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Abstract

In this technical report we collect and propose some useful quantities, notations, and ap-

proaches regarding information theoretic concepts, which might be helpful in machine learning

when analyzing sequences and labeled graphs. In particular, we introduce resolved mutual infor-

mation functions, which can be seen as a determining feature (profile) to characterize the spatial

correlations in those data objects.
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1 Introduction

Information theoretic measures become more and more popular in applications far away from signal

processing, information science and physics [33]. Among them, molecular-biological topics are one of

the most promising areas as well as natural language processing [1, 45]. For example, sequence pro-

cessing in biology and text analysis in linguistics are treated with very similar mathematical methods

of information theory [29]. Those approaches comprise also methods which generate characteristic fea-

tures of sequences or texts allowing a further processing by machine learning methods for clustering,

classification and novelty detection, to name just a few application areas.

In this report, we consider some information theoretic quantities, which gained interest and gener-

alize respective concepts to motivate further applications and the transfer to other application areas

[6]. We will use these quantities to characterize spatial correlations and dependencies in sequences as

well as in labeled graphs. Particularly, we will focus on quantities derived from the mutual information

and related divergence measures [44]. Thereby, we will not restrict the approaches to the Shannon

paradigm for the quantities but give also attention to computationally and theoretically interesting

alternatives like Rényi divergences [35, 37]. Yet, we will start with the most prominent Shannon

concepts.

2 Information Theoretic Quantities Related to the Shannon

Concept of Information

2.1 Concepts, Basic Definitions and Mutual Information Functions

The Shannon entropy H (X) of a a random quantity X ⊆ X with the density measure p (x) is the

expectation value

E
[
log

(
1

p (x)

)]
=

∫

X
p (x) · log

(
1

p (x)

)
dx (1)

of the information log
(

1
p(x)

)
, such that we have

H (X) = E
[
log

(
1

p (x)

)]
(2)

for this entropy. The maximum value of H (X) is obtained for an uniform density p (x) and, hence,

H (X) serves as a measure of uncertainty [29]. The non-symmetric Kullback-Leibler divergence of

p (x) to a random quantity Y ⊆ Y = X with density p (y) is given as

DKL (X ‖ Y ) =

∫

X

∫

Y
p (x) · log

(
p (x)

p (y)

)
dydx (3)

yielding a zero value for p (x) ≡ p (y) [23]. Thus, the Kullback-Leibler divergence DKL (X ‖ Y ) can

be taken as a dissimilarity measure between p (x) and p (y) [31]. The mutual information

I (X,Y ) =

∫

X

∫

Y
p (x, y) · log

(
p (x, y)

p (x) · p (y)

)
dydx (4)

quantifies the joint information of p (x) and p (y) with p (x, y) being the joint density [23, 37]. Hence,

the mutual information is the Kullback-Leibler divergence DKL (p (x, y) ‖ p (x) · p (y)) between the

joint probability and the product of the marginal probabilities. Equivalently, we can write the mutual

information as

I (X,Y ) =

∫

X
F (x, Y ) dx
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with

F (x, Y ) =

∫

Y
p (x, y) · log

(
p (x, y)

p (x) · p (y)

)
dy (5)

describing a mutual information relation of a particular object (value) x of the random quantityX with

respect to the random quantity Y . We denote F (x, Y ) as the (feature) resolved mutual information

(rMI).

The mutual information I (X,Y ) can be written in terms of the Shannon entropies as

I (X,Y ) = H (X) +H (Y )−H (X,Y ) (6)

= H (X)−H (X|Y )

with the conditional entropy

H (X|Y ) = H (X,Y )−H (Y ) (7)

= −
∫

X

∫

Y
p (x, y) · log

(
p (x, y)

p (y)

)
dydx .

Combining (6) and (7), the mutual information I (X,Y ) is obtained to be

I (X,Y ) = −
∫

X
p (x) · log (p (x)) dx+

∫

X

∫

Y
p (x, y) · log

(
p (x, y)

p (y)

)
dydx

= −
∫

X

(∫

Y
p (x, y) · log

(
p (x, y)

p (y)

)
dy − p (x) · log (p (x))

)
dx

as an alternative formulation. From this we can conclude that for the rMI in eq. (5) the relation

F (x, Y ) = −p (x) · log (p (x)) +

∫

Y
p (x, y) · log

(
p (x, y)

p (y)

)
dy

holds.

