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Abstract

A capsule is a grouping of neurons with the goal to perform a quite complicated
computation on tensors and the passing of a highly informative tensor to the next
layer. Several capsules form a capsule layer. We present a capsule architecture
based on Learning Vector Quantization (LVQ) called LVQ-Capsule. Each LVQ-
Capsule corresponds to a certain class and is equipped with prototypes and a re-
spective dissimilarity measure. Our capsule architecture receives two inputs from
each capsule in the parent layer: the feature tensors and the dissimilarity value for
each feature tensor. A LVQ-Capsule measures the dissimilarity between the pro-
totypes and the given tensors and updates the dissimilarity for each input tensor.
Via a dissimilarity routing process without an iteration, we estimate the expected
input tensor and the expected dissimilarity value as output quantities of the cap-
sule. If the expected dissimilarity value is small, the feature tensors are potentially
close to the prototypes. Thus, a LVQ-Capsule gives a potentially high vote to the
output if all the input tensors are similar to the prototypes. In experiments on
MNIST, affNIST, CIFAR-10 and smallNORB we show exemplarily the applica-
tion of LVQ-Capsules and that their performance is competitive to other capsule
architectures. Furthermore, we show that the use of dissimilarities and prototypes
provide a new framework to visualize what is learned by a capsule.

1 Introduction

Averaging repeated experiments and measurements is a usual concept to estimate the true value
quantity. For example, gene expression analysis usually is done applying the same or slightly vary-
ing conditions for genes. These changing conditions can also be seen as variations of the measure-
ment. Frequently, a subsequent averaging of the response signals takes place before evaluation.
Alternatively, more sophisticated data analysis methods can be applied like clustering, principal
component analysis or advanced outlier detection based on expert knowledge, to name just a few.
But the question that still always arises is: How can parts be assigned to a whole or, moreover, parts
to wholes? (assignment problem) [1].

In [2] HINTON ET AL. introduced the capsule concept. The idea is to split a layer into small groups
of neurons, denoted as capsules, and thus forming a capsule layer. Thereby, the connection between
two capsules in different layers is realized as a tensor1 pipe. Considering a tensor flow between

1Like usual in neural networks, we denote a multidimensional object as a tensor. Thus, a tensor can be a
vector, matrix, etc., or even a scalar.

Preprint. Work in progress.
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the processing units of a network (the capsules), one can easily think about more complex layer
types, which allow a broader range of mathematical methods like numerical analysis, statistics, etc.
Equal to the neurons in basic neural networks, the capsules have to follow the rule: several in – one
out. Thus, the capsule processes the several input tensors to just one output tensor. This internal
processing is equivalent to modeling the assignment problem.

Learning Vector Quantization (LVQ) is a supervised classification method based on prototype vec-
tors distributed in the data space and a dissimilarity measure between data points and prototypes,
whereas vector quantization2 (VQ) refers to the unsupervised counterpart [3]. The transformation of
Hebbian maximum excitation for perceptrons to the minimum distance principle, as it was proposed
by KOHONEN already in [4], ensures a maximum closeness in a natural way. For distances (met-
rics) as dissimilarity this implies immediately the identity of indiscernibles. Unfortunately, from our
point of view, LVQ is not used for modern neural network architectures and pure LVQ frequently
cannot compete with those. One reason might be that the assignment problem is not considered by
LVQ-researchers so far. Yet, the respective answer is required for an efficient coupling of LVQ to
well-known neural network layer concepts.

Our contribution in this work is that we bring together modern neural network architectures, LVQ
and capsules defining LVQ-Capsules. Thus, we are not aiming to define a special network architec-
ture in this paper. We rather want to see LVQ-Capsules as a new layer type which is, in accordance to
the previous discussion, just a nice way to group neurons to work on tensors. Compared to previous
capsule definitions, LVQ-Capsules work without an iteration for solving the assignment problem.
Furthermore, the use of dissimilarities, or more specially metrics, give access to a new framework
to model the probability transformation of a neural network at the final layer. Additionally, the
prototypes could be useful to define new interpretation techniques.

Accompanying the paper, we publish a software package3 called ~anysma (greek: vector) to pro-
vide a framework for easy capsule definitions in KERAS [5]. All architectures and results of the
experiments will be available there.

