified. For data which can be embedded into the Euclidean
space we propose a relational variant. If this embedding is
not possible we developed an appropriate median version by
modifying the algorithm to work with given dissimilarities
of the objects and to select representative data samples as
prototypes.

In our article [2] presented at the WSOM 2017 we provided
the mathematical framework, the modified algorithms and

B

A

Cluster 1 Cluster 2

Fig. 1. Two normally distributed two-dimensional clusters with same variance
and number of data samples. Data Point A and B are equidistant toboth
cluster centers. The probabilistic assignments (fuzzy memberships) of A and
B to the cluster centers are identicaluA1 = uA2 = uB1 = uB2 = 0.5. Yet
the possibilistic assignments (typicalities) are different: The values of A are
much higher than the values of BtA1 = tA2 > tB1 = tB2 (notation see
next section).

update rules, and the proofs of convergence for both median
and relational data. Here we present a short survey of the most
important features of the modifications to allow easy use and
implementation.

In the following you find three sections. The first one
describes the Possibilistic Fuzzy C-Means (PFCM) as in-
troduced by Pal et al. [1] and the following two sections
describe our modifications concerning relational and median
data respectively.

II. POSSIBILISTIC FUZZY C-MEANS

The Possibilistic Fuzzy C-Means incorporating probabilistic
(fuzzy) cluster assignments and possibilistic typicalities was
proposed by Pal et al. [1]. The cost function is defined as

JPFCM (U,T,W;X) =

n∑

k=1

c∑

i=1

(a · um
ik + b · tηik) · d2ik

+

c∑

i=1

γi

n∑

k=1

(1 − tik)
η (1)

where we have a setX = {x1, ...,xn} of n d-dimensional
data pointsxk ∈ Rd and dik = d (xk,wi) is a dissimilarity
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measure. The aim of PFCM is to cluster the data and to
find representative prototypeswi ∈ Rd. The set of allc
prototypes is given byW = {w1, ...,wc} wherebyn ≫ c.
The probabilitiesuik and the typicalitiestik are subject to
some restrictions:uik ∈ [0, 1] with

∑c
i=1 uik = 1 ∀k and

tik ∈ [0, 1]. The exponentsm > 1 and η > 1 control the
degree of fuzziness and typicality. The matricesU andT are
both of sizec×n and hold the fuzzy assignments and typicality
values respectively. The parametersa ≥ 0, b ≥ 0, andγi ≥ 0
balance the probabilistic and possibilistic influence on the cost
function. In [1] the authors Pal et al. explicitly mention that
the conditiona+ b = 1 does not have to be fulfilled.

For the special case ofb = 0 andγi = 0 ∀i the cost function
in eq. (1) reduces to the objective function of the common
Fuzzy C-Means [3]. Settinga = 0 the cost function of the
Possibilistic C-Means [4] is obtained.

The second term of the cost function 1 was introduced to
put a constrained on the typicalities to avoid the problem of
very small typicality values for large data sets.

The algorithm following an alternating optimization scheme
is given in alg. 1.

Algorithm 1 Possibilistic Fuzzy C-Means (PFCM) [1]
1: set numberc of prototypes
2: initialize all parameters
3: initialize prototypes randomly within the data space
4: repeat
5: update probabilistic assignments followed by normal-

ization

uik =

(∑c
j=1

(
dik

djk

)2/(m−1)
)−1

6: update typicalities (possibilistic assignments)

tik =

(
1 +

(
b
γi
d2ik

)1/(η−1)
)−1

7: update prototypes

wi =
∑n

k=1(a·um
ik+b·tηik)xk∑n

k=1(a·um
ik+b·tηik)

8: optionally adapta andb to recalibrate the influence of
probabilities and typicalities

9: until convergence or manual stop

The update rules are obtained by applying the Lagrange
multiplier theorem to minimize the cost function (1) [1]. Please
note, that the update rule for the prototypeswi is only valid if
the squared Euclidean distance is used as dissimilarity measure
d (xk,wi) = ‖xk − wi‖. Further consideration concerning
parameter initialization and in-depth hints are also provided
in [1].

III. R ELATIONAL PFCM

When dealing with abstract or non-vectorial data objects it
is not possible to use the data samplesxk themselves for clus-
tering. However, assume that the distance matrixD ∈ Rn×n

+

containing the dissimilaritiesDij = d(xi, xj) of then objects
is provided. If further it can be assumed that there exists a
(possibly non-linear) mapping

g(xk) = vk (2)

with vk ∈ V projecting the data objects into a possibly
high-dimensional Euclidean embedding spaceV such that
Dij = d2V (vi,vj) is the squared Euclidean distance inV
then the prototypeswiinV can be defined as convex linear
combinations of the data and can be described as

wi =
n∑

j=1

αijvj (3)

with αij ≥ 0 and
∑n

j=1 αij = 1.
We can write the distance between data and the weight

vectors as

d2V (vk,wi) =
∑

j

αij · d2V (vk,vj) − 1

2
αααT
i · D ·αααi (4)

with αααi = (αi1, . . . , αin)
T being the vector of the embedding

coefficients [5] andD as matrix of given data dissimilarities
Dij [6].

