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Preface

The 11 th internationalMittweida Workshop on Computational Intelligence (MiWoCI) gathering
together 35 scientists from di�erent universities including Bielefeld, Groningen, UAS Mittweida,
UAS Würzburg-Schweinfurt, UAS Zwickau, research facilities including Porsche AG in Weis-
sach, and IFF Fraunhofer in Magdeburg. The workshop took place in Mittweida, Germany,
from 11.9. - 13.9.2019 and continued the tradition of scienti�c presentations, vivid discussions,
and exchange of novel ideas at the cutting edge of research connected to diverse topics in
computer science, automotive industry, and machine learning.

This report is a collection of abstracts and short contributions about the given presentations
and discussions, which cover theoretical aspects, applications, as well as strategic developments
in the �elds.
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Reject Options for Particle Filter in Medical Tracking

Applications

Johannes Kummert

University of Bielefeld, CITEC, Germany

Abstract

A new approach in jaw reconstruction surgeries utilizes bone cut from the patients
pelvis to create a dental implant that is readily accepted by the body [2]. For the cutting
procedure a custom 3d printed model is created to serve as a template for the surgeon.
In our project, a robotic arm is out�tted with a depth camera and a projector to track a
representation of the model in the depth image using a particle �lter [1] and project cutting
lines onto the body. Detection of whether the tracking is still accurate would enable a
safer procedure for example by automatically disabling the cutting tool. In this work we
study how to measure certainty for particle �lter and explore how this is dependent on the
parameterization and choice of prediction model.

References

[1] Christian Gentner, Siwei Zhang, and Thomas Jost. "Log-PF: Particle Filtering in
Logarithm Domain". en. In: Journal of Electrical and Computer Engineering 2018
(2018), pp. 1-11. issn: 2090-0147, 2090-0155.

[2] Ali Modabber et al. "Computer-assisted zygoma reconstruction with vascularized iliac
crest bone graft". In: The International Journal of Medical Robotics and Computer
Assisted Surgery 9.4 (2013), pp. 497-502.
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Developing a latent space for hyperspectral camera

standardization

Patrick Menz∗ and Udo Sei�ert

Biosystems Engineering, Fraunhofer Institute for Factory Operation and

Automation IFF, Magdeburg, Germany

Abstract

The hyperspectral camera standardization is a desirable goal to achieve nearly the
same classi�cation performance from a already generated machine learning model under
changing sensor hardware. An obvious idea would be an interpolation of the spectra to the
wavelength of a new sensor, but it has been shown in [1], that this leads to inappropriate
results, but there are still other ways to get such a standardization. One could be a
method of transfer learning as already shown in [1], in cost of the need of new samples
in the problem do- main. Furthermore, a calibration model transfer can be used to get
rid of o�sets in re�ectance, by using a standard calibration material [2]. Another new
way for a standardization is to perform a latent space transformation of the spectra. We
want to introduce one way of a latent space transformation via Chebyshev polynomial
approximation of the spectra and compare them with results from [1] and [2]. In addition,
we will reveal some pitfalls and important aspects to achieve a good performance during
the way of developing a latent space via Chebyshev polynomial approximation.

References

[1] Yan Liu, Wensheng Cai, and Xueguang Shao. Standardization of near infrared spectra
measured on multi-instrument. Analytica chimica acta, 836:18-23, 2014.

[2] Patrick Menz, Andreas Backhaus, Udo Sei�ert. Transfer learning for transferring
machine-learning based models among hyperspectral sensors. In ESANN 2019 -
Proceedings.

[3] Patrick Menz, Andreas Backhaus, Udo Sei�ert. Transferring machine learning models
within a soft sensor system to achieve constant task performance under changing
sensor hardware. In Machine Learning Reports 2016.

∗presenter
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f-Divergence and its Application to Feature Selection

Fabian Hinder

Bielefeld University, CITEC, Germany

Abstract

Nowadays most of machine learning is based on probability theory or at least justi-
�ed using probabilistic arguments. It is therefore essential to examine the main subject
in probability theory: probability measures. One way to do so is by considering quanti-
tative similarity or dissimilarity measures or, more geometrically speaking distances (in
this context also known as divergences), which, considering their extensive usage not only
in mathematics and science but also everyday live, seems particularly promising. In the
following we will shortly recap the main de�nitions of probability theory and the theo-
retical framework that is needed to describe and understand a class of divergences called
f-divergences, that not only covers many important special cases (like Kullback-Leibler
divergence, Jensen-Shannon divergence and total variation norm) but also allows a par-
ticularly simple, and general, kind of estimations. We will derive the notion of f-mutual
information, for which we will derive two estimators (presented in [1] and [2]) and apply
it to feature selection, comparing it with other methods.

References

[1] T. Sakai and M. Sugiyama. Computationally E�cient Estimation of Squared- Loss
Mutual Information with Multiplicative Kernel Models. In: IEICE Trans- actions on
Information and Systems E97.D.4 (2014), pp. 968971. doi: 10.1587/transinf.E97.D.968.

[2] T. Suzuki, M. Sugiyama, and T. Tanaka. Mutual information approximation via max-
imum likelihood estimation of density ratio. In: 2009 IEEE International Symposium
on Information Theory. June 2009, pp. 463467. doi: 10.1109/ISIT.2009.5205712.
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Probabilistic angle LVQ (because our medical
counterparts want to know: What are the chances?)

Sreejita Ghosh

Bernoulli Inst. for Mathematics, Computer Science and Arti�cial Intelligence

University of Groningen

Abstract

In the medical domain there are mostly cyans, purples, oranges, and shades of greys,

i.e., overlapping conditions and diagnosis are more common than a crisp single condition.

In such scenarios doctors are more interested in knowing which condition(s) are often

confused or appear together than just knowing the crisp labels. Thus motivated by the

needs of our medical collaborators we recently developed a parameterized probabilistic

version of angleLVQ, which in addition to being able to decently classify in the presence

of systematic missingness, heterogeneous measurements, and imbalanced classes, can also

provide the probabilities of a novel subject of belonging to each of the classes of the training

set. We have used Kullback Liebler divergence as the cost function. The parameter varies

with datasets. The results from the preliminary experiments are promising.
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Counterfactuals for explaining machine learning models

André Artelt

Bielefeld University, CITEC, Germany

Abstract

Machine learning (ML) models are being more and more used in practice and ap-
plied to real-world scenarios. In order to be accepted by the user and because of legal
regulations like the EU regulation "General Data Protection Right" (GDPR) [1], that
contains a "right to an explanation", it is nowadays indispensable to explain the output
and behavior of arti�cial intelligence (AI) in a comprehensible way. An example of easy
to understand explanations of AI/ML models are counterfactual explanations [2]. A coun-
terfactual explanation is a change of the original input that leads to a di�erent (speci�c)
prediction/behavior of the ML model - what has to be di�erent in order to change the
prediction of the model? In this contribution we:

• Review counterfactual explanations of ML models [2]

• Present a Python toolbox for computing counterfactual explanations [3]

• Present a mathematical modeling that lead to e�cient algorithms for computing
counterfactual explanations of LVQ models [4]

References

[1] European parliament and council. General data protection regulation.https://eur-
lex.europa.eu/ eli/reg/2016/679/oj, 2016.

[2] Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. Counterfactual explana-
tions without opening the black box: Automated decisions and the GDPR. CoRR,
abs/1711.00399, 2017.

[3] André Artelt. Ceml: Counterfactuals for explaining machine learning models - a
python toolbox. https://www.github.com/andreArtelt/ceml, 2019.