2 The LVQ-Capsule architecture

2.1 Capsules - previous work

In [2], a capsule was defined as a group of neurons together with complex operations for the first
time. It is stated there that “[...] artificial neural networks should use local capsules that perform
some quite complicated internal computations on their inputs and then encapsulate the results of
these computations into a small vector of highly informative outputs”. They applied the concept to
define a transforming auto-encoder.

SABOUR ET AL. [1] captured this idea and enhanced the concept. Their capsule network operates
on vectors where the probability that an entity exists is coded by the length of the vector and the
instantiation parameters are mapped to the vector orientation. Furthermore, an iterative routing-
by-agreement process called Dynamic Routing is introduced. The goal is to solve the problem
how to assign multiple input vectors to one output vector. The output vector is a squashed linear
combination of the linear transformed input vectors of the capsule. The combination coefficients
are computed iteratively via transforming assigned vector weights with the softmax function and
updating the vector weights with the dot product (Euclidean inner product) between the current
output vector and the respective linear transformed input vectors. The authors also introduced a
probability transformation which can deal with multi-class label assignments. For this purpose, the
authors used again the length of the parameter vector squashed by an appropriate transformation
as probabilistic output (activation) of the network. Since these transformations are independent of
each other, the resulting output values do not necessarily sum up to one and should be interpreted
as possibility values as known from fuzzy approaches [6]. To optimize these possibilities a “margin
loss” was defined to keep these possibilities as close as possible to the optimum values.

HINTON ET AL. refined the proposed capsule architecture for vectors [7]. In this approach they used
matrices as parameter storages instead of vectors and tracked the activations on separate channels. In

2If it is not confusing, we will always talk about LVQ instead of differentiating all the time between the
supervised and unsupervised version.

3https://github.com/AnysmaForBlindReview/anysma
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the final layer of the network the authors transformed the activations via a sigmoid function to create
the possibility vector4. More precisely, they used 4×4 pose matrices as instantiation parameters and
defined a routing procedure based on an instance of the Expectation-Maximization (EM) algorithm.
The probability model of the EM-algorithm is a Gaussian model. The authors denote this iterative
procedure as EM-routing and state: “The non-linearity implemented by a whole capsule layer is a
form of cluster finding using the EM-algorithm [...]”. Furthermore, instead of using margin loss they
defined a loss function called “spread loss”.

Beside the three fundamental contributions above, many papers were published since SABOUR ET
AL. published the CapsNet architecture in 2017. Most of these contributions deal with a wider range
of applications and just few present some slight modifications or analysis of the capsule structure,
e.g. see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. But in general, their basic capsule concept is quite
similar to [1] or [7].

2.2 Learning Vector Quantization

Learning vector quantization (LVQ) as proposed by T. KOHONEN is an intuitive prototype based
classifier model [19]. Prototype vectors W = {w1,w2,...,wm} with wj ∈ Rn are distributed in
the data space Rn according to a simple scheme of attraction and repulsion depending on their class
assignments c (wj) ∈ C = {1, 2, ..., l}, the class c (v) of a given training sample v ∈ Rn and the
dissimilarity d (v,wj). The dissimilarity measure d (·, ·) is used to determine the similarity between
the prototypes wj and the data point v. A data point v is assigned to the class c (wj∗) where

j∗ = arg min {d (v,wj) |j ∈ {1, 2, ...,m}}
is the index of the best matching prototype. This assignment realizes a winner-takes-all decision.

Frequently, the (squared) Euclidean distance is used as dissimilarity measure being a special case of
the Minkowski distance

dp (v,w) =

(
n∑

i=1

|vi − wi|p
)1/p

(1)

with p ≥ 1. Yet, adaptive parametrized dissimilarities are promising alternatives to the Minkowski
approach [20]. For example, the tangent distance (TD)

dTD (v,w (θ)) = min
θ∈Rr

dp=2 (v,w (θ)) (2)

is used for handling variations in data and transfer learning [21, 22, 23]. Thereby, w (θ) ∈ Rn is
a vector w (θ) = w + Wθ with θ ∈ Rr of an affine subspace approximating the unknown data
manifold by the tangents W ∈ Rn×r [24]. Another variant is the rectangular restricted tangent
distance (rTD) where the prototypes are r-dimensional orthotopes [25]. For a general, differentiable
dissimilarity measure d (v,w) the prototypes are updated during the learning process regarding

∆w ∝ ∂d (v,w)

∂w

which simplifies to vector shifts ± (v −w) for the attraction and repulsion scheme in case of the
Euclidean distance.

