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Abstract

We propose an extension of the recently introduced Generalized Matrix Learning Vec-
tor Quantization (GMLVQ) algorithm. The original algorithm provides a discriminative
distance measure of relevance factors, aided by adaptive square matrices, which can
account for correlations between different features and their importance for the clas-
sification. We extend the scheme to matrices of limited rank corresponding to low-
dimensional representations of the data. This allows to incorporate prior knowledge
of the intrinsic dimension and to reduce the number of adaptive parameters efficiently.
The case of two- or three-dimensional representations constitutes an efficient visu-
alization method. The identification of a suitable projection is not treated as a pre-
processing step but as an integral part of the supervised training.
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Discriminative Visualization by Limited Rank Matrix Learning

1 Introduction

Learning Vector Quantization (LVQ) [Koh97] and its variants constitute a popular fam-
ily of supervised, prototype-based classifiers. These algorithms have been employed
successfully in a variety of scientific and commercial applications, including image anal-
ysis, bioinformatics, robotics etc. The method is easy to implement and its complexity
is controlled by the user. LVQ can be applied to multiclass problems without further
complication and the resulting classifiers can be interpreted intuitively. The classifi-
cation of data points is based on distances to typical representatives, i.e. prototypes,
which are identified in feature space.
Numerous modifications of Kohonen’s original, heuristic formulation of LVQ have been
suggested in the literature, aiming at better convergence properties and generalization
behavior. For instance, Sato and Yamada [SY96] propose an algorithm, termed Gen-
eralized Learning Vector Quantization (GLVQ), which updates prototypes by means
of gradient descent with respect to a heuristically motivated cost function. A key is-
sue in all LVQ algorithms, with or without underlying cost function, is the choice of
an appropriate similarity or distance measure. Most frequently, standard Euclidean or
Minkowski metrics are employed, which are not necessarily appropriate for the given
problem and data set. The fact that features can have very different meaning and mag-
nitude in heterogeneous data, is accounted for in so-called relevance learning schemes
[BHST01, HV02, HSV05] which employ adaptive scaling factors for each dimension in
feature space.
In the so-called Generalized Matrix LVQ (GMLVQ)[SBH07a, SBH07b], an important ex-
tension of this concept has been introduced: a full matrix of relevances is used, which
can account for correlations between different features. An adaptive self-affine trans-
formation Ω of feature space identifies the coordinate system which is most suitable for
the given classification task. The original formulation of GMLVQ employs symmetric,
squared matrices. In the simplest case, one matrix is taken to define a global distance
measure. Extensions to class-wise or local matrices, attached to individual prototypes,
are technically straightforward and allow for the parameterization of more complex de-
cision boundaries.
Here we propose and discuss the use of rectangular transformation matrices Ω. The
corresponding relevance matrices are of bounded rank or, in other words, distances are
evaluated in a space with reduced dimension. The motivation for considering this vari-
ation of GMLVQ is at least two-fold: (a) prior knowledge about the intrinsic dimension
of the data can be incorporated efficiently and (b) the number of free parameters in the
learning problem may be reduced significantly. In contrast with many other schemes
that consider dimension reduction as a pre-processing step, our method performs the
training of prototypes and the identification of a suitable transformation simultaneously.
Hence, both sub-tasks are guided by the ultimate goal of implementing the desired
classification scheme.
Appropriate projections into two- or three-dimensional spaces can furthermore be used
for efficient visualization of labeled data. Again, it is the classification performance
which directly guides the selection of the subspace. This constitutes an important
difference to standard visualization strategies which implement dimensional reduction
as a pre-processing step and use label information only subsequently.
Before we describe the method more formally in Sec. 3 we review GMLVQ in the fol-
lowing section. Next, we apply the method to a benchmark problem and study the
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influence of the dimension reduction on the classification performance. In Sec. 3.4 we
present example applications of our algorithm for the visualization of labeled data. We
conclude by summarizing our findings and providing an outlook on perspective investi-
gations.