[4] André Artelt and Barbara Hammer. E�cient computation of counterfactual explana-
tions of LVQ models. CoRR, abs/1908.00735, 2019.
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Classi�cation-by-Components: Current and Future Work

Lars Holdijk∗1, Sascha Saralajew2, and Thomas Villmann3

1Radboud University, Nijmegen, Netherlands
2 Dr. Ing. h.c. F. Porsche AG, Weissach, Germany

3University of Applied Sciences, Mittweida, Germany

Abstract

In the newly introduced Classi�cation-by-Components (CBC) method input samples

are classi�ed by decomposing them into components and consecutively matching the ex-

tracted decomposition plan against the decomposition plans of possible classes. The com-

ponents used in CBC models function as an extension of the prototype concept in clas-

si�ers, such as Learning Vector Quantization. Opposed to prototypes, components are

not required to be class speci�c and can have a smaller size than the input samples. The

matching of the decomposition plan is realized in CBCs by learning which components

are important to be detected and which components are important to not be detected

for an object to belong to a speci�c class. Additionally, there is also the possibility for

components to be not important to the classi�cation process at all. In this contribution

we will provide a high-level overview of how the components and the class speci�c decom-

position plans are modelled and learned in CBCs, shortly discuss the results presented in

the introductory paper on CBCs and discuss the current projects and future work.

∗presenter
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Feature Cost Sensitive Learning Vector

Johannes Brinkrolf

University of Bielefeld, CITEC, Germany

Abstract

In many applications, it is necessary to consider not only the predictive power of the

machine learning model, but also its cost at prediction time of new samples. This can be

the case if many predictions should be done in real-time, running on a microchip, or the

extraction of some features are more expansive (time-consuming or �nancial) than others.

Selecting a subset of relevant features which still enable an equally well classi�cation, can

for example be done by adding a regularization term of the model parameter like Lasso.

Other feature selection tools like �lter methods, which consider statistical or intrinsic

properties of the data, do not generally guarantee a good classi�cation. Wrapper based

algorithms have to evaluate many subsets by training the model for each one. However,

these methods cannot handle costs which vary for di�erent features. In this contribution,

a new feature selection scheme is proposed for the Generalized Learning Vector Quan-

tization (GLVQ) with adaptive metric learning. The ability to take correlation between

di�erent features and their importance for the classi�cation into account is still retained

by full relevance matrices in the learned metrics. The feature selection is done by adapt-

ing the cost function and adding a regularization term based on Lasso. Simultaneously,

weights of wasteful features are pushed towards zero and can be removed for prediction

without changing their outcomes. Results based on theoretical and real world data sets

are demonstrated.
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Phase Transitions in Layered Neural Networks: Recti�ed

Linear Units vs. Sigmoidal Activation

Elisa Oostwal, Michiel Straat, and Michael Biehl∗

Bernoulli Inst. for Mathematics, Computer Science and Arti�cial Intelligence,

University of Groningen, Nehterlands

Abstract

We study layered neural networks of recti�ed linear units (ReLU) in a modelling frame-

work for stochastic training processes. Here, the comparison with the case of conventional,

sigmoidal activation functions is in the center of interest. Matching student-teacher scenar-

ios are studied by applying concepts from the statistical physics of learning. In particular,

we compute typical learning curves for shallow networks with K hidden units. We show

that the trained networks exhibit sudden changes of their generalization behavior via the

process of hidden unit specialization at a critical size of the training set. Surprisingly, our

the- oretical results indicate that networks of ReLU and classical sigmoidal units display

signi�cantly di�erent generalization and training behavior. The transition is found to be

discontinuous in large networks of sigmoidal units (K ≥ 3): Specialized hidden unit con-

�gurations compete with un- specialized ones which display poor performance. The latter

persist as metastable states even for very large training sets. On the contrary, the use of

ReLU activations results in continuous transitions for all K: Specialized weight con�gura-

tions compete with partially specialized states of sub-optimal performance. In contrast to

the case of sigmoidal units, fully unspecialized con�gurations become unstable above the

transition.

∗presenter
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Better Spectral Code - Towards a Functional

Autoencoder for Optimal Encoding of Hyperspectral

Imaging Data

Andreas Backhaus∗ and Udo Sei�ertt

Biosystems Engineering, Fraunhofer Institute for Factory Operation and

Automation IFF, Magdeburg, Germany

Abstract

Material re�ectance data, measured by hyperspectral camera systems, are a common
base for the development of soft-sensors for monitoring applications in agriculture, breed-
ing and plant research. For that purpose, vegetation is measured for a certain biochemical
e�ect related to the task at hand which typically happens against the background of a
multitude of confounding factors from environmental growth conditions and treatment
as well as plant varieties. These changes can lead to decreasing soft-sensor performance
while at the same time measurement campaigns are costly. Producing a fully representa-
tive problem dataset is often not an option within a competitive industrial research and
development environment. In classical RGB image classi�cation, this problem was solved
by using a large amount of unlabeled image scenes to train an optimal ?encoder network?
and then attach a "problem network", trained with the subset of problem data for clas-
si�cation or regression [1, 2] We want to transfer this idea into the domain of processing
re�ectance data. A unique property of hyperspectral data is its functional character. An
autoencoder network should take this functional character into consideration on all lev-
els, in the performance evaluation, the loss function as well as the autoencoder network
itself. We start with the scienti�c question on how to assess the encoder network quality
independent of a problem application, which might also be not known. We tested a num-
ber of autoencoder approaches for their ability to encode and reconstruct functional data
taken from a number of measurement campaigns spanning multiple years, plant varieties,
and �eld locations followed by extensive cross condition validation. We will compare a
number of reconstruction performance measures for their usefulness to asses the quality of
encoding and reconstruction.

References

∗presenter
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[1] Jonathan Masci, Ueli Meier, Dan Cir�san, and Jürgen Schmidhuber. Stacked convo-
lutional auto-encoders for hierarchical feature extraction. In Proceedings of the 21th
International Conference on Arti�cial Neural Networks - Volume Part I, ICANN11,
pages 52-59, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. Variational autoencoder for deep learning of images, labels and
captions. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 2352-2360.
Curran Associates, Inc., 2016.
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Towards a statistical physics analysis of on-line learning

in deep ReLU neural networks

Michiel Straat

University of Groningen, Netherlands

Abstract

Techniques from statistical physics can be used in the analysis of machine learning
algorithms. Machine learning models, and in particular neural net- works, consist of a
large number of adaptive weights. Under special assumptions, it becomes possible to model
the macroscopic learning behavior of these systems by a set of deterministic di�erential
equations. Examples of the approach for the analysis of on-line learning in two-layer
sigmoidal neural networks can be found in [1, 2]. Recently, a

�rst statistical physics analysis of on-line gradient descent learning in two-layer ReLU
neural networks has been done [3]. Now, the aim is to analyze within the framework the
learning behavior of more ex- tended architectures: First, the previously studied two-layer
ReLU network will be augmented with biases and second layer weights. This gives rise to
a machine that is capable of representing any real-valued continuous function on compact
subsets of RN, a so-called universal approximator, see [4, 5], and proved speci�cally for
ReLU activation in [6]. Secondly, we will revisit tree-like architectures, in which the
neurons' receptive

�elds are non-overlapping. The consideration of these tree-like networks may prove as
an important step in a potential extension of the theory towards deep neural networks.

References

[1] David Saad and Sara A. Solla. "On-Line Learning in Soft Committee Machines". In:
Physical Review E 52.4 (Oct. 1, 1995), pp. 4225�4243. doi: 10.1103/PhysRevE.
52.4225.