A stochastic gradient descent learning (SGDL) approach was established by SATO and YAMADA
taking an approximated classification accuracy as cost function [26] realizing a margin optimizer
for the hypothesis margin [27]. After training, the prototype positions reflect the class distribution
in the data space. Probabilistic variants of LVQ were proposed in [28, 29]. Particularly, the Robust
Soft LVQ (RSLVQ) is a LVQ model based on Gaussian mixtures to describe the data class distri-
butions [28]. Here, the centers of the Gaussians are taken as the prototypes of the RSLVQ. The
class assignments are realized as probabilistic decisions using the softmax function regarding the
responsibilities of the Gaussians for a given data sample. During the learning process, the centers of
the Gaussian models are adapted by SGDL.

As discussed in [30], LVQ can be seen as a special type of a multi-layer feedforward network.
In addition, if the data space consists of interpretable objects like images, the prototype vector
quantization principle leads to an interpretable model [31].

4A possibility vector or unnormalized probability vector is a vector of probability values, which do not sum
up to one. [8]
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Figure 1: The LVQ-Capsule architecture. To avoid confusion with indices we drop the layer index
h + 1 at the prototypes wj , the class k and the internal signals of the capsule and keep in mind
that these definitions are layer dependent. Furthermore, we also neglect the capsule index k at the
internal signals of a capsule.

Algorithm 1 LVQ-Capsule Ch+1
k . The set Ik is defined as Ik = {j | wj ∈ Wh+1

k }.
1: procedure LVQ-CAPSULE(vh

i , d
h
i , α)

2: ∀i : ṽi, d̃i ← TRANSFORMATION(vh
i , d

h
i )

3: for all j ∈ Ik do . for each prototype wj in the capsule
4: ∀i : v̂i,j , d̂i,j ← MEASURING(ṽi, d̃i,wj , α)

5: vj , dj ← ROUTING({v̂i,j | ∀i}, {d̂i,j | ∀i})
6: vh+1

k , dh+1
k ← COMPETITION({vj | j ∈ Ik}, {dj | j ∈ Ik})

7: return vh+1
k , dh+1

k

1: procedure MEASURING(ṽi, d̃i,wj , α)
2: d̂i,j ← (1− α) · d̃i + α · d(ṽi,wj) . update dissimilarities
3: v̂i,j ← DISSIMILARITYTRANSFORMATION(ṽi,wj)

4: return v̂i,j , d̂i,j

1: procedure ROUTING({v̂i,j | ∀i}, {d̂i,j | ∀i})
2: ∀i : pi,j ← NEGSOFTMAX({d̂î,j | ∀î}, i) . routing probabilities, see Eq. (3)
3: dj ←

∑
i pi,j · d̂i,j . dissimilarity routing

4: vj ←
∑

i pi,j · v̂i,j . signal routing
5: return vj , dj

2.3 Learning Vector Quantization Capsules

A LVQ-Capsule layer Ch contains several LVQ-Capsules Ch
k , each responsible for exactly one class

k ∈ C. Every capsule Ch
k contains a set Wh

k = {wj |c (wj) = k} of class responsible prototypes
together with four information processing modules: transformation, measuring, routing and compe-
tition, see Fig. 1.

A LVQ-Capsule Ch+1
k in layer h + 1 receives input vectors or messages vh

i together with corre-
sponding dissimilarity values dhi from all capsules of the parent capsule layer h. The dissimilarity
value dhi is interpreted as the certainty of the capsule i of the layer h regarding the transmission of
the message vh

i . In LVQ-Capsules, the dhi -values are non-negative and the smaller the value, the
higher is the certainty, with optimum value zero indicating absolute certainty.

Inside a LVQ-Capsule Ch+1
k , the first processing module is a transformation of all inputs vh

i and
dissimilarity values dhi consistently chosen to the capsule architecture, see Algo. 1. Hence, the
transformation can be chosen to be more general than a simple linear transformation as proposed
in [1]. The subsequent measuring module calculates the dissimilarities d̂i,j as a linear combination
of the dissimilarity measure between the transformed input ṽi and the corresponding prototypes wj

Learning Vector Quantization Capsules
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Figure 2: The network architecture for the experiments. See text for further explanations.

and the transformed dissimilarity values d̃i. The linear factor α keeps the historic information and
hence realizes a decay of old dissimilarities over several capsule layers. If required, a corresponding
dissimilarity transformation, e.g. the tangent space projection, can be applied to ṽi resulting in v̂i,j .
In this module, the prototypes can be seen as adjustable parameters for the dissimilarity calculation,
which are adjusted during the training accordingly.

