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Abstract

We study the utilization of functional metrics for learning of functional data. In particu-
lar we investigate the metrics based on the Sobelev metric which can be related top a
respective inner product. This offers capabilities for adequate data processing of func-
tional data taking into acccount the dependencies within the functional data vectors.
We outline these possibilities and give the mathematical derivations as well as the the-
oretical basis for two basic applications: functional principal component analysis based
on Oja’s algorithm and prototype based vector quantization.
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1 Introduction

Data processing of functional data is a challenging topic in machine learning data anal-
ysis [RS06]. There is a broad area of application: biomedicine, chemometrics and
chemistry, physics and astrophysics as well as geosciences and remote sensing anal-
ysis, to name just a few. The problems to be solved ranges from time series analy-
sis and prediction, identification of characteristic patterns and classification to spectral
data analysis.

Usually the functional data are given as high-dimensional vectors v with compo-
nents vi = f (xi), xi ∈ R. The characteristic feature which distinguishes usual vectorial
data from functional once is that the vector components vi are not independent. How-
ever, there exist only few methods in machine learning which take into account this
property [LV05],[RDCGV05].

In this work we investigate the usability of Sobolev-metrics for adequate handling
of functional data in data analysis. The main advantage of this metric in comparison
to other methods is that it can be derived from a inner product defined for a special
function class which has special assumptions on differentiability. We show, how this
methodology can me plugged into machine learning methods. As basic examples we
demonstrate this for two important methods: functional principal component analysis
(FPCA) based on the Oja’s algorithm and prototype based vector quantization.

The paper is organized as follows: First we investigate functional metrics in the
light of applicability for adaptive learning methods. In particular we will concentrate
on Sobolev-metrics and norms. Subsequently, we will outline the application of the
Sobolev-inner-product, which is in direct dependence on the Sobolev-norm, for FPCA.
We give the mathematical derivations and foundations for the incorporation of both,
inner product and norm, into PCA-learning and prototype based vector quantization. A
short conclusion concludes this paper.

2 Functional metrics, norms and inner products

In this chapter we provide all the ingredients which are needed for the application of
functional norms and related inner products for machine learning algorithms.

2.1 Functional norm according to LEE & VERLEYSEN

There exist only few methods which are specifically designed to process functional data
paying attention to the special property of inherent dependencies. Most of them deal
with the function description in terms of basis functions like Fourier-, Laplace-, wavelet
expansions or others, such that methods can be applied to the respective coordinate
space. An interesting alternative was proposed by LEE&VERLEYSEN in [LV05]. It is
based on the usual Minkowski-p-norm

‖f‖p =

√(∫
|f (x) · f (x)|p dx

) 1
p

(2.1)
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Figure 1: Illustration of the ‖f‖fc
p −norm. The function graph is given as fk = f (xk).

The norm involves the areas of the triangles located on the left and right sides of each
coordinate. (Figure from [LV05])

or in its vectorial form

‖f‖p =

√√√√√( D∑
k=1

|fk · fk|p
) 1

p

(2.2)

with f = (f1, . . . , fD) and fk = f (xk), xk ∈ X ⊆ R whereby we assume w. l. o. g. that
xk < xk+1 for all k. The functional norm by LEE&VERLEYSEN motivated by geometrical
considerations is defined as

‖f‖fc
p =

(
D∑

k=1

(Bk (f) + Bk (f))p

) 1
p

(2.3)

with

Ak (v) =

{
τ
2
|vk| if 0 ≤ vkvk−1

τ
2

v2
k

|vk|+|vk−1|
if 0 > vkvk−1

and Bk (v) =

{
τ
2
|vk| if 0 ≤ vkvk+1

τ
2

v2
k

|vk|+|vk+1|
if 0 > vkvk+1

(2.4)
and the usual choice τ = 1. The functional dependencies are involved by areas of the
triangles located on the left and right sides of each coordinate, see Fig. 1.