[2] Michael Biehl, Peter Riegler, and Christian Wöhler. "Transient Dynamics of On- Line
Learning in Two-Layered Neural Networks". In: Journal of Physics A: Mathematical
and General 29.16 (Aug. 1996), pp. 4769-4780. issn: 0305-4470. doi: 10.1088/0305-
4470/29/16/005.

[3] Michiel Straat and Michael Biehl. "On-Line Learning Dynamics of ReLU Neural Net-
works Using Statistical Physics Techniques". In: Proceedings of the 27th European
Symposium on Arti�cial Neural Networks, Computational Intelligence and Machine
Learning. Bruges, Apr. 24, 2019, pp. 517-522. isbn: 978-2-87587-065-0. arXiv:
1903.07378. url: http://arxiv.org/abs/1903.07378.
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[4] George Cybenko. "Approximation by Superpositions of a Sigmoidal Function". In:
Mathematics of Control, Signals and Systems 2 (1989), pp. 303-314. doi: 10.1007/
bf02551274.

[5] Kurt Hornik. "Approximation Capabilities of Multilayer Feedforward Networks".
In: Neural Networks 4.2 (Jan. 1, 1991), pp. 251-257. issn: 0893-6080. doi: 10.
1016/0893-6080(91)90009-T.

[6] Sho Sonoda and Noboru Murata. "Neural Network with Unbounded Activation Func-
tions Is Universal Approximator". In: Applied and Computational Harmonic Analy-
sis 43.2 (Sept. 1, 2017), pp. 233-268. issn: 1063-5203. doi: 10.1016/j.acha.2015.12.005.
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Complex Maps of Behavior in Parameter Space of Neural

Networks

Andreas Herzog∗ and Udo Sei�ert

Biosystems Engineering, Fraunhofer Institute for Factory Operation and

Automation IFF, Magdeburg, Germany

Abstract

One of the astonishing skills of complex biological systems is the evolving of novel
and useful phenotypes by changing their genotype. But how does it work? The high
dimensional parameter space of genotypes is huge and useful parameter combinations
are rare. Long distance random jumps have not really a chance to reach a new genotype
that produces a new useful phenotype. The key element in understanding how evolution in
biological systems works is the existence of genotype networks with the same phenotype [2].
By a series of phenotypes preserving small single point changes, populations can explore
di�erent regions in genotyping space [1]. Genotype networks of di�erent phenotypes enlace
each other and come so close together that a very few changes are su�cient to switch the
networks and thus reach a new useful phenotype [3]. These special properties of parameter
space can be found in several biological systems (proteins, RNA molecules, gene regulation
circuits), simulated in computational studies [1], and programmable hardware [4]. It seems
to be an intrinsic property in complex systems with high dimensional redundant parameter
space. We use the potential of genotype networks for the training of arti�cial neural
networks. The phenotype is here a speci�c input-output behavior determined by the
genotype, the high dimensional parameter space of network architecture and the weights.
Starting from classical trained networks, we explore the parameter space by parameter
shift under preserving the validation error. In result, we get a complex map of useful
solutions in parameter space. The training of new tasks starts from this map and will be
faster than starting from random initialization.

References

[1]Miguel A. Fortuna, Luis Zaman, Charles Ofria, and Andreas Wagner. The genotype-
phenotype map of an evolving digital organism. PLOS Computational Biology,
13(2):1-20, 02 2017.

[2] Martijn A. Huynen. Exploring phenotype space through neutral evolution. Journal
of Molecular Evolution, 43(3):165-169, Sep 1996.

∗presenter
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[3] Joshua L Payne and Andreas Wagner. The causes of evolvability and their evolution.
Nature Reviews Genetics, 20:24-38, 2018.

[4] Karthik Raman and Andreas Wagner. The evolvability of programmable hardware.
Journal of the Royal Society, Interface, 8(55):269-281, February 2011.
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Evaluating Model Complexity for Structural

Decomposition of Galaxy Images

Mohammad Mohammadi

Bernoulli Inst. for Mathematics, Computer Science and Arti�cial Intelligence

University of Groningen

Abstract

Galaxies are building blocks of the universe, and our understanding of their formation

and evolution helps to have a better view about the universe. However, a galaxy is a

complex entity, and it may contain di�erent types of structures. These structures have

many stories to tell about the formation of a galaxy. Structural decomposition of galaxy

images is a topic in astronomy to discover the existing structures inside a galaxy. It is

a challenging task, and it happens that for a given galaxy di�erent people have di�erent

ideas about the type of structures. Therefore, it is necessary to have a qualitative way to

evaluate the type of existing structures in a galaxy. Here, I will give a description about

this problem. Then I will present an overview of the existing techniques for model selection

in Machine Learning.
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Neurobiological correlates of individual di�erences in

mathematical development

Ulrike Kuhl∗,1, 2, Angela D. Friederic2, the LEGASCREEN consortium2, 3, and

Michael A. Skeide2

1University of Bielefeld, CITEC, Germany
2Max Planck Institute for Human Cognitive and Brain Sciences, Germany

3Fraunhofer Institute for Cell Therapy and Immunology, Germany

Abstract

By acquiring core mathematical abilities in the �rst school years, children lay the

foundation for later academic achievement. However, neural plasticity and reorganization

processes associated with individual di�erences in early mathematical learning are still

poorly understood. To �ll this research gap, we followed a sample of 5-6-year-old children

longitudinally to the end of second grade in school combining magnetic resonance imaging

and comprehensive behavioral assessments. Our analysis revealed signi�cant links between

neuroplastic changes of cortical surface anatomy and children?s early mathematical skills.

In particular, our �ndings suggest that distinct subregions of the parietal lobe support

distinct processes contributing to mathematical cognition. Speci�cally, children?s visu-

ospatial magnitude processing was related by the change in cortical thickness in the right

superior parietal cortex. Moreover, children?s early arithmetic abilities were associated

with the change in cortical folding in the right intraparietal sulcus. Additional associa-

tions were found for arithmetic abilities and cortical thickness change of the right temporal

lobe, and visuospatial abilities and right precentral thickness as well as right medial frontal

gyrus folding plasticity. Importantly, these e�ects were independent of other individual

di�erences in IQ, literacy and maternal education. Our �ndings highlight the critical role

of cortical plasticity during the acquisition of fundamental mathematical abilities.

∗presenter
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Approximation Domain Adaptation via Low-Rank Basis

Christoph Raab

UAS Würzburg-Schweinfurt, Germany

Abstract

Transfer learning focuses on the reuse of supervised learning models in a new context.

Prominent applications can be found in robotics, image processing or web mining. In

these areas, learning scenarios change by nature, but often remain related and motivate

the reuse of existing supervised models. While the majority of symmetric and asymmetric

domain adaptation algorithms utilize all available source and target domain data, we show

that domain adaptation requires only a substantial smaller subset. This makes it more

suitable for real-world scenarios where target domain data is rare. The presented approach

�nds a target subspace representation for source and target data to address domain

di�erences by orthogonal basis transfer. We employ Nystrom techniques and show the

reliability of this approximation without a particular landmark matrix by applying post-

transfer normalization. It is evaluated on typical domain adaptation tasks with standard

benchmark data.
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Topological Data Analysis, a thriving �eld

Abolfazl Taghribi

Bernoulli Inst. for Mathematics, Computer Science and Arti�cial Intelligence

University of Groningen

Abstract

From genetics to the economy, from computer science to quantum physics, Topological

seems to solve many distinct problems. In recent years, it found several new applications

in machine learning and for studying high dimensional data. Topological Data Analysis

can be used as an unsupervised or semisupervised method for computing features inside

a large amount of data which is unique for that data type. Here we use This technique

to count the number of supernovas and measure their size inside a galaxy. Moreover,

we propose a new method for decreasing the amount of computation which is needed for

approximating the same properties. We will show on some example that our method is

faster and its results provide a closer approximation of the data with respect to other

sampling methods. Using this tool, one can follow the behavior of supernovas inside a

simulation and examine them in more details.
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Comprehensive study on Random Projection in

non-stationary environments

Moritz Heusinger∗ and Frank-Michael Schleif

UAS Würzburg-Schweinfurt, Germany

Abstract

Random Projection (RP) is a popular and e�cient technique to preprocess high-

dimensional data and to reduce its dimensionality. While RP has been widely used and

evaluated in stationary data analysis scenarios this is not the case for non-stationary envi-

ronments. In this paper we provide a comprehensive evaluation of RP on streaming data.