The cross mutual information for sequences X (t) and Y (t+ τ) at time t with shift τ ≥ 0 is defined

as

I (X (t) , Y (t+ τ)) =

∫

X

∫

Y
p (x (t) , y (t+ τ)) · log

(
p (x (t) , y (t+ τ))

p (x (t)) · p (y (t+ τ))

)
dydx (8)

which yields by setting Y (t+ τ) = X (t+ τ)

I (X (t) , X (t+ τ)) =

∫

X

∫

X
p (x (t) , x (t+ τ)) · log

(
p (x (t) , x (t+ τ))

p (x (t)) · p (x (t+ τ))

)
dx (t+ τ) dx

as the auto mutual information at time t with shift (delay) τ [22, 12]. If p (x (t)) is independent from

t, only the joint probability p (x (t) , x (t+ τ)) remains t-dependent or, more precisely, it becomes

dependent only on the shift τ such that we simply write p (x, x (τ)) for this. Thus, the auto mutual

information in dependence on the shift τ is obtained as

I (X, τ) =

∫

X

∫

X
p (x, x (τ)) · log

(
p (x, x (τ))

p (x) · p (x (τ))

)
dx (τ) dx (9)

as an information theoretic analagon to the auto-correlation function. In [25, 26] this shift-dependent

auto mutual information is denoted as the mutual information function (MIF). Adapting the rMI
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from eq. (5) to the auto mutual information I (X, τ) we result the function

F (x, τ) =

∫

X
p (x, x (τ)) · log

(
p (x, x (τ))

p (x) · p (x (τ))

)
dx (τ) (10)

=

∫

X
p (x, x (τ)) · log

(
p (x, x (τ))

p (x (τ))

)
dx (τ)− p (x) · log (p (x))

which can be seen as a quantity characterizing the inherent correlations of the sequence values x (t).

We denote F (x, τ) as the (feature) resolved mutual information function (rMIF), which trivially fulfills

I (X, τ) =

∫

X
F (x, τ) dx (11)

according to its definition. For (finite) discrete distributions it becomes simply a matrix F. Hence,

we can compare those matrices by an arbitrary matrix norm, e.g. by the Frobenius norm (metric)

[14, 18].

2.2 Applications of Mutual Information Functions for Sequence Analysis

in Bioinformatics

The consideration of organization processes, structuring and self-organization as well as information

transfer belong to the key aspects of living systems [36, 9, 15, 16]. Thus information theoretic concepts

play an important role in sequence analysis for understanding and analyzing RNA- and DNA- as well

as protein sequences to explain biological systems [1].

Long-range correlations in sequences are well-known and intensively studied also in alignment

free sequence comparison [28, 27, 32, 46]. The use of MIF as alternative to correlations was firstly

investigated in [26] and this idea was renewed in [3] and [40]. It is followed by several studies using

MIF for different topics like in silico comparison of bacterial strains using mutual information [41]. In

[2], the MIF was renamed to be the average mutual information profile (AMI-profile) and proposed

to serve as a genomic signature. This notation was taken over in the review [45] about information

theoretic methods for sequence analysis. Following this notation, we denote the feature resolved

mutual information function (rMIF) F (x, τ) from eq. (10) in this context also as the (feature) resolved

average mutual information profile (rAMI-profile).

3 Rényi Information Concepts and α-scaled Mutual Informa-

tion Functions

The Rényi-entropy

Hα (X) =
1

1− α log

(∫

X
(p (x))

α
dx

)

is a generalization of the Shannon-entropy, where α > 0 and α 6= 1 is a parameter [34]. Depending

on the context it is also denoted as α-entropy. In the limit α → 1, the Shannon entropy is obtained.

The Rényi-mutual-information (RMI) or α-mutual information (α-MI) is defined as

Iα (X,Y ) =
1

α− 1
log

(∫

X

∫

Y

(p (x, y))
α

(p (x))
α−1 · (p (y))

α−1 dydx

)
(12)
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as outlined in [35]. This mutual information is widely applied in data analysis and pattern recognition

as well as in information theoretic machine learning [10, 17, 21, 24, 33, 38, 44, 30, 4]. In analogy to

the resolved mutual information rMI F (x, Y ) from eq. (10), we denote

Fα (x, Y ) =

∫

Y

(p (x, y))
α

(p (x))
α−1 · (p (y))

α−1 dy (13)

as the α-scaled resolved mutual information (α-rMI) or as α-scaled object dependent average mutual

information profile (α-AMI-profile) in bioinformatics context.