The ‖f‖fc
p -norm is a generalization of the usual ‖f‖p-norm. As usual for every norm,

an accompanying distance measure can be defined by

δfc
p (f ,g) = ‖f − g‖fc

p (2.5)

with δfc
p (f ,g) ≤ ‖f − g‖p as it was shown in [LV05]. In particular, one has

‖f‖fc
p = ‖f‖p iff ∀k fk ≥ 0 or ∀k fk ≤ 0. (2.6)

From a machine learning point of view, it is interesting that the quadratic functional

metric
(
δfc
2 (f ,g)

)2

is ’differentiable’ (in the sense of difference quotients) for the choice
p = 2.

∂
(
δfc
2 (f ,g)

)2

∂gk

def.
=

1

2
(2− Uk−1 − Uk+1) (Vk−1 + Vk+1)4k (2.7)
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with

Uk−1 =

{
0 if 0 ≤ 4k4k−1(

4k−1

|4k|+|4k−1|

)2

if 0 > 4k4k−1

Uk+1 =

{
0 if 0 ≤ 4k4k+1(

4k+1

|4k|+|4k+1|

)2

if 0 > 4k4k+1

Vk−1 =

{
1 if 0 ≤ 4k4k−1
|4k|

|4k|+|4k−1|
if 0 > 4k4k−1

Vk+1 =

{
1 if 0 ≤ 4k4k+1
|4k|

|4k|+|4k+1|
if 0 > 4k4k+1

and 4j = fk − gk [LV05].
However, the ‖f‖fc

p -norm has a disadvantage. It can not be derived from an inner
product. We will see later for FPCA (see Sec.3) that this feature can be used for
adaptive FPCA. We will proof the following lemma:

Lemma 1 The functional norm ‖·‖fc
p cannot be related to an inner product.

Proof. The proof stresses the parallelogram equation. A norm ‖·‖ can be derived from
an inner product iff the parallelogram equation

‖f − g‖2 + ‖f + g‖2 = 2
(
‖f‖2 + ‖g‖2) (2.8)

is fulfilled. We will see that this is not the case for the ‖f‖p-norm: For this purpose, we
consider to vectorial functions f and g with ∀k fk ≥ 0 and gk ≥ 0. Thus ‖f‖fc

p = ‖f‖p

and ‖g‖fc
p = ‖g‖p according to (2.6). Obviously, fk + gk ≥ 0 for all k and, hence,

‖f + g‖fc
p = ‖f + g‖p. We further assume that there exist exactly one k∗ such that fk∗ <

gk∗ whereas fk > gk holds otherwise. It can easily be computed that for the difference
vector z = f − g the inequality ‖z‖fc

p 6= ‖z‖p is valid because of Ak∗ (z)+Bk∗ (z) 6= |zk∗|p
whereas Ak (z) + Bk (z) = |zk|p otherwise. This completes the proof.

Beside this impossibility it is difficult to generalize the ‖f‖fc
p -norm to integrable func-

tions. Therefore, we now focus on a norm which is naturally defined by an inner prod-
uct but also involving the functional dependency. The idea of application of functional
norms for data analysis was demonstrated for FPCA in [Sil96].

2.2 Minkowski–metrics and respective Sobolev-metrics: the func-
tion spaces Lp and Sp

We start with the usual p−Minkowski-inner-product (p−MIP). Let f, g be real-valued
functions over X ⊆ R. Then the inner product p−MIP is defined as

〈f, g〉p =

(∫
X

|f (x) g (x)|p dx

) 1
p

. (2.9)

for real-valued absolute-integrable functions f and g. The accompanied p−Minkowski-
norm is (p−MN)

‖f‖p =
√
〈f, f〉p (2.10)
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For discrete representations we analogously have

〈f, g〉p =

(
n∑

k=1

|fk · gk|p
) 1

p

(2.11)

The respective function space is Lp (X), which forms a Hilbert-space [Tri89]. The spe-
cial case p = 2 can be seen as the Euclidean inner product