We discuss why RP can be used on Streaming Data w.r.t. the Johnson-Lindenstrauss

bound and also how it can deal with Stream speci�c situations, i. e. Concept Drift and

Feature Drift. We also provide experiments with RP on Streaming Data, using state-of-

the-art Streaming Classi�ers like Adaptive Hoe�ding Tree and Concept Drift Detectors (e.

g. Adaptive Windowing and Kolmogorov-Smirnov Windowing), to evaluate its e�ciency.

keywords Streaming Data, High Dimensional Data, Random Projection
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Knowledge representations for robotic systems

Lydia Fischer

Honda Research Institute Europe GmbH

Abstract

The current trend in research is to come up with intelligent systems that are able to
act and interact properly in the real world, doing useful tasks. In contrast to humans
one can inject knowledge of various kind in such systems before their operation. This
is handy if systems have a very speci�c task to solve. It is getting more complicated
if di�erent tasks need to be solved by the same system because di�erent information
and skills are required. Nevertheless it is impractical to provide all potential relevant
information and skills a-priori, since no designer can foresee all potential use-cases and
situations such systems can encounter. A more promising approach is to equip systems
with basic useful informations as well as a basic skill set, and a mechanism to dynamically
learn new information and skills. One possible way to encode information and skills for
intelligent robotic systems is to use a knowledge representation, e. g. knowledge graphs.
Such representations can be modeled in a machine interpretable from. A pilot project
for having a robot with a hand-designed knowledge representation doing a speci�c task
is described in [1]. There the range of understood tasks was increased by using common
sense data bases. To overcome limitations of this early approach, a more general way of
describing knowledge is formulated in [2]. A key challenge is to �nd ways to translate
knowledge from common sense databases, mostly very di�erently structured, in a form
compliant with the knowledge representation of intelligent robotic systems.
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Visualizing the decision function of deep networks

learning models

Alexander Schulz∗, Fabian Hinder, and Barbara Hammer

Bielefeld University, CITEC, Germany

Abstract

Recent progress in the �eld of deep neural networks produces increasingly powerful
models which are able to achieve human level and partially even super human performance
[4, 3]. However, these networks are growing in complexity making them increasingly
di�cult to comprehend and more vulnerable to adversarial attacks [5]. Most of the present
literature focusses on explaining the investigated model with respect to individual data
samples [1]. Following ideas from [2], we propose a novel methodology to visualize the
decision function of a deep neural network in two dimensions. For this purpose, we propose
to compute a discriminative dimensionality reduction based on the Fisher information
using the neural network without the necessity to calculate gradients for each distance
calculation. This visualization then allows to directly observe important properties of the
trained model and the used data, such as adversarial examples, multimodality or biased
data. Additionally, this method is complementary to interpretation methods present in
existing literature as mentioned above and might be even more useful when combined with
those.
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First Steps on Incident Detection for Field Bus Systems

Dmitrii Lekomtsev∗1, Anne Satzke1, Philip Karopka1,2, Horst-Michael Gross3,
Tina Geweniger2, and Sven Hellbach∗, 2

1Indu-Sol GmbH, Schmölln
2Fakultät Physikalische Technik/Informatik, Westsächsische Hochschule Zwickau

3Neuroinformatics and Cognitive Robotics Lab, Technical University Ilmenau

Abstract

Diagnostic network information consists of di�erent parameters which are di�cult to

understand without the knowledge of the scope. In this work, we evaluated the net-

work condition in Process Field Network (PROFINET) using Arti�cial Neural Networks

(ANNs) and collected diagnostic information. ANN decides whether the network is func-

tioning normally or not. An essential part of the work is data preprocessing. It is done

using quantization, data aligning, reducing the number of inputs and other preprocessing

techniques to create a new version of the dataset to improve the accuracy. The obtained

data makes possible to do a number of experiments and to �nd out what approach of data

preprocessing shows the best results. The results were evaluated on two datasets. The �rst

one contains diagnostic data of a well-functioning network, and the second one consists

of data in which network problems were detected. The highest accuracy obtained in this

work is 98.91when the network is working �ne. These �rst results hint, that the posed

problem provides possibilities for further investigations. Hence, our goal is to establish an

ongoing research cooperation.

keywords PROFINET, Network Diagnostics, Arti�cial Neural Networks, Machine

Learning, Industrial Ethernet.
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Mathematical Implications of the GLVQ

Margin Analysis for the Non-Eulidean Case

Sascha Saralajew1 and Thomas Villmann∗2

1Dr. Ing. h.c. F. Porsche AG Weissach, Germany
2University of Applied Sciences Mittweida � SICIM, Germany

Summery of the Talk

This contribution re-investigates the paper 'Margin Analysis of LVQ' by

Crammer et al. [1]. In particular we address the problem of margin

analysis and discuss the resulting consequences with respect to robustness of

GLVQ networks as well as adversarial attacks [2] as an follow-up of [3].

Additionally, we explain in detail the mathematical implications, if GLVQ

is not based on the Euclidean distance, which requires to consider of percep-

tron networks with so-called Banach-like-perceptrons in the proofs given by

Crammer et al. . Banach-like-perceptrons are based on semi-inner prod-

ucts instead of the standard (Euclidean) inner product [5].

Further, we shortly discuss in the light of margin analysis the case of

non-standard transfer (activation) functions in GLVQ-networks as suggested

in [4] for better convergence and performance.
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Large Margin Learning Vector Quantization

Benjamin Paaßen

CITEC, Bielefeld University

Abstract
Learning vector quantization approaches are advantageous for their

online learning capability, their low memory requirements, interpretable
model, easy extensibility to multi-class problems, and their fast deci-
sion function [6]. However, a key drawback is the highly non-liner and
non-convex loss of most LVQ variants, making optimization at times
numerically difficult and prone to local optima. We suggest to slightly
vary the usual LVQ loss in order to get closer to a convex setup. In
particular, we propose to adapt the Large Margin Nearest Neighbor
(LMNN) loss of Weinberger and Saul [9] to learning vector quantiza-
tion models.

We obtain a dissimilarity version of large margin LVQ as a non-
convex quadratic program and a kernel version as a convex quadratic
program, the latter being analogous to the multi-prototype support
vector machine developed by Aiolli and Sperduti [1]. First empiric
results suggest that further work is required to make large margin
LVQ useful in practice.