The routing module realizes an adaptive estimation of the class distribution centers from the per-
spective of each prototype wj . Here, the negative softmax

pi,j = NEGSOFTMAX
({
d̂î,j | ∀î

}
, i
)

=
exp

(
−d̂i,j

)

∑
î exp

(
−d̂î,j

) (3)

is used to compute the routing probabilities. Thus, the calculation of these quantities is equivalent
to the classification decision procedure in RSLVQ in the case of just one prototype per class. Note
that in contrary to the previous work on capsules we are not computing the routing probabilities
over j.5 Finally, the routing process is realized by computing the expected input vectors vj and the
expected dissimilarity values dj . An expected dissimilarity value dj is small if the vectors v̂i,j are
dense around the prototype wj and large otherwise. If more than one prototype is used in a capsule,
a competition procedure is applied to resolve the redundancies. A general concept in LVQ is to
consider just the signal of the best matching prototype (minimal dissimilarity value dj) [32] or to
apply a similar routing process as before.

The idea behind this capsule structure is to group several simple entities vh
i into one more complex

entity vh+1
k . Hence, each capsule receives all incoming simple entities and forms a more complex

entity. During training the prototypes learn their responsibility for a certain entity. The communi-
cation between the capsules in different layers is realized via the dissimilarities dhi : if a capsule can
not form a proper higher entity from the simple entities a high vote is delivered to the dissimilarity
channel. Thus, the respective entity might be ignored in the subsequent upper capsules.

3 Experiments

3.1 The LVQ-Capsule network architecture

The architecture of the LVQ-Capsule network (LVQ-CN) used in the experiments is inspired by the
slim SimpleNet architecture [33]. It consists of a couple of convolutional layers followed by three
LVQ-Capsule layers, see Fig. 2. All convolutional layers have a kernel size of 3 × 3, stride (1, 1)
and use zero padding, except Conv*, which is a convolution with kernel size 5× 5 and stride (2, 2).
The number of filters varies between 33 and 65. As non-linearities we use ReLUs for the first layers.

After the last convolutional layer we split the filtered image stack into the input vectors vh
i and

dissimilarity values dhi for the first LVQ-Capsule layer Caps1 where i ∈ {1, 2, ...,M/2 · N/2} andM ,
N are the image dimensions. More precisely, we use 64 filters to form vh

i and one to form dhi . Each i
corresponds to a pixel position in the last filtered image stack. To get valid non-negative dissimilarity
values dhi we apply ReLU activation. Caps1 has no internal transformation. The measuring block
consists of 8×8 = 64 prototypes and no multiple prototypes per class/cluster. Hence, a competition

5If we would compute the routing probabilities regarding the prototypes wj we would obtain an unnormal-
ized probability vector and therefore, the computation of the expectation values would be invalid.
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Figure 3: Visualization of dissimilarity maps and the reconstruction on affNIST. The heatmaps d_in
are the inputs to the corresponding capsule layers.

module is not required. The dissimilarity measure is the TD with a subspace dimension r = 16, see
Eq. (2) without any additional transformation.

The Caps2 layer is similar to Caps1 with a few slight changes: the input transformation module con-
sists of two convolutions applied over the set of input vectors. We consider the vector dimension as
feature dimension, the 8×8 shape as image size and filter over the 8×8×64 structure. The convolu-
tions are equivalent to the input convolutional layers with two times 64 filters and no non-linearities.

The final Caps3 is a LVQ-Capsule with a rTD of subspace dimension r = 16. Again, the input trans-
formation is a convolution applied over the set of input vectors with 128 filters and settings equiv-
alent to the transformation of Caps2. The number of prototypes is simply the number of classes l.
For the training we transform the final dissimilarities of Caps3 via the negative softmax into prob-
abilities, see Eq. (3). Instead of a heuristic loss function we use the generalized Kullback-Leibler
divergence for the training [8]. This loss can be applied to possibility vectors, too.