2 Review of Genearlized Matrix LVQ

In this section we briefly review the Generalized Matrix LVQ algorithm [SBH07a, SBH07b].
We will assume that training is based on examples of the form (~ξi, yi) ∈ RN×{1, . . . , C},
where N is the dimension of feature vectors and C is the number of classes. LVQ pa-
rameterizes the classification by means of at least C prototypes, which are chosen as
typical representatives of the respective classes. They are characterized by their loca-
tion in feature space ~wi ∈ RN and the respective class label c(~wi) ∈ {1, . . . , C}. Given a
parameterized distance measure dΛ(~w, ~ξ) in RN , the classification is done according to
a ”winner takes all” or ”nearest prototype” scheme: Any data point ~ξ ∈ RN is assigned
to the class label c(~wi) of the closest prototype i with dΛ(~wi, ~ξ) ≤ dΛ(~wj, ~ξ) for all j 6= i.
Frequently, learning corresponds to an iterative procedure which presents a single ex-
ample at a time and which moves prototypes closer to (away from) data points repre-
senting the same (a different) class. In [SY96] a very flexible approach is introduced,
in which the training algorithm is guided by the minimization of a cost function

f =
∑

i

Φ(µ) with µ =

(
dΛ

J − dΛ
K

dΛ
J + dΛ

K

)
, (1)

where the quantities

dΛ
J = dΛ(~wJ , ~ξi) with c(~wJ) = c(~ξi)

dΛ
K = dΛ(~wK , ~ξi) with c(~wK) 6= c(~ξi) (2)

correspond to the distances of the feature vector ~ξi from the respective closest correct
(wrong) prototype ~wJ (~wK), respectively. In Eq. (1), Φ is a monotonic function, e.g. the
logistic function or the identity Φ(x) = x which we will consider throughout the following.
In GMLVQ the distance measure is specified by an (N×N) matrix, which can adapt to
correlations of different features. It is of the form

dΛ(~w, ~ξ) = (~ξ − ~w)T Λ (~ξ − ~w) (3)

with Λ ∈ RN×N . The matrix Λ is assumed to be positive (semi-) definite. Hence,
the measure corresponds to a (squared) Euclidean distance in an appropriately trans-
formed space and we can substitute

Λ = ΩT · Ω with Ω ∈ RN×N and, hence, dΛ(~w, ~ξ) =
[
Ω

(
~ξ − ~w

)]2

(4)

with an arbitrary matrix Ω. Specific restrictions may be imposed on Ω without loss of
generality. Note that, for instance, every positive symmetric Λ has a symmetric root Ω
with Λ = Ω2.
The original GMLVQ algorithm corresponds to a stochastic gradient descent in the cost
function, Eq. (1), with respect to the prototype configuration and a symmetric matrix
Ω ∈ RN×N . Gradients are evaluated with respect to the contribution of single instances
~ξi which are presented random sequentially. The algorithm has been introduced and
discussed in [SBH07a, SBH07b] and will be modified in the following.
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3 Limited Rank GMLVQ(M×N )

In the following we extend the concept of GMLVQ to the use of rectangular matrices
in the distance measure. We first provide the theoretical background, than show the
practical use for visualization purposes and further on we discuss the similarities and
advantages in respect to related techniques.

3.1 Theoretical Background

We consider Ω to define a transformation from the original N -dimensional feature space
to RM with M ≤ N so that:

Λ = ΩT Ω with Ω ∈ RM×N . (5)

Note that, in general, the transformation matrix Ω is not uniquely determined. The dis-
tance measure is, for instance, invariant under rotations in feature space. We identifiy
a uniquely defined transformation Ω̂ by decomposing Λ in a canonical way: we deter-
mine the eigenvectors ~v1, ~v2, . . . , ~vM with unit length corresponding to the M (ordered)
non-zero eigenvalues of Λ, λ1 ≥ λ2 ≥ · · · ≥ λM and define Ω̂ as follows:

Ω̂ =
([√

λ1 ~v1,
√

λ2 ~v2, . . . ,
√

λM ~vM

])>
∈ RM×N . (6)

In addition we choose the sign of vi, such that the component of vi with largest magni-
tude is positive.
In general, if M > (N + 1)/2, the matrix Ω will have more independent entries then the
symmetric matrix Λ. This might motivate the introduction of limitations on the number
of degrees of freedom, for instance, the requirement of partial symmetry or sparsity
of Ω. However, empirically we have found no evidence for overfitting or other negative
effects on the learning behavior when using unrestricted transformations. Therefore we
consider, throughout the following, only the general case of non-symmetric matrices Ω
with M ·N independent entries.
In order to formulate stochastic gradient descent with respect to the objective function
(1) we compute the derivatives