The Rényi variant of the cross mutual information for sequences X (t) and Y (t+ τ) at time t with

shift τ ≥ 0 is defined as

Iα (X (t) , Y (t+ τ)) =
1

α− 1
log

(∫

X

∫

Y

(p (x (t) , y (t+ τ)))
α

(p (x (t)))
α−1 · (p (y (t+ τ)))

α−1 dy (t+ τ) dx (t)

)
(14)

which gives by setting Y (t+ τ) = X (t+ τ)

Iα (X (t) , X (t+ τ)) =
1

α− 1
log

(∫

X

∫

X

(p (x (t) , x (t+ τ)))
α

(p (x (t)))
α−1 · (p (x (t+ τ)))

α−1 dx (t+ τ) dx (t)

)

as the Rényi variant of the auto mutual information at time t with shift (delay) τ . Again, if p (x (t))

is independent from t, only the joint probability p (x (t) , x (t+ τ)) remains t-dependent such that it

becomes dependent only on the shift τ and we simply write p (x, x (τ)) for this. Hence, the Rényi auto

mutual information in dependence on the shift τ is obtained as

Iα (X, τ) =
1

α− 1
log

(∫

X

∫

X

(p (x, x (τ)))
α

(p (x))
α−1 · (p (x (τ)))

α−1 dx (τ) dx

)

and denoted as Rényi variant of, or α-scaled mutual information function (α-MIF). Accordingly, the

α-scaled resolved version of α-MIF Iα (X, τ) is

Fα (x, τ,X) =

∫

X

(p (x, x (τ)))
α

(p (x))
α−1 · (p (x (τ)))

α−1 dx (τ) (15)

describing again the inherent correlations of the sequence and, hence, can serve as a characterizing

quantity. We denote this function as the α-scaled resolved mutual information function (α-rMIF). In

bioinformatics context it is denoted as α-scaled object dependent average mutual information profile

(α-rAMI-profile). We immediately have

Iα (X, τ) =
1

α− 1
log

(∫

X
Fα (x, τ) dx

)

in complete analogy to eq. (11).

In contrast to eq. (6) being valid for the (Shannon) mutual information, now the inequality

Iα (X,Y ) 6= Hα (X) +Hα (Y )−Hα (X,Y ) (16)

holds for RMI. Thus, the RMI is not based on the Rényi-entropy in a straightforward way as the

Shannon mutual information is based on the Shannon entropy [17]. This problem arises from the

difficulty to define a conditional Rényi entropy to be consistent with the setting in the Shannon case

[8, 11, 42]. According to [20, 19] we can distinguish at least: [5, 43]
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� Jizba-Arimitsu conditional Rényi-entropy

HJA
α (X|Y ) = Hα (X,Y )−Hα (Y ) (17)

� Arimoto conditional Rényi-entropy

HA
α (X|Y ) =

α

1− α log

(∫

X
p (x)

(∫

Y
(p (x|y))

α
dy

)1/α

dx

)
(18)

� Hayashi conditional Rényi-entropy

HH
α (X|Y ) =

1

1− α log

(∫

X
p (x)

(∫

Y
(p (x|y))

α
dy

)
dx

)
(19)

It can be shown that HH
α (X|Y ) ≤ HA

α (X|Y ) is valid using the Jensen’s inequality [20]. Obviously,

HJA
α (X|Y ) can be interpreted as an extension of the conditional Shannon entropy H (X|Y ) because

the definition (17) precisely coincides with Shannon chain rule (7).

The non-negative Rényi-α-divergence is defined as

Dα (X ‖ Y ) =
1

α− 1
log

(∫

X

∫

Y

(p (x))
α

(p (y))
α−1 dydx

)
(20)

with the limit limα→1Dα (X ‖ Y ) = DKL (X ‖ Y ) being valid.

4 Resolved Mutual Information Functions for Characteriza-

tion of Spatial Correlations between Nodes in Labeled

Graphs

The above concepts for the (resolved) mutual information function for sequences can be easily trans-

ferred to labeled graphs. We assume a set G of graphs Gk, each of which consists of Nk nodes nj with

node labels lj ∈ L determining the class/type of the node regarding some given classification scheme

L. Further, let D(k) ∈ RNk×Nk be the matrix of the, possibly directed and weighted, minimum graph

distances (shortest path) between the node pairs of the graph Gk and dmax = maxi,j,k

(
D

(k)
i,j

)
the

maximum node distance for all graphs to be considered. For undirected graphs, D(k) is symmetric.

Let, IT,R = [0, T ] be an interval with a partition PT = {τ0 = 0, τ1, . . . , τR = T} such that τi < τj
holds for i < j. The dominating distance τi (z) for a given value z is defined by the inequalities

τi−1 < z ≤ τi to be valid. Let p (l) be the probability of the label l ∈ L in a graph G and p (l, l′) the

respective joint probabilities.