Depending on the number of classes for the experiments, the LVQ-CN has a total number of 498K
parameters for MNIST, affNIST and CIFAR-10 and of 442K for smallNORB, which is only slightly
bigger than the network architecture in [7] but much smaller than in [1].

3.2 MNIST and affNIST

To relate our work to already introduced capsule techniques, we applied our LVQ-CN to both,
MNIST [34] and affNIST6 . Just like SABOUR ET AL. in [1], we connected the output vector of
our final LVQ-Capsule layer to a reconstruction network (RN) to reconstruct an image. Since our
output vector is of size 10×128 instead of 10×16, we have a different input size for the RN com-
pared to them. Additionally, we trained the reconstruction network to reconstruct the original input
image and not the augmented training image. All other settings were identical to SABOUR ET AL.
For example, we trained on 28×28 MNIST digit images that have been randomly shifted up to two
pixels in each direction. In contrast to [1], we observed that the regularization effect of the RN is
negligible for our architecture. After the training the RN was used to extract insight information
about what the capsules have learned.

The lowest test error for MNIST achieved in our experiments with early stopping is 0.28% and
0.3%, otherwise. SABOUR ET AL. achieved a test error rate of 0.25% on MNIST with the CapsNet
architecture and HINTON ET AL. 0.44% with the matrix capsule network [7]. Applying the resulted
network with early stopping to the affNIST test dataset without any further training on affNIST,
results in an acceptable test error rate of 2.4%. This result shows the good generalization ability
and the robustness of the LVQ-CN. Furthermore, we improved the error rate in a more difficult
experimental setting from 21% [1] down to 2.4%. Fig. 3 shows a visualization of a reconstructed
affNIST image and the corresponding dissimilarity heatmaps for each capsule layer of the LVQ-CN.
The heatmaps are a direct visualization of the input dissimilarities dhi of each capsule layer. Feature
vectors vh

i that might be preferred during the routing7 have a small dhi value. For the heatmaps,
this means that a small value (dark pixel) corresponds to a more important feature vector. The RN
returns a 28×28 centered digit image since it was trained accordingly. Although the network was
never trained on affNIST, the reconstruction ability is acceptable.

6In affNIST each sample is a MNIST digit image with a random small affine transformation on 40×40
black background. Available at https://www.cs.toronto.edu/%7Etijmen/affNIST/

7Keep in mind that each capsule adds its own dissimilarity measure to dhi . Hence, a capsule can also reject
supposedly important features.
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Figure 4: Visualization of 20 random points for each prototype in the LVQ-Capsule Layer (Caps3)
via the reconstruction network. Each prototype corresponds to a class and learns to capture the most
important transformations.

In particular, the input dissimilarity heatmap of Caps1 reflects the position of the digit in the image.
It is obvious that the most important feature vectors are related to image regions where the digit
is located, which shows the strong localization ability of the LVQ-CN. Moreover, it seems that the
network “looks” directly onto the digit to classify the given image but ignores the surroundings.

For the capsule layers Caps2 and Caps3 the image representations are more abstract. Because each
capsule is connected to all feature vectors of the parent capsule layer, we are not observing an
object localization as for the first capsule layer. Nevertheless, comparing several images, we observe
that the patterns of the input dissimilarity heatmaps of Caps2 and Caps3 are similar for similar
input images. That means, inputs of the same class usually activate the same capsules in the layer.
Moreover, if objects of different classes share common features, the same regions are activated. See
the supplementary material A for visualizations and an extended discussion.

To visualize the learned information of a certain LVQ-Capsule, we sample points from the learned
prototypes of the last LVQ-Capsule layer Caps3 and process them through the RN. Since the cap-
sules are equipped with the rTD, all the prototypes are r-orthotopes. Furthermore, it is well known
that the prototypes tend to approximate the hidden data manifold structure to capture the most im-
portant invariances of the dataset [35]. In Fig. 4 we see what type of transformations are captured for
each class by the corresponding prototype. This visualization procedure is a direct “random walk”
inside the r-orthotope of a capsule. The procedure is possible due to the fact that the prototypes are
living in the respective data space (here, the final 128 dimensional parameter space). Therefore, we
can feed sampled points from a prototype (a r-orthotope) into the RN to obtain an image. The same
visualization technique can be applied to the hidden layers Caps1 and Caps2. We refer to the sup-
plementary material A for an illustration and an extended discussion. Additionally, we see parallels
in the image generation ability to Generative Adversarial Neural Networks (GANs) [36].