∂dΛ
L

∂wL,r

= −2 ·
N∑
n

M∑
m

ΩmrΩmn(ξn − wL,n) = −2
[
ΩT Ω

]
r
(~ξ − ~wL)

∇~wdΛ
L = −2 · ΩT Ω(~ξ − ~wL) = −2 · Λ(~ξ − ~wL) (7)

γ+ =
∂µ

∂dΛ
J

=
2 · dΛ

K

(dΛ
J + dΛ

K)2
and γ− =

∂µ

∂dΛ
K

=
−2 · dΛ

J

(dΛ
J + dΛ

K)2
. (8)

Here, L ∈ {J, K} and the index J (K) refers to the closest correct (wrong) prototype
~wJ (~wK) as introduced in Eq. (2).
For the closest correct prototype ~wJ and closest wrong prototype ~wK one obtains an
update of the form

~wnew
J = ~wJ + α1 · Φ′(µ(~ξ)) · γ+ · 2Λ(~ξ − ~wJ) (9)

~wnew
K = ~wK + α1 · Φ′(µ(~ξ)) · γ− · 2Λ(~ξ − ~wK) (10)
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The corresponding matrix update reads

∂dΛ
L

∂Ωmn

= 2
N∑
i

(ξn − wL,n)Ωmi(ξi − wL,i) = 2 ·
[
Ω(~ξ − ~wL)

]
m
· (ξn − wL,n) (11)

∆Ωmn = −α2 · Φ′(µ(~ξ)) · ∂µ

∂Ωmn

= −α2 · Φ′ ·

(
∂dJ

∂Ωmn
− ∂dK

∂Ωmn

)
(dJ + dK)−

(
∂dJ

∂Ωmn
+ ∂dK

∂Ωmn

)
(dJ − dK)

(dJ + dK)2

= −α2 · Φ′(µ(~ξ)) ·
(

γ+ · ∂dΛ
J

∂Ωmn

+ γ− · ∂dΛ
K

∂Ωmn

)
(12)

After each update step, the transformation matrix Ω is normalized such that∑
i

Λii =
∑
mn

Ω2
mn = 1 (13)

and the sum of eigenvalues becomes 1.
Instead of using one global matricies Ω and Λ the formulations are easily adapted for
classwise or prototypewise matricies ΛL. The distance measure denoted by equation
(3) changes for e. g. prototypewise matricies to

dΛL

(~wL, ~ξ) = (~ξ − ~wL)T ΛL (~ξ − ~wL). (14)

For the closest correct prototype ~wJ and closest wrong prototype ~wK one obtains an
update of the form

~wnew
J = ~wJ + α1 · Φ′(µ(~ξ)) · γ+ · 2ΛJ(~ξ − ~wJ) (15)

~wnew
K = ~wK + α1 · Φ′(µ(~ξ)) · γ− · 2ΛK(~ξ − ~wK) (16)

The corresponding matrix update reads

∆ΩJ
mn = −α2 · Φ′(µ(~ξ)) · γ+ · 2 ·

[
ΩJ(~ξ − ~wJ)

]
m
· (ξn − wJ,n) (17)

∆ΩK
mn = −α2 · Φ′(µ(~ξ)) · γ− · 2 ·

[
ΩK(~ξ − ~wK)

]
m
· (ξn − wK,n) (18)

Note that the learning rates α1 and α2 can be chosen independently. In general, we
set α1 � α2 which implies that changes of the metric occur on a much slower time
scale than those of the prototypes. We do not want to change the map faster, than we
are running on it. This setting has proven advantageous in many implementations of
relevance learning [BHST01, HV02, SBH07a].
In all practical examples considered in the following, we apply a learning rate schedule
of the form

α1(t) =
αstart

1

1 + (t− 1)∆α1

and α2(t) =
αstart

2

1 + (t− tM)∆α2

. (19)

Here, t corresponds to the current epoch, i.e. sweep through the data set, αstart
1,2 denotes

the initial learning rates and ∆α1,2 the strength of the annealing. Non-zero relevance
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Figure 1: Performance of the GMLVQ(M×N ) with one prototype per class as a function
of M for the UCI image segmentation data set. We display the test accuracy on average
over 10 random initializations, also given as a numerical value. The light shading
corresponds to the interval from worst to best accuracy, the darker area marks the
standard deviations.

updates are performed only after the first tM epochs in which only the prototype po-
sitions are updated. Initial positions ~wi(t = 0) of the prototypes are determined by
randomly selecting 1/3 of the available feature vectors in class c(~wi) and taking the
respective mean. Hence, prototypes are initially close to the class-conditional means
in the training data, but with small deviations due to the random sampling. Relevance
initialization is done by generating independent uniform random numbers Ωij ∈ [−1, 1]
and subsequent normalization according to Eq. (13).