〈f, g〉E =

∫
X

f (x) g (x) dx (2.12)

= 〈f, g〉1 (2.13)

We now introduce the p−Sobolev-inner-product (p−SIP) of degree k with parameter
α > 0. Let f, g ∈ CK (X) be K−times continuous-differentiable integrable functions (in
the Lebesgue sense) over X. Then an inner product can be defined by

〈f, g〉Sp,α = 〈f, g〉p + α
〈
D(k)f, D(k)g

〉
p

(2.14)

with D(k) being the kth differential operator and D(0) = id is the identity [KF75]. The
requirements for an inner product are obviously fulfilled due to the linearity of the dif-
ferential operator D(k). The accompanied p−Sobolev-norm (p−SN) of degree k is

‖f‖Sp,k,α =
√
〈f, f〉Sp,α (2.15)

which defines the Sobolev distance of degree k

sSp,k,α (f, g) = ‖f − g‖Sp,α . (2.16)

The space CK (X) together with the norm (2.15) forms a Banach-space Sp,k,α and
obviously one has Sp,k,α ⊂ Lp.1 For the special case p = 2 the space S2,α =Sα becomes
a Hilbert-space [KA78]. Moreover, for this case an interesting connection to the Fourier-
analysis can be made using the Parsevals-equation: Let f̂ be the Fourier-transform of
f

f̂ (ω) =
1√
2π

∫ ∞

−∞
f (x) exp (−iωx) dx (2.17)

or for discrete valued functions g given in vectorial form

ĝ (ωk) =
N−1∑
j=1

gj exp

(
−i2π

k · j
N

)
(2.18)

with ωk = 2πk
N

. Then, the norm ‖·‖Sk = ‖·‖S2,k,1 can be written as

‖f‖Sk =

√∫ ∞

−∞
(1 + ω)k

∣∣∣f̂ (ω)
∣∣∣2 dω (2.19)

1Yet, there are more general definitions possible. We here restrict ourself to this simplification which
are sufficient for the most applications of machine learning problems. For a further reading we refer to
[KA78] or [KF75].
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or in its dicrete form

‖g‖Sk =

√√√√N−1∑
j=1

(1 + ωj)
k |ĝ (ωj)|2 (2.20)

Clearly, all the other definitions can also be transferred to vectorial representations of
functions replacing the integrals by sums and the differential operators D(k) by differ-
ence operators 4(k).

2.3 Some remarks about statistical values and (discrete) inner
products

We return to the Euclidean inner product (2.12) in the discrete form

〈f ,g〉E =
D∑

k=1

fkgk (2.21)

Let 1 be the vector 1 = (1, . . . , 1). Then

f̄ = 〈f ,1〉 /D (2.22)

is the mean of f and

σf =
〈
f−f̄1, f−f̄1

〉
/D (2.23)

=
∥∥f−f̄1

∥∥2 (2.24)

its variance, whereby ‖·‖ is the usual quadratic Euclidean norm. Analogously one gets

σf ,g =
〈
f−f̄1,g−ḡ1

〉
/D (2.25)

for the covariance.

3 Functional principal component analysis (FPCA)

In this chapter we will give two approaches for FPCA. The first method uses the function
representation in terms of orthogonal basis functions, whereas the second approach
utilizes the Sobolev-inner-product 2-SIP.

3.1 FPCA based on orthogonal basis functions

In this section we assume that the real function f, g over X ⊆ R can be represented by
orthogonal basis functions φk which form a basis of the functional space containing f
and g. Thereby, orthogonality is defined by 〈φk, φj〉E = δk,j. The basis may contain a
infinite number of basis functions. Prominent examples are the the set of monomials
1, x, x2, . . . , xk, . . . or the Fourier-system of sin (kωx),cos (kωx) with k = 0, 1, 2, . . ..