3.3 CIFAR-10 and smallNORB

We conducted experiments as before to the more complex CIFAR-10 [37] and smallNORB
datasets [38]. The LVQ-CN architecture was the same as in the previously described experiments.
However, the RN was omitted here, because the simple RN was not appropriate to reconstruct such
complex objects. Furthermore, we want to show that the localization behavior of the network is not
the result of the reconstructor.

The best results that we observed on CIFAR-10 are test error rates of 9.5% and 9.7% with and
without early stopping, respectively. During the training, we applied slight random rotations and
horizontal flips in addition to the random shifts. These results are slightly better than the result
of 11.9% in [7] and 10.6% in [1]. A visualization of the heatmaps of a CIFAR-10 test sample is
depicted in Fig. 5. Again, the LVQ-CN shows a good localization ability regarding object position
insight the image even tough it is not as strong as on the previous experiment. Furthermore, we
observed that more prototypes are activated to classify an object in comparison to the LVQ-CN for
the MNIST data. This might be seen as an indicator that the CIFAR-10 dataset is more complex than

Learning Vector Quantization Capsules
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Figure 5: Visualization of dissimilarity maps on CIFAR-10. The heatmaps d_in are the inputs to the
corresponding capsule layers. p_out is the transformation of d_out to a probability vector containing
probability values obtained by the negative softmax function.

MNIST. Moreover, considering several inputs, repeating patterns in Caps3 cannot be identified. See
the supplementary material B for respective visualizations.

For smallNORB we achieved a test error rate of 5.6%, which is comparable to the base line model
but not competitive with the result of 1.8% of the special matrix capsule structure of HINTON ET
AL. in [7]. The network was trained with the same augmentation techniques as in [7]. To capture
the structure of the stereo images in an appropriate manner, we changed our initial dissimilarity map
learning from “+1” to “+2” for all initial convolutions. Thus, we increased the number of filters by
one for the first convolutional layers. Thereafter, we split the last filtered image stack twice into
32|1 and changed the vector dimension of Caps1 to 32, accordingly. Hence, instead of learning a
64-dimensional vector regarding the first convolutions we learned a 32-dimensional vector for each
image of the stereo pair. This helps to capture the structure of the M×N×2 stereo image pairs.
Furthermore, we repeated the experiments of the generalization ability to novel viewpoints as in [7].
We were not able to train our network to a comparable test error rate of 3.7% on familiar viewpoints
for azimuth. Our network converges to 5.7%. Nevertheless, our generalization ability on novel
azimuth viewpoints is 10.8%, which is better than the matrix capsule network. The performance
of our network in the elevation experiment on novel viewpoints is slightly worse (error rate 15.4%
compared to 12.3%). In the supplementary material C we present some illustrations of the heatmaps.

4 Conclusion

The LVQ-Capsule approach presented in this paper provides an alternative capsule approach com-
pared to the methods proposed by SABOUR ET AL. and HINTON ET AL. One of the key ideas is to
replace the computationally expensive and crucial iteration parameters by incorporation of LVQ and
VQ machine learning techniques. At the same time we provide an easy fusion of LVQ methods and
neural networks. Additionally, the proposed routing method is of great interest for various vector
quantization methods to solve the problem of handling several input signals and to reduce the curse
of dimensionality in dissimilarity measuring. Moreover, dissimilarity routing offers the advantage
of an obvious optimum in terms of the lower zero bound for dissimilarities compared to frequently
unbounded similarities or inner products.

In experiments on MNIST, affNIST, smallNORB and CIFAR-10 we showed the competing perfor-
mance of LVQ-CN in comparison to the other capsule approaches. As a side effect we discovered
that the input heatmap to the first LVQ-Capsule layer is strongly related to saliency maps [39] and
gives an idea which regions of the image are important for the network, see Fig. 3 and 5. In contrast
to saliency maps, the visualization is a product of the forward propagation of an input image and
is obtained without any computational overhead. Moreover, this visualization is independent of the
output. With a different visualization technique we showed how the learned prototypes could be
visualized to discover the learned information, see Fig. 4. We hope that these initial findings are
attractive to trigger the study of the visualization/interpretation abilities of prototype based vector
quantization.