Assume we wish to learn K prototypes w1, . . . , wK ∈ X with labels
z1, . . . , zK ∈ {1, . . . , L}, such that as many data points x1, . . . , xm ∈ X with
labels y1, . . . , ym ∈ {1, . . . , L} are correctly classified by a one-nearest neigh-
bor assignment, i.e. data point xi is assigned the label of the closest prototype.
Then, data point xi is classified correctly if and only if the closest prototype
has the correct label. Now, let d : X × X → R be some dissimilarity on X ,
let di,l = d(xi, wl)

2 be the (squared) dissimilarity to to the lth prototype, let
d+i := mink:zk=yi di,k be the (squared) dissimilarity to the closest prototype
with the correct label, and let Ii := {l|yi 6= zl} be the set of prototype in-
dices with different label than the ith data point. Then, the prototype-based
LMNN loss for our problem is

`(w1, . . . , wK) =

pull︷ ︸︸ ︷
m∑

i=1

d+i +
1

2C
·

push︷ ︸︸ ︷
m∑

i=1

∑

l∈Ii
ReLU

(
d+i − di,l + γ

)2 (1)
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xiwk wl
di,k di,l

γ

ξi,l

wl′
ξi,l′

Figure 1: An illustration of the large-margin learning vector quantization
loss 1. From the perspective of data point xi (blue circle), the closest proto-
type with the same label is wk (blue diamond). The pull loss tries to move wk
closer to xi. Further, wl (orange diamond) is closer to xi and has a different
label, which would mean that xi would be misclassified, which punish via the
push loss. Moreover, we punish all prototypes that are within a margin of
safety of γ (outer dashed circle), e.g. wl′ (grey diamond). The contribution
to the push loss is ξi,l and ξi,l′ respectively, i.e. the slack that is needed to
satisfy margin constraints.

where ReLU : R→ R+ is the rectified linear unit aka the hinge loss, defined
as ReLU(µ) = max{0, µ}. We call this loss the large margin learning vector
quantization (LM-LVQ) loss.

Intuitively, the first term pulls prototypes closer to data points in their
receptive field and the second term pushes prototypes with wrong labels away
if they invade a margin of safety around the data point. Also refer to Figure 1
for an illustration of this loss. The hyper-parameter C ∈ R+ weighs between
the push and pull forces.

Note that the push force can be seen as a variant of generalized learning
vector quantization [8] with the nonlinearity Φ(µ) = ReLU(µ + γ)2, albeit
without the dissimilarity normalization.

Also note that, in contrast to LMNN, we square the push loss contribu-
tions, which has the advantage that the gradient is smooth at point 0 and
supports our later optimization steps.

To optimize loss 1, we re-write it first as an optimization problem with
slack variables ξi,l, which express how far prototype wl invades the margin of
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data point i.

min
w1,...,wK ,
Ξ∈Rm×K

1

2 · C
m∑

i=1

∑

l∈Ii
ξ2i,l +

m∑

i=1

d+i (2)

s.t. ξi,l ≥ d+i − di,l + γ ∀i ∈ {1, . . . ,m} ∀l ∈ Ii
ξi,l ≥ 0 ∀i ∈ {1, . . . ,m} ∀l ∈ {1, . . . , K}

Note that this problem is a quadratically constrained quadratic program [2].
Unfortunately, this program is not convex due to the negative sign in front
of di,l. Still, we can make a solution attempt by constructing the Wolfe dual
of this problem.

Disregarding the non-negativity constraints for the slack variables for the
moment, we obtain the following Lagrangian.

L(W ,Ξ,Λ) =
1

2 · C
m∑

i=1

∑

l∈Ii
ξ2i,l +

m∑

i=1

d+i −
m∑

i=1

∑

l∈Ii
λi,l ·

(
ξi,l + di,l − d+i − γ

)

Let now Pk be the set of all points xi to which wk is the closest prototype with
the same label, and let Nk = {j|yj 6= zk} be the set of data points xj with
a different label than wk. We also call these sets the positive and negative
receptive field of prototype wk. Then, we can re-write the Lagrangian as
follows.

L(W ,Ξ,Λ) =
K∑

k=1

∑

i∈Pk

(
1 +

∑

l∈Ii
λi,l
)
· di,k +

∑

i∈Nk

(−λi,k) · di,k (3)

+
1

2 · C
m∑

i=1

∑

k∈Ii
ξ2i,k −

m∑

i=1

∑

k∈Ii
λi,k · ξi,k + γ ·

m∑

i=1

∑

k∈Ii
λi,k

We further introduce the auxiliary variables βk,i, defined as 1 +
∑

l∈Ii λi,l if
i ∈ Pk, as −λi,k if i ∈ Nk, and as zero otherwise. Accordingly, the first line
of the Lagrangian simplifies to

∑K
k=1

∑m
i=1 βk,i · di,k.

Our next step is to compute the gradient of our Lagrangian with respect
to the optimization variables and set it to zero. To do so, we need to make
an assumption about the underlying data space. In particular, we assume
that the dissimilarity d is self-equal and symmetric, i.e. for any two data
points x, y ∈ X we obtain d(x, x) = 0 and d(x, y) = d(y, x). Under these
assumptions, Pekalska and Duin [7] guarantee a pseudo-Euclidean embedding,
i.e. there exist two mappings, φ+ : X → Rn and φ− : X → Rn from the data
space into Rn for some n, such that for any x, y ∈ X it holds:

d(x, y)2 = ||φ+(x)− φ+(y)||2 − ||φ−(x)− φ−(y)||2
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Accordingly, we obtain the following gradient of the Lagrangian with respect
to φ+(wk) and φ−(wk):

∇φ+(wk)L(W ,Ξ,Λ) =
m∑

i=1

βk,i · 2 ·
(
φ+(wk)− φ+(xi)

)

∇φ−(wk)L(W ,Ξ,Λ) =
m∑

i=1

βk,i · (−2) ·
(
φ−(wk)− φ−(xi)

)

Setting these to zero yields:

φ+(wk) =

∑m
i=1 βk,i · φ+(xi)∑m

i=1 βk,i
, and φ−(wk) =

∑m
i=1 βk,i · φ−(xi)∑m

i=1 βk,i

In other words, the prototype is an affine combination of data points. This,
in turn, lets us re-write the squared dissimilarities di,k as follows [4]:

di,k =

∑m
j=1 βk,j · d(xi, xj)

2

∑m
j=1 βk,j

−
~βTk ·D2 · ~βk

2 ·
(∑m

j=1 βk,j
)2

where D is the matrix of all squared pairwise dissimilarities d(xi, xj)
2.

Finally, consider the derivative of our Lagrangian with respect to ξi,k:

∂

∂ξi,l
L(W ,Ξ,Λ) =

1

C
· ξi,l − λi,l !

= 0 ⇐⇒ ξi,l = C · λi,l

Note that this result ensures that the non-negativity constraints for ξi,l hold
because we already have non-negativity constraints for the Lagrange multi-
pliers λi,l.