Using a basis system of K linear independent functions an arbitrary function f can
be approximated by

f (x) =
K∑

k=1

αkφk (x) (3.1)
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which can be seen as a discrete Euclidean inner product 〈α, φ (x)〉E of the coordinate
vector α = (α1, . . . , αk)

> with the function vector φ = (φ1 (x) , . . . , φk (x))>. If the basis
functions are the Fourier functions and f given as functional vector f , then the Sobolev-
norm ‖f‖Sk can be immediately computed via (2.20).

We denote by A the function space spanned by all basis functions φk:

A = span (φ1, . . . , φk) . (3.2)

Following the suggestions in [RS06] and [RDCGV05] to transfer the ideas of usual
multivariate PCA to FPCA. We consider the Euclidean inner product

〈f, g〉E =

∫
X

f (x) g (x) dx (3.3)

=
K∑

k=1

K∑
j=1

αkβj

∫
X

φk (x) φj (x) dx (3.4)

=
K∑

k=1

K∑
j=1

αkβj 〈φk, φj〉E (3.5)

whereby in the second line the Fubini-lemma was used to exchange the integral and the
sums. Let Φ be the symmetric matrix spanned by Φk,j = 〈φk, φj〉E using the symmetry
of an inner product. Using this definition, the last equation can be rewritten as 〈f, g〉E =
〈f, g〉Φ with the new inner product

〈f, g〉Φ = α>Φβ (3.6)

We remark that Φ is independent of both f and g. If the basis is orthogonal, Φ is
diagonal with entries Φk,k = 1. Thus, the inner product of functions is reduced to the
inner product of the coordinate vectors

〈f, g〉E = 〈α, β〉E (3.7)

For handling non-orthogonal basis systems we refer to [RDCGV05].
Looking at (3.7) we see that performing elementary vector operations on the coor-

dinate vectors in the Euclidean space RK equipped with the (discrete) Euclidean inner
product (2.12) is equivalent to the respective operations in the inner product space A
with the Euclidean inner product (3.3). This statement allows a straightforward appli-
cation to FPCA: FPCA can performed on a set F = {fk}k=1...N of functions fk by usual
vectorial PCA analysis of the respective set of coordinate vectors αk as explained in
[RS06].

3.2 Oja’s PCA-learning for functional data

E. OJA developed an online-learning algorithm to determine the first principal com-
ponent of data vectors v ∈V⊆ Rn adaptively [Oja89],[Oja93]. The first principal com-
ponent w related to the maximum eigen value for the data set V is obtained by the
stochastic adaptation. For a single input the learning rule is

4w = εO (v −Ow) (3.8)
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with O being the output

O = v> ·w (3.9)
= w> · v (3.10)

which judges the correlation strength according to the Hebbian postulate of coinci-
dence for neural connections between nerve fibres v and the neural dendrites realized
by the connection strength w [Hay94],[KS91],[RMS92]. We obtain

4w = ε
(
v> ·w

) (
v −

(
v> ·w

)
w
)

(3.11)

= εvv> ·w −
(
w> · v

) (
v> ·w

)
w (3.12)

= εw · v>v −w·
(
v>v

)
·w>w (3.13)

We remark here that the output O can also be written as the Euclidean inner product
〈v,w〉E

4w = ε 〈w,v〉E
(
v − (〈w,x〉E)2 w

)
. (3.14)

Obviously, this algorithm can be immediately applied to the above outlined approach
of FPCA based on function representations using orthogonal basis functions. However,
if the functional data are given in vectorial form, there exist an interesting alternative.
Instead of the Euclidean scalar product we formally plug the p−SSP of degree k (2.14)
into the basic Oja-learning rule (3.14).