Finally, the LVQ-Capsule layers are a powerful alternative to final fully-connected layers for clas-
sification tasks. Future work should consider well-known outlier detection concepts of LVQ like
in [40, 41], which could be useful in the area of novelty detection. Also in this scope, the dissim-
ilarity measure provides a mathematically well-founded quantity, frequently easier to handle than
similarities or inner products. Furthermore, we want to study LVQ-Capsules on larger datasets like
ImageNet, the applicability for regression problems and if it is possible to use LVQ-Capsules in a
convolutional manner.
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Supplementary material
A Additional Visualizations for MNIST and affNIST

In Fig. 6 we depict some random samples from the MNIST test dataset and show the respective
reconstructed image. As one can see, the reconstruction is really powerful in decoding the 128
dimensional representations of a given digit image. In the following, we use the reconstruction
network (RN) to visualize the learned information of the capsules. We emphasize that the prototypes
of the capsules are living in the data space in which they interact. Thus, we can use the prototypes
itself to observe what is learned by a capsule. In the case of the Minkowski distance Eq. (1) the
prototypes are points of the data space. Hence, if our final LVQ-Capsule layer would be equipped
with this distance we could easily push the parameters of the learned point prototype through the
RN to get an understanding of what the prototype is and what is modeled by the prototype.

In our network implementation we are dealing with (restricted) tangent distances Eq. (2) as dissim-
ilarity measure. Thus, the prototypes are affine subspaces. This means that a prototype has learned
an infinite number of particular representations of the data space, because each point of the affine
subspace is an instantiation for what is modeled by the prototype. Therefore, we can start a random
walk in this subspace to see what transformations are learned.

The prototype based classification is realized using the winner-takes-all rule. Hence, if the LVQ-CN
is trained properly we can assume that the prototypes are similar to the data points that they rep-
resent. For the tangent distance case, it is known that the prototypes are trying to model the most
important transformations: the invariances of the dataset. In the following discussion we show that
the “function” of each capsule could be interpreted by these principles and the use of the RN.

In Fig. 7 we present some additional digit images from the affNIST dataset as an extension of
the visualization of Fig. 3. Although neither the capsule network nor the decoder was trained
on affNIST, the reconstruction ability is still acceptable. It is interesting how the network tries to
remove the affine transformation of the digit images. For example in the second image from above
the scaling is removed.

If we consider several images of the heatmaps we observe repeating patterns. Obviously, if digits
belong to the same class, the same prototypes are marked as important, indicated by small dissim-
ilarities. This property becomes easily visible if we plot the dissimilarities dhi for several samples
of one class as lines over the number of prototypes i. In Fig. 8 the respective line plots of the
dissimilarity input of Caps3 are depicted. Note that these dhi ’s are the output values of Caps2.

We can see that the important prototype patterns are unique for a given class. Moreover, we discover
that digits which share common structural features also share the same prototype. For example, the
prototype one (x-coordinate one) is important for the digits 0, 2, 3, 5, 6 and 8. A common structure
of these digits are circular segments. Hence, the abstract representation of the prototype one could
be interpreted as the modeling of arcs. Another example is the prototype 16, which is important for
the digits 1, 4 and 7. Here, the common structure is a straight line. This observed behavior is an
indicator for our claim that the prototypes of our capsule network learn to model more and more
abstract representations over increasing depth of the network.

Fig. 4 shows a random walk inside the 16-dimensional orthotope of the final LVQ-Capsule layer.
We can detect the most important transformations for the class discrimination. The same concept
is used to visualize the behavior of some trained LVQ-Capsules in the layer Caps2. Since Caps2
is a hidden layer, we cannot visualize the random walk inside the affine subspace directly, because
this requires to proceed the signal through the final capsule layer too. The trick works as follows:
we feed the learned center of the 16-dimensional orthotope of Caps3 through the RN and obtain a
visualization of a more or less ideal digit image of the corresponding class. Then, we use this virtual
image to feed it through the capsule network until the hidden capsule layer Caps2. This is done to
keep the modeling effect of the final layer as small as possible. At the layer Caps2 we substitute the
original vector output of the prototype of interest with a random vector of the affine subspace. After
that we push the manipulated signals through the capsule network and the subsequent RN to receive
a visualization of what is modeled by the intermediate prototype.