Plugging these results back into our Lagrangian 3, we obtain:

L(Λ) =
K∑

k=1

m∑

i=1

βk,i ·
(∑m

j=1 βk,j · d(xi, xj)
2

∑m
j=1 βk,j

−
~βTk ·D2 · ~βk

2 ·
(∑m

j=1 βk,j
)2
)

+
1

2 · C
m∑

i=1

∑

k∈Ii
C2 · λ2i,k −

m∑

i=1

∑

k∈Ii
λi,k · C · λi,k + γ ·

m∑

i=1

∑

k∈Ii
λi,k

=
K∑

k=1

(∑m
i=1

∑m
j=1 βk,i · βk,j · d(xi, xj)

2

∑m
j=1 βk,j

)
−
( ~βTk ·D2 · ~βk

2 ·
(∑m

j=1 βk,j
)2 ·

m∑

i=1

βk,i

)

− C

2

m∑

i=1

∑

k∈Ii
λ2i,k + γ ·

m∑

i=1

∑

k∈Ii
λi,k

=
1

2

K∑

k=1

~βTk ·D2 · ~βk∑m
j=1 βk,j

− C

2

m∑

i=1

∑

k∈Ii
λ2i,k + γ ·

m∑

i=1

∑

k∈Ii
λi,k
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Accordingly, we obtain the following Wolfe dual form.

min
Λ∈Rm×K

− 1

2

K∑

k=1

~βTk ·D · ~βk∑m
j=1 βk,j

+
C

2

m∑

i=1

∑

k∈Ii
λ2i,k − γ ·

m∑

i=1

∑

k∈Ii
λi,k (4)

s.t. λi,k ≥ 0, βk,i =





1 +
∑

l∈Ii λi,l if i ∈ Pk
−λi,k if i ∈ Nk

0 otherwise

∀k ∈ {1, . . . , K},
∀i ∈ {1, . . . ,m}

Note that solving the Wolfe dual does not guarantee an optimal solution
for the primal problem due to non-convexity [2]. Still, we can hope to achieve
good solutions, given that the dual in itself has a rather intuitive interpre-
tation: If all Lagrange multipliers are zero, prototypes gracefully degenerate
to the means of their receptive fields. If this is sufficient to classify the data
set correctly, this is the single optimal solution. However, if any prototype
l invades the margin of a data point i, the Lagrange multiplier λi,l must
be increased, which means that prototype l moves away from data point i,
whereas this multiplier is added to βk,i for the closest correct prototype k,
such that this prototype moves closer to data point i, resembling the typical
LVQ behavior.

Another problem is that the dual is numerically problematic due to the
sum over all βk,i coefficients in the denominator of the quadratic term. Fortu-
nately, this can be addressed by imposing that

∑m
i=1 βk,i = |Pk| for all k, i.e.

that the sum of all β coefficients should sum to the size of the receptive field.
This side constraint enforces that the sum of all coefficients stays the same
as in its initial state when all Lagrange multipliers are zero. Interestingly,
this side constraint is also equivalent to introducing bias terms (we omit the
full derivation here for brevity).

We further note that this dual can be transformed into a standard quadratic
problem by expressing the vectors ~βk as a (sparse) affine transformation from
the Lagrange multipliers. In particular, we can re-write ~βk = Ak · ~λ + ~1Pk

,
where ~λ is the concatenation of all rows in Λ, where ak,i,(i−1)·K+k = −1 if
i ∈ Nk, ak,i,(i−1)·K+l = +1 if i ∈ Pk and l ∈ Ii and zero otherwise, and where
~1Pk

is a m-dimensional vector which is 1 at entries i ∈ Pk and zero otherwise.
Then, problem 4 becomes:

min
~λ∈Rm·K

1

2
~λT ·

(
C · I −

K∑

k=1

AT
k ·

D

|Pk|
·Ak

)
· ~λ−

(
γ ·~1T +

K∑

k=1

~1TPk
· D

|Pk|
·Ak

)
· ~λ

s.t. ~λ ≥ 0 (5)
~1T ·Ak · ~λ = 0 ∀k ∈ {1, . . . , K}
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Still, this quadratic problem is not necessarily convex because D is indef-
inite, yielding a convex shape in some search directions and a concave shape
in other directions. The regularization term and the equality side constraints
may ensure a convex shape, but this appears to not be guaranteed in general.
Still, we expect a more smooth loss function compared to relational GLVQ
[5] due to the absent dissimilarity normalization.

Finally, we note that our problem formulation relies on the assumption
that the positive receptive fields Pk stay fixed, similar to LMNN. However, we
can relax this assumption by running a multi-pass scheme where the positive
receptive fields are updated after each optimization of problem 5 until the
fields do not change anymore. Because any update in positive receptive
field is guaranteed to reduce the loss, this scheme is guaranteed to converge,
similar to Multi-pass LMNN [3].

If we wish to guarantee proper convexity, we can switch from a dissimilar-
ity formulation to a kernel formulation. In that case, our primal loss changes
to:

`(w1, . . . , wK) =
m∑

i=1

d+i +
1

2C
·
∑

l∈Ii
ReLU

(
si,l − s+i + γ

)2 (6)

where si,l is the kernel value between data point i and prototype l and d+i
refers to the dissimilarity between data point i and the closest prototype
with the same label, where the dissimilarity measure is given as d(x, y)2 =
s(x, x)− 2s(x, y) + s(y, y). Via a very similar derivation as before, we obtain
the following Wolfe dual:

min
~λ∈Rm·K

1

2
~λT ·

( K∑

k=1

AT
k ·

S

|Pk|
·Ak + C · I

)
· ~λ+

( K∑

k=1

~1TPk
· S

|Pk|
·Ak − γ ·~1S

)
· ~λ

s.t. ~λ ≥ 0 (7)
~1T ·Ak · ~λ = 0 ∀k ∈ {1, . . . , K}

where S is the matrix of pairwise kernel values s(xi, xj). This problem is a
standard convex quadratic program with linear side constraints. Indeed, the
kernel matrix may even be slightly indefinite because the regularization term
C · I applies an implicit shift eigenvalue correction.

This latter form is almost equivalent to the multi-prototype SVM sug-
gested by Aiolli and Sperduti [1], except for the regularization, which here
pushes prototypes to the center of the receptive field, whereas the multi-
prototype SVM pushes prototypes toward the origin.

Closing Remarks: Merging LMNN and LVQ concepts appears promising
from these first attempts. In particular, we obtained a non-convex, but “well-
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behaved” dissimilarity formulation for pseudo-Euclidean dissimilarities, and
a convex quadratic program formulation for kernels. Unfortunately, first
empiric experiments suggest that the approach may not be able to compete
with a simple one-versus-one SVM. Likely, further improvements are required
- be it in terms of concept or optimization - in order to make this approach
useful in practical applications. Still, large margin LVQ offers a conceptual
bridge, shedding further light on the strong relations between LVQ, LMNN,
and SVMs.
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1 Motivation

Multilayer perceptrons (MLP) are nowadays the standard networks in machine
learning for classi�cation and regression tasks [1, 8]. Motivated by pyramid cells
in biological neural networks the mathematical perceptron is the basis of those
networks [14], see Fig. 1.

Figure 1: Schematic illustration of a mathematical perceptron (left) according

to a pyramid cell (right). The input vector x = (x1, . . . , xn)
T
is weighted by the

weight vector w = (w1, . . . , wn)
T
to generate the output O.

The capability for these networks is justi�ed by Cybenko's theorem with
states the universal approximation property. One key ingredient in the proof of
this theorem is the Hilbert-space-property which relates to the standard math-
ematical perceptron based on the Euclidean inner product.

In this paper we consider multilayer networks consisting of Banach-like per-
ceptrons. Those perceptrons are based on semi-inner products (SIP) instead of
the Euclidean inner product. Semi-inner products are related to Banach-spaces.
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We show that for those networks Cybenkos theorem still can be applied if it is
modi�ed slightly. For this purpose, we have to consider special cases of Banach
spaces. Particularly, it turns out that the SIP, which is related to the lp-space,
can be used to replace the inner product in standard perceptrons.