In particular we focus on the 1−SIP

〈w,v〉S1,α = 〈w,v〉1 + α
〈
D(k)w, D(k)v

〉
1

(3.15)

= . 〈w,v〉E + α
〈
D(k)w, D(k)v

〉
E

(3.16)

. of degree k. We denote by υ the vector D(k)v and by ω the vector D(k)w and replace
in the original learning rule (3.14) 〈w,v〉E by 〈w,v〉S1,α. Then we obtain

4w = ε
[
〈v,w〉S1,α

(
v − 〈v,w〉S1,α w

)]
(3.17)

= ε [(〈w,v〉E + α 〈ω, υ〉E) (v − (〈w,v〉E + α 〈ω, υ〉E)w)] (3.18)
= ε

[
v
(
v> ·w+αυ> · ω

)
−
(
w> · v+αω> · υ

) (
v> ·w+αυ> · ω

)
w
]

(3.19)

= ε

[
v
(
v> ·w+αυ> · ω

)
−(

w> · vv> ·w + w> · vαυ> · ω+αω> · υv> ·w+αω> · υαυ> · ω
)
w

]
(3.20)

= ε

 vv> ·w−
(
w> · vv> ·w

)
w

+αvυ> · ω −
(
α2ω> · υυ> · ω

)
w

−α
(
ω> · υv> ·w + w> · vυ> · ω

)
w

 (3.21)

as new update rule for one given data vector. We denote the final vector w∗ of this
dynamic as ’functionally modified (first) principal component’ (FMPCA).

It is clear, for small (vanishing) values of α, the original Oja-rule is preserved. For
non-vanishing α with relevant magnitude compared to the variance of the covariance
matrix C of the data vectors v, the influence of the second term of the Sobolev metric
becomes significantly such that a deviation to the usual fist principal component is
observed for the final weight vector w∗. If the choice of the degree of the differential
operator is k = 2 there it has the following interpretation: According to [RS06] (p.41),
D(2)f measures the curvature of the function f . Smooth functions have low curvature.
Hence, the higher the curvature of the functional vectors of a data set, the more the
FMPCA deviates from the usual first principal component, i.e. it is more adapted to the
curvature in comparison to the non-functional result.
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4 Functional vector quantization using the Sobolev
distance

In this section we focus of the application of the Sobolev distance sSp,k,α from (2.16) to
prototype based vector quantization algorithms. Well known robust vector quantizers
are KOHONEN’S self-organizing map (SOM) [Koh95] (also in the variant proposed by
HESKES, [HES99]) or the neural gas (NG) provided by MARTINETZ [MBS93] for un-
supervised learning or fuzzy-labeled NG (FLNG, [VHS+06]) and fuzzy-labeled SOM
(FLSOM, [VSMH07]) for semi-supervised vector quantization. Usually, all these al-
gorithms try to minimize some variants of the quadratic Euclidean error between the
prototypes wk ∈ Rn and the data vectors v ∈V ⊆ Rn by stochastic gradient decsent.
However, the applications of non-standard metrics became a challenging topic which
is still under ongoing research [HV05],[VSMH07].

Two basic ingredients have to be considered in this line: the determination of the
best matching prototype wk∗ for a given data vector v and the adaptation rule for the
prototypes, both based on the quadratic Euclidean distance in the non-functional algo-
rithms. We now replace this distance by the quadratic Sobolev distance of degree 2
(consistently to the above Oja’ algorithm)

sα (f , ωk) =
(
sS2,2,α (f , ωk)

)2 (4.1)

= 〈f − ωk, f − ωk〉2 + α
〈
D(2) (f − ωk) , D(2) (f − ωk)

〉
2

(4.2)

= ‖f − ωk‖E + α
∥∥D(2) (f − ωk)

∥∥
E

(4.3)

for functional vectors f ∈F ⊆ Rn and functional prototypes ωk. ‖·‖E is the usual Eu-
clidean norm. Thus, stochastic gradient descent on any cost function based on the
distance sα (f , ωk) involves the second derivative

∂sα (f , ωk)

∂ωk

=
∂ ‖f − ωk‖E

∂ωk

+ α
∂
∥∥D(2) (f − ωk)

∥∥
E

∂ωk

. (4.4)

We investigate for an arbitrary prototype ω = (ω1, . . . , ωn) the single dimension j:

∂sα (f , ω)

∂ωj

=
∂ ‖f − ω‖E

∂ωj

+ α
∂
∥∥D(2) (f − ω)

∥∥
E

∂ωj

(4.5)

The first term can easily be computed by

∂ ‖f − ω‖E

∂ωj

=

∂

(√∑n
l=1 (fl − ωl)

2

)
∂ωj

(4.6)

=
−2 (fj − ωj)

‖f − ω‖E

(4.7)

The second term
∂‖D(2)(f−ω)‖

E

∂ωj
contains the differential operator D(2) = D(1) ◦D(1).