From the previous discussion we assume that the prototype one in Caps2 is sensitive for circular
segments. If this statement is true the visualization via the random walk should show the modeling
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Figure 6: Reconstructed digits from the MNIST test dataset. From left to right: the digits are pairs
of (original image, reconstructed image). For each digit we visualize 10 randomly chosen digits.

Figure 7: Visualization of dissimilarity maps and the reconstruction on affNIST digits. The
heatmaps d_in are the inputs to the corresponding capsule layers.
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Figure 8: Line plot of the dissimilarity inputs of Caps3 over 100 samples per class of the MNIST
test dataset.

Figure 9: Visualization of 20 random points per class of prototype one in the LVQ-Capsule Layer
(Caps2) via the reconstruction network.

Figure 10: Visualization of 20 random points per class of prototype 16 in the LVQ-Capsule Layer
(Caps2) via the reconstruction network.
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of an arc, because the prototype tries to model the most important invariances. In Fig. 9 we show the
respective illustration. As described before, we push each ideal digit image through the network and
manipulate it to see the influence of the intermediate prototype for each class. It is visible that only
the assumed digits are affected by that prototype. Further, it seems that the prototype is sensitive for
circular segments. For example the closed loop of the digit 9 is mostly not affected. Otherwise, for
the digits 0, 2, 3, 5, 6 and 8 the prototype is able to model an opening of the arc segment as well as
heavy variations.

In Fig. 10 we see the equivalent visualization for the prototype 16. As claimed before, this prototype
is sensitive to straight lines. In Fig. 10 it is visible how the vertical strokes of the digits 1, 4 and 7
are affected. The prototype is able to model a thickening, a snake style, etc. Looking at the digit 4,
it is interesting that the small strokes are not really affected.

B Additional Visualizations for CIFAR-10

As in the previous section we want to detect visually if there are repeating patterns in the heatmaps.
In Fig. 11 we depict the dissimilarity line plots regarding the 16 prototypes of Caps3. In con-
trast to MNIST, repeating patterns cannot be detected. It looks more chaotic, which is an indicator
that all the feature vectors are important to compute a classification decision. Due to the missing
reconstruction network we cannot visualize the prototypes like in the previous section.

In Fig. 12 we show four heatmap plots of CIFAR-10 samples. Despite that the network was not
equipped with a RN the localization ability is still good. The network detects the most important
features in the object region. For example, for the class ’automobile’ we observe that the network
has a strong tendency to detect the wheels of the car, if they are visible. For the class ’ship’ the
presence of water seems to be important. Nevertheless, the localization ability is not as strong as on
datasets without background noise like smallNORB.

C Additional Visualizations for smallNORB

In contrast to CIFAR-10, we achieved a network behavior for smallNORB similar to that for MNIST.
The network uses the same prototypes again and again for one class, see Fig. 13. Furthermore, the
line plot has some irregularities regarding class 3 ’trucks’ and class 4 ’cars’. If we consider the
accuracy of the network for the wrongly classified classes, we can see that the confusion between
’cars’ and ’trucks’ causes trouble. Particularly, if those objects are presented under a high elevation
angle, misclassifications are significantly increased. This observation is also mirrored in the results
of the generalization ability to novel viewpoints.

Fig. 14 provides the heatmap plots over four samples. Similar to MNIST, the object localization
sensitivity of the network is really high. Obviously, the object localization is strongly correlated to
the amount of background noise. As for CIFAR-10, a visualization of prototypes is not possible due
to the missing RN.
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Figure 11: Line plot of the dissimilarity inputs of Caps3 over 100 samples per class of the CIFAR-10
test dataset.

Figure 12: Visualization of dissimilarity maps of CIFAR-10. The heatmaps d_in are the inputs to
the corresponding capsule layers. p_out is the transformation of d_out to a probability vector by
means of the negative softmax function. The upper two samples are from the class horses and the
lower two are from the class frogs.
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Figure 13: Line plot of the dissimilarity inputs of Caps3 over 100 digits per class of the smallNORB
test dataset.

Figure 14: Visualization of dissimilarity maps of smallNORB. The heatmaps d_in are the inputs to
the corresponding capsule layers. p_out is the transformation of d_out to a probability vector by
means of the negative softmax function. The upper two samples are from the class humans and the
lower two are from the class animals.
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