The cost function is structurally identical with (1). Yet now,
instead of calculating distance values the values providedin
D are used.

The update of prototypes, probabilities, and typicalities
takes place by Stochastic Gradient Descent Learning (SGDL)
and considering a Lagrange function taking all restrictions into
account [2]. The updated algorithm for relational data is given
in alg. 2.

Note that no real prototypes are obtained. Instead they are
described indirectly by the coefficient vectorsαααi, i. e. by
settingαααi virtual prototypes are generated.

Further details, hints, derivation of update rules, and proof
of convergence can be found in [2].

IV. M EDIAN PFCM

Again we assume that only the distance matrixD ∈ Rn×n
+

of all objects of the data set is available. Yet we drop all
restrictions regarding triangle inequality and symmetry,i. e.
we no longer assume that there is an underlying Euclidean
metric. Therefore, we cannot use the relational ansatz of R-
PFCM. Instead we have to select representative data samplesto
act as prototypes for emerging clusters. As before, the overall
goal is to minimize a cost function structurally equivalentto
(1)

JM−PFCM =

n∑

k=1

c∑

i=1

(a · um
ik + b · tηik) · D2

J(i)k

+
c∑

i=1

γi

n∑

k=1

(1 − tik)
η (5)

where J(i) = l is a mapping function which takes the
index i of prototypewi as parameter and refers to indexl
of the respective identical data samplexl. The dissimilarities
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Algorithm 2 Relational Poss. Fuzzy C-Means (R-PFCM)
1: set numberc of prototypes
2: initialize all parameters
3: initialize coefficient vectorsαααi taking the restrictions

αij > 0 and
∑n

j=1 αij = 1 into consideration
4: repeat
5: calculate distancesd2V (vk,wi) according eq. (4)
6: update probabilistic assignments followed by normal-

ization

uik =

(∑c
j=1

(
dik

djk

)2/(m−1)
)−1

7: update typicalities (possibilistic assignments)

tik =

(
1 +

(
b
γi
d2ik

)1/(η−1)
)−1

8: update coefficient vectorsαααi

∆αααi = (a · um
ik + b · tηik)

(
Dk − Di

∑n
j=1 αij

)

9: normalize coefficient vectorsαααi

αij =
αij∑c
l=1 ail

10: optionally adapta andb to recalibrate the influence of
probabilities and typicalities

11: until convergence or manual stop

DJ(i)k = d(xk, wi) = d(xk, xl) are taken directly from the
given dissimilarity matrixD ∈ Rn×n.

In alg. 3 all steps of the algorithm following an alternating
optimization scheme are summarized.

As before, further details and the proof of convergence can
be found in our paper presented at the WSOM 2017 [2].
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Algorithm 3 Median Possibilistic Fuzzy C-Means (M-PFCM)
1: set number ofc prototypes
2: initialize all parameters
3: select randomlyc data samples as prototypes
4: repeat
5: update probabilistic assignments followed by normal-

ization

uik =

(∑c
j=1

(
d(xk,xJ(i))

d(xk,xJ(j))

)2/(m−1)
)−1

6: update possibilistic typicalities

tik =

(
1 +

(
b
γi
d(xk, xJ(i))

2
)1/(η−1)

)−1

7: select new data samples as prototypes

l = argmin
l′

(∑n
k=1(a · um

ik + b · tηik)d2kl′

+γi
∑n

k=1(1 − tik)
η)

8: optionally adapta andb to recalibrate the influence of
probabilities and typicalities

9: until convergence or manual stop
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Two or three things we do (not) know about
distances
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Some of the earliest approaches in pattern recognition and machine learn-
ing rely on distances between data [1]. This representation of data in terms
of distance or similarity is motivated by cognitive science, which tries to
explain cognitive skills such as categorization, memory retrieval, reasoning
and induction by judgments of similarity [2, 3]. The earliest work attempted
to identify an underlying Euclidean space corresponding to the similarities
reported by human subjects [7]. However, critics have pointed out that sim-
ilarities in a cognitive sense do not adhere to classic mathematical axioms,
such as symmetry or the triangular inequality [8]. Further, recent work in
cognitive science has aimed at describing distances in terms of the trans-
formations required to turn one object into another [2]. Guided by these
frameworks from cognitive science, this contribution will discuss two or three
things we do (not) know about distances in the machine learning context,
namely that and how they can be embedded in (pseudo-)Euclidean spaces
[5], how we can deal with non-Euclidean in indefinite distances [6] and how
we can efficiently compute transformation-based distances [4].
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Abstract

Non-metric proximity measures got wide interest in various domains
such as life sciences, robotics and image processing. The majority of
learning algorithms for these data are focusing on classification problems
and make use of heuristics or complicated optimization schemes to cope
with an indefinite kernel matrix or non-metric distances. We discuss some
basic concepts about non-metric measures and the respective learning in
a Krein space.
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