Now, we assume that the function z is sampled and given in vectorial form z =
(z1, . . . , zn): zk = z (xk), xk ∈ X ⊆ R and xk < xk+1 = xk + 4x is equidistantly
distributed. Then D(1)z can be approximated by the central difference

D(1)z|j ≈
zj+1 − zj−1

24 x
(4.8)
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and, hence, the second derivate is consistently approximated by the second central
difference

D(2)z|j ≈ zj−2 − 2zj + zj+2

4 (4x)2 (4.9)

= : dj (4.10)

Setting now z = f − ω, the term
∂‖D(2)(f−ω)‖

E

∂ωj
in (4.5) can be rewritten as

∂
∥∥D(2) (f − ω)

∥∥
E

∂ωj

≈ 1√∑n
l=1 (dl)

2
· ∂S

∂ωj

(4.11)

with the notation S =
√∑n

l=1 (dl)
2. We consider the derivative

∂S

∂ωj

= 2dj−2
∂dj−2

∂ωj

+ 2dj
∂dj

∂ωj

+ 2dj+2
∂dj+2

∂ωj

(4.12)

with
∂dj+2

∂ωj

=
∂dj−2

∂ωj

=
∂zj

∂ωj

=
−1

4 (4x)2 ,
∂dj

∂ωj

=
−2∂zj

∂ωj

=
2

4 (4x)2 (4.13)

and obtain
∂S

∂ωj

=
−zj−4 + 3zj−2 − 4zj + 3zj+2 − zj+4

8 (4x)4 (4.14)

which gives

∂
∥∥D(2) (f − ω)

∥∥
E

∂ωj

≈ 1√∑n
l=1 (dl)

2
· −zj−4 + 3zj−2 − 4zj + 3zj+2 − zj+4

8 (4x)4 (4.15)

Thus we have the final result that a prototype adaptation rule according to functional
data can be obtained by replacing the derivative of the Euclidean distance between pro-
totypes and data vectors by its functional counterpart for any of the above mentioned
algorithms:

∂sα (f , ω)

∂ωj

≈ −2 (fj − ωj)

‖f − ω‖E

+ α
−zj−4 + 3zj−2 − 4zj + 3zj+2 − zj+4

‖d‖E 8 (4x)4 (4.16)

with d = (d1, . . . , dl).
As consequence, a prototype based vector quantizer modified in this manner is

emphasizing the curvature of the functional data, than its usual Euclidean counterpart.

5 Conclusion

In this report we provide theoretical aspects and the mathematical theory for the appli-
cation of Sobolev-inner-products and -metrics for learning of functional data. Both con-
cepts pay attention to the curvature of the functional data, i.e. its spatial dependencies
within the data curve by incorporation of differential operators. Thus, approaches utiliz-
ing this aspect are more sensitive to the inherent functional structure of the functional
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vectors than standard methods using the Euclidean counterparts. We showed that
this idea can be applied in several domains: functional principal component analysis
by means of Oja’s-online-learning can be reformulated in terms of the Sobolev-inner-
product whereas prototype based vector quantization like neural gas or self-organizing
maps can be adapted for Sobolev-metrics, straightforward.

A remaining problem of the utilization of the Sobolev-inner-products and -metrics for
learning of functional data is the determination of an adequate value α, which controls
the influence of the differential operators. This parameter has to be chosen problem
dependent but now theoretical suggestion can be made in general.
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