2 Introduction and Basic Concepts

The mathematical modeling of standard perceptrons assumes stimulus vectors
x ∈ Rn and a weight vector w ∈ Rn to generate the output according to

O (w,x) = f (〈w,x〉+ b) (1)

where b ∈ R is the bias and f is the so-called activation function. The quantity
〈w,x〉 =∑n

k=1 xk ·wk is the (real) Euclidean inner product, which is motivated
biologically by the weighted sum of inputs, see Fig. 1. The activation func-
tion f usually is a monotonically increasing function. Frequent choices are the
Heaviside function

H (z) =





1 for z > 0

0 else

and the identity id (z) = z or

fθ (z) =
1

1 + exp (θz)

as standard sigmoid function.
MLPs are directed graphs with mathematical perceptrons as nodes. The per-

ceprons are arranged in layers. Only the �rst layer (input layer) receives direct
data inputs. The last layer is denoted as output layer and delivers the network
response o for a given data vector x. The stimulus vectors of perceptrons in all
layers except the input layer are output vectors of previous layers.

Mathematically speaking, MLPs realize a mapping

FW,B : Rn 3 x 7−→ o ∈ Rm (2)

if m output units are available and W is the set of all weights w and B is the
set of all biases in the network. It was shown by Cybenko that under certain
conditions MLP's are universal approximators [4].

In this note we discuss generalizations of this statement. Particularly, we
discuss the replacement of the Euclidean inner product in (1) by kernels or semi-
inner products. We will give conditions such that the statements regarding the
universal approximation properties given by Cybenko remain valid.
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3 MLPs as Universal Approximators

3.1 Cybenkos Results for Standard MLP

We start with a brief explanation of the main result provided by Cybenko in
[4] regarding the approximation completeness of standard MLPs .

De�nition 1. The function σ is discriminatory with respect to the inner
product 〈·, ·〉 if for a measure µ ∈ M (In) of the closed (compact) subset
In = [0, 1]

n ⊂ Rn with the property

∫

In

σ (〈w,x〉+ b) dµ (x) = 0

for all w ∈ Rn and b ∈ R the implication µ ≡ 0 follows.

Further we de�ne what a sigmoidal function should be.

De�nition 2. The function σ is sigmoidal if

σ (z) −→





1 for z →∞

0 for z → −∞

holds.

The following Lemma relates sigmoidal functions to discriminatory func-
tions:

Lemma 3. Any bounded, measurable sigmoidal function is discriminatory and,
hence, any continuous sigmoidal function is discriminatory.

The main statement regarding the universal approximation is given by the
following theorem. For the sake of later considerations we also give the proof of
the theorem as provided in [4].

Theorem 4. Let σ be a continuous discriminatory function and

G (x) =

N∑

j=1

αj · σ (〈wj ,x〉+ bj) (3)

be the �nite sum of perceptrons (1) with activation function f = σ. Let In =
[0, 1]

n ⊂ Rn be the closed hypercube equipped with the Euclidean metric. Then
the set G of functions G (x) is dense in the space C (In) of continuous functions
over In.

Proof. The set G is dense in C (In) i� for any function g (x) ∈ C (In) and ε > 0
exists a function G (x) ∈ G with |G (x)− g (x)| < ε for all x ∈ In. This
statement is proven if we can show that for the closure G of G the equality
G = C (In) holds. We apply a proof by contradiction:
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Obviously, G is a linear subspace of C (In). Thus, the closure G is a closed
subspace of C (In). We remark that In is equipped with the Euclidean norm
such that it is a Banach-space or, more precisely, a Hilbert space. Now we
assume that G 6= C (In), i.e. G is not dense in C (In). Hence, according to the
Hahn-Banach-theorem [15], there is a bounded linear functional L on C (In) with
L (h) 6= 0, i.e. it is not completely vanishing for h ∈ C (In) but L (G) = L

(
G
)
= 0

is valid. We remark that L is continuous and we have L ∈ C∗ (In) being the
dual space of C (In).

According to the Hilbert-space property of In we can apply the Riesz Repre-
sentation Theorem (RRT, [13]) which states that the functional L can be written
in the form

L (h) =

∫

In

h (x) dµ (x) (4)

for some measure µ ∈M (In) and a continuous function h ∈ C (In). Yet, so far
µ is unspeci�ed.

Because for the continuous function σ (〈w,x〉+ b) ∈ G is valid for all w and
b we must have that

L (σ) =

∫

In

σ (〈w,x〉+ b) dµ (x) = 0

holds for all w and b according to L
(
G
)
= 0. Since σ is assumed to be dis-

criminatory, the zero integral implies that µ ≡ 0 has to be valid, which further
implies, however, that L (h) ≡ 0 for any h ∈ C (In). This contradicts the as-
sumption G 6= C (In). Hence, G is dense in C (In) which completes the proof.

We remark the following:

Remark 5. In the proof of the theorem the Hilbert-space property of In was
explicitly used which is guaranteed by the Euclidean metric/norm. Further,
the Euclidean norm in In is consistent with the mathematical structure of the
discriminatory functions σ (〈w,x〉+ b) containing the Euclidean inner product
as argument.

3.2 Generalizations

3.2.1 Kernels for Hilbert-Spaces

Obviously, the proof of the Cybenko-theorem remains valid if we replace the
Euclidean inner product 〈w,x〉 in the standard perceptron (1) by an arbitrary
inner product and use the resulting norm as norm for the n-dimensional real
space Rn. We can continue approach and, more generally, replace the inner
product by a kernel κ, i.e. we consider

κ (w,x) = 〈φ (w) , φ (x)〉

with φ (w) ∈ H and H is a reproducing kernel Hilbert space (RKHS). Then
In = φ (In) is a compact Hilbert space and the Cybenko's theorem is still
applicable but now for In.
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3.2.2 Semi-Inner Products

In the second case we want to exchange in the perceptron (1) the inner product
〈w,x〉 by a semi-inner product (SIP) [w,x] [11].

De�nition 6. A mapping [·, ·] : B×B → C is called a semi-inner product (SIP)
if the following relations are ful�lled:

1. linearity: [λx+ z,y] = λ [x,y] + [z,y] for λ ∈ C

2. positiveness: [x,x] > 0 for x 6= 0

3. Cauchy-Schwarz-inequality: |[x,y]|2 ≤ [x,x] [y,y]

Lumer has shown that a SIP always generates a norm by ‖x‖ =
√
[x,x] as

well as he has proofed that every Banach-space with norm ‖x‖B is equipped with
a SIP generating this norm [11]. One can show that the relation [x, λy] = λ [x,y]
follows immediately [7].

Now we equip In with the norm ‖x‖ =
√
[x,x] denoted as IBn ⊂ RnB. Thus

RnB is an n-dimensional real Banach-space. Considering now Banach-like per-
ceptrons with output

O (w,x) = f ([w,x] + b) (5)

using SIPs, we cannot simply apply the Cybenko-theorem, because the Hilbert-
space property needed in the proof for the RRT is violated for IBn . However,
there exist variants of the RRT which suppose special Banach-spaces instead of
a Hilbert-spaces. In the following we will characterize those Banach-spaces.

Theorem 7. Let B be an uniformly convex Banach space with continuous SIP
[·, ·]. Then a RRT analogously to (4) is valid.

Proof. [7, Theorem 6]

The theorem can be extended to:

Theorem 8. Let B be a re�exive Banach space. Then a RRT analogously to
(4) is valid.

Proof. Let B be a re�exive Banach space and h ∈ B∗ = C (B). Then exists a
SIP [·, ·] and an element β ∈ B such that ϕ (x) = [x, β] is a continuous linear
functional [6]. Hence, the respective SIP determines a RRT analogously to
(4).

Both theorems are related according to the following lemma

Lemma 9. Every smooth (continuous) uniformly convex Banach space is
also re�exive and strictly convex. The reverse direction is not valid. Hence,
Theorem7 is a special case of Theorem8.