Using these definitions we can determine in analogy to (9) the Shannon mutual information function

(MIF) for graph as

I (Gk, τr) =

Nk∑

i=1

Nk∑

j=1

δ
(
τr, τi

(
D

(k)

i,j

))
· p (li, lj) · log

(
p (li, lj)

p (li) · p (lj)

)
(21)

where

δ (z, z′) =





1 for z = z′

0 for z 6= z′
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is the Kronecker-symbol and τr ∈ PT . Accordingly, the resolved MIF (rMIF) for graphs reads as

F (li, τ, Gk) =

Nk∑

j=1

δ
(
τr, τi

(
D

(k)

i,j

))
· p (li, lj) · log

(
p (li, lj)

p (li) · p (lj)

)
(22)

with li ∈ L.

Applying the Rényi-variants α-MIF and α-rMIF to graphs, we obtain

Iα (Gk, τ) =
1

α− 1
log




Nk∑

i=1

Nk∑

j=1

δ
(
τr, τi

(
D

(k)

i,j

))
· p (li, lj) ·

(p (li, lj))
α

p (li)
α−1 · p (lj)

α−1




and

Fα (li, τ, Gk) =

Nk∑

j=1

δ
(
τr, τi

(
D

(k)

i,j

))
· p (li, lj) ·

(p (li, lj))
α

p (li)
α−1 · p (lj)

α−1

respectively.

5 Conclusion

In this technical report we provide information theoretic concepts and quantities to characterize spa-

tial correlations in sequences and labeled graphs. In particular, we introduced several types of mu-

tual information functions for both, Shannon and Rényi information theoretic approaches. These

functions/quantities can be used to compare those objects (sequences/graphs) in machine learning

approaches regarding their inherent spatial correlations. Respective applications we see for sequence

analysis in bioinformatics and text analysis as well as for social relation analysis by means of graphs

as well as for other relational graphs, e.g. chemical structural formulae.

In the future work we will extend these approaches to further mutual information concept related to

other widely considered entropy measures and information theoretic quantities, e.g. Tsallis-entropies

and divergences or more general α-, β- and γ-divergences with related mutual informatin concepts .
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[19] V. Ilić, I. Djordjević, and M. Stanković. On a general definition of conditional Rényi entropies.
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[35] A. Rényi. Probability Theory. North-Holland Publishing Company, Amsterdam, 1970.

[36] E. Schrödinger. What is life? Cambridge University Press, 1944.

The Resolved Mutual Information Function for Characterization of Spatial Correlations in
Sequences and Labeled Graphs

Machine Learning Reports 11



[37] C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–

432, 1948.

[38] A. Singh and J. Principe. Information theoretic learning with adaptive kernels. Signal Processing,

91(2):203–213, 2011.

[39] A. Sparavigna. Mutual information and nonadditive entropies: The case of Tsallis entropy.

International Journal of Sciences, 4(10), 2015.

[40] D. Swati. Use of mutual information function and power spectra for analyzing the structure

of some prokaryotic genomes. American Journal of Mathematical and Management Sciences,

27(1–2):179–198, 2007.

[41] D. Swati. In silico comparison of bacterial strains using mutual information. Journal of Bio-

Sciences, 32(6):1169–1184, 2009.

[42] A. Teixeira, A. Matos, and L. Antunes. Conditional Rényi entropies. IEEE Transactions on
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[43] S. Verdú. α-mutual information. In Information Theory and Applications Workshop (ITA), San

Diego, pages 1–6. IEEE Press, 2015.

[44] T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation,

23(5):1343–1392, 2011.

[45] S. Vinga. Information theory applictions for biological sequence analysis. Bioinformatics,

15(3):376–389, 2014.

[46] R. Voss. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences.

Physical Review A, 68(25):3805–3808, 1992.

The Resolved Mutual Information Function for Characterization of Spatial Correlations in
Sequences and Labeled Graphs

12 Machine Learning Reports



MACHINE LEARNING REPORTS

Report 02/2021

Impressum
Machine Learning Reports ISSN: 1865-3960
5 Publisher/Editors

Prof. Dr. rer. nat. Thomas Villmann
University of Applied Sciences Mittweida
Technikumplatz 17, 09648 Mittweida, Germany
• http://www.mni.hs-mittweida.de/

Dr. rer. nat. Frank-Michael Schleif
University of Bielefeld
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