Proof. [6]
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Theorem 10. Let σ be a continuous discriminatory function with respect to
the SIP [·, ·] for IBn ⊂ RnB equipped with the norm ‖x‖ =

√
[x,x] such that RnB

is a re�exive n-dimensional real Banach-space. Additionally, let

GB (x) =
N∑

j=1

αj · σ
(
[wj ,x]p + bj

)
(6)

be the �nite sum of Banach-like perceptrons (5) with activation function f = σ.
Then GB (x) is an universal approximator.

Proof. The proof is in complete analogy to the proof of the Cybenko-theorem.
The application of the Hahn-Banach-theorem is not a�ected by the weaker as-
sumption regarding the Banach-space. The existence of a respective RRT is
guaranteed by the previous theorems.

Most famous examples for Banach-spaces are the spaces Lp and lp. The
latter one is equipped with the unique SIP

[w,x]p =
1

‖x‖p−2p

∑

k

wk · |xk|p−1 · sgn (xk) (7)

with 1 ≤ p ≤ ∞ [7]. Thus we can equip IBn with the SIP [w,x]p. Further we
can state the following lemma:

Lemma 11. Both Lp and lp are uniformly convex for 1 < p <∞.

Proof. [9]

Corollary 12. The compact set IBn with the SIP [w,x]p from (7) is an uniformly
re�exive Banach space for 1 < p <∞. Hence, a RRT analogously to (4) is valid.

Proof. Just apply Theorem8.

The last corollary leads to the following statement:

Lemma 13. A MLP using Banach-like perceptrons with output

Op (w,x) = f
(
[w,x]p + b

)

according to (5) generated by the SIP [w,x]p from (7) is an universal approxi-
mator for 1 < p <∞.

Proof. The previous corollary about uniform convexity of lp together with
Lemma (9) guarantee that Theorem (10) is applicable.

According to statement in [17] a RRT is also valid for generalized SIP-spaces.
Zhang & Zhang considered generalized SIPs (gSIP) [17] extending a �rst

attempt by Nath [12]. They considered SIPs [w,x]ξ for a function ξ : R+ → R+
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ful�lling the requirements 1) and 2) of Def. 6. The Cauchy-Schwarz-inequality
is replaced by ∣∣∣[w,x]ξ

∣∣∣ ≤ ξ
(
[w,w]ξ

)
· ψ
(
[x,x]ξ

)

for a conjugate function ψ : R+ → R+, i.e. ξ (t) · ψ (t) = t has to be valid.
For a RRT regarding those gSIPs it is assumed that ξ (t) is a so-called gauge
function, i.e. ξ (0) = 0 and limt→∞ ξ (t) =∞. If ξ (t) is surjective onto R+ and

ζ (t) = ξ−1(t)
t is a gauge function on R+ then a RRT can be formulated, because

the resulting Banach-space is re�exive and strictly convex [17].

3.2.3 Kernels for Banach-Spaces

In this step we extend Cybenkos theorem to the case of kernels regarding repro-
ducing kernel Banach spaces (RKBS). As stated in [16, Theorem 4], a RKBS
is always re�exive. Thus, we suppose a kernel κB corresponding to the kernel
feature map φB : In → In ⊂ B with B being a RKBS. From Theorem8 we can
conclude that Cybenko's theorem is applicable accordingly.

3.2.4 Inde�nite Inner Product Spaces

De�nition 14. An inde�nite inner product (IIP) is a mapping J·, ·K : X×X →
C from a vector space X into the complex plane if the following relations are
ful�lled [2]:

1. linearity: Jλx+ z,yK = λ Jx,yK+ Jz,yK for λ ∈ C

2. Hermitean symmetry: Jx,yK = Jy,xK

The quantity n̂ (x) = Jx,xK might become negative. Hence, it de�nes neither
a norm nor it is sub-additive. Therefore, we consider the quantity n (x) =√
|Jx,xK| instead. Then we can state the following lemma:

Lemma 15. The functional n (x) =
√
|Jx,xK| is sub-linear.

Proof. We have for λ > 0

n (λx) =
√
|Jλx, λxK|

=
√
|λ2 Jx,xK|

= λ
√
|Jx,xK|
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which shows the homogenity and

n (x+ y) =
√
|Jx+ y,x+ yK|

=
√
|Jx,xK+ Jx,yK+ Jy,xK+ Jy,yK|

≤
√
|Jx,xK|+ |Jx,yK|+ |Jy,xK|+ |Jy,yK|

≤
√
|Jx,xK|+ |Jy,yK|

≤
√
|Jx,xK|+

√
|Jy,yK|

= n (x) + n (y)

verifying the sub-additivity. This completes the proof.

In the next step we consider the vector space equipped with the introduce
sub-linear function n (x). [5]

Appendix

In this appendix we give some useful de�nitions regarding Banach-spaces used
in the text as well as some basic properties.

De�nition 16. Let X be a vector space over K ∈ {R,C} and ϕ : X → K be a
functional. It is denoted as sub-linear if both

• positive homogeneity: ϕ (λx) = λϕ (x) for λ ∈ R+ and ϕ (ix) = iϕ (x) is
valid in the complex case

• sub-additivity: ϕ (x+ y) ≤ ϕ (x) + ϕ (y)

hold.

We remark that every norm on X is sub-linear. The Hahn-Banach-Theorem
is stated as follows [10, 13, 15]:

Theorem 17. Variant a) Let X be a vector space over K ∈ {R,C} and Y ⊆ X
a subspace. Let ϕ : X → R be a sub-linear functional and f : Y → K be a
linear functional with < (f (y)) ≤ ϕ (y) for all y ∈ Y . Then there exists a
linear functional F : X → K with F |Y = f and < (F (x)) ≤ ϕ (x) is valid for
all x ∈ X.

An alternative formulation is variant b): Let X be a normed space and Y is
a subspace Y ⊂ X. Let be f ∈ X∗ with f |Y = 0. The subspace Y is dense in X
i� under these assumptions always follows f (x) = 0 for all x ∈ X.
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De�nition 18. A Banach space B is denoted as strictly convex i� for x,y 6= 0
with ‖x‖+ ‖y‖ = ‖x+ y‖ we can always conclude that x = λy for some λ > 0.

Lemma 19. A Banach space B with SIP [·, ·] is strictly convex i� for x,y 6= 0
with [x,y] = ‖x‖ · ‖y‖ we can always conclude that x = λy for some λ > 0.

Proof. [7]

The following de�nition for the uniform convexity was introduced in [3]:

De�nition 20. A Banach space B is denoted as uniformly convex i� for each
ε > 0 exist a δ (ε) > 0 such that if ‖x‖ = ‖y‖ = 1 with ‖x− y‖ > ε then
‖(x+y)‖

2 < 1− δ (ε) is valid.

De�nition 21. A Banach space B with SIP [·, ·] is denoted as continuous i�

<{[x,y + λx]} −→
λ→0
<{[x,y]}

is valid for λ ∈ R. The space is uniformly continuous i� this limit is approached
uniformly.

De�nition 22. A Banach space B is denoted as re�exive i� the mapping J :
B → B∗∗ is surjective.

Theorem 23. Let B be a Banach space. Then a necessary and su�cient con-
dition for B to be re�exive is that for every f ∈ B∗ exists an SIP [·, ·] and an
element y ∈ B with f (x) = [x,y] for all x ∈ B. If B is strictly convex then y is
unique.

Proof. [6, Theorem 2]

De�nition 24. A Banach space B is denoted as smooth i� for each x ∈ B
with ‖x‖ = 1 there exist a linear functional fx ∈ B∗ with fx (x) = ‖fx‖. The
existence of fx is guaranteed by the Hahn-Banach-Theorem.
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