3.2 Experiments

In this section we study the performance of the GMLVQ(M×N ) algorithm on the image
segmentation data set as provided in the UCI repository [NHBM98].
There, 19-dimensional feature vectors have been constructed from regions of 3× 3 pix-
els, randomly drawn from a set of 7 manually segmented outdoor images. The features
encode various attributes of the example patches, which have to be assigned to one
of the following 7 classes: brickface, sky, foliage, cement, window, path, and grass.
The provided data set consists of 210 feature vectors for training, with 30 instances
per class. The test set comprises 300 instances per class, i.e. 2100 samples in total.
We refer the reader to [NHBM98] for the details. In the data as provided by the UCI
repository, features 3, 4 and 5 (region-pixel-count, short-line-density-5 and short-line-
density-2) display zero variance. Hence, we omit these features and consider only the
remaining 16 features. After a z-transformation, each feature displays zero mean and
unit variance in the data set.
We apply in the following the GMLVQ(M×N ) algorithm with global matrix Λ and pa-
rameters αstart

1 = 0.01, ∆α1 = 0.0001, αstart
2 = 0.001, ∆α2 = 0.0001 in the sched-

ule (19), matrix adaptation begins in epoch tM = 100. Similar settings have proven
successful in previous applications of the original GMLVQ algorithm to the data set
[SBH07a, SBH07b].
We first study the simplest GMLVQ classifier with only one prototype per class. For sev-
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Figure 2: Performance of combinations of dimension reduction by PCA and subsequent
supervised training for various M, employed to the UCI image segmentation data set.
For M = 16, the feature vectors are used without performing a PCA. The results are
to be compared with those for GMLVQ(M×N ), see Fig. 1. Left panel: test accuracy
obtained by LDA as described in the text. Right panel: test accuracies for the NN clas-
sifier using the PCA-based transformation to M dimensions (solid lines). In addition,
the results after transforming the data with Ω as obtained in GMLVQ(M×N ), the dotted
lines mark the average over 10 random initialization as in Fig. 1.

eral values of M , we perform GMLVQ(M×N ) on the given training set of 210 samples
and observe the evolution of training and test accuracies within the number of 1000
epochs. We present averages and standard deviations with respect to 10 different ran-
dom initializations of the prototypes and matrix Ω, as an indication of the robustness
and convergence properties.
Fig. 1 shows that the GMLVQ(M×N ) with large enough M already yields the same
performance as the unrestricted variant. Only for small M we observe a clear depen-
dence of the test accuracy on the rank of Ω, while all M ≥ 5 display essentially the
same performance. In the extreme case M = 2 we observe a significant drop of the
generalization ability due to the serious restriction to only two non-zero eigenvalues
of Λ. At the same time, the outcome of training displays a large variability: random
initializations of Ω can lead to the selection of very different transformation matrices as
reflected in the increased standard deviation.

3.3 Comparison with Other Methods

Here we compare the GMLVQ(M ×N ) scheme with frequently used standard pro-
cedures of comparable complexity. GMLVQ with only one prototype per class ap-
pears to be similar in spirit to the well known Linear Discriminant Analysis (LDA)
[DHS00, Fri89, BC96]. In this method, a Multivariate Normal density (MVN) is fitted
to the observed data in each class, here we consider a pooled estimate of the co-
variance matrix. Given the density estimates, the best linear decision boundaries are
constructed in order to approximate Bayes optimal classification [DHS00]. The well
known Nearest-Neighbor (NN) classifier serves as a second reference: Based on the
standard Euclidean distance measure, any feature vector is simply assigned to the
class of the closest labeled example [DHS00]. For the given data set, the extension to
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K-Nearest-Neighbor schemes displays only a weak dependence on K and results will
not be presented here.
The most common strategy for dimension reduction is Principal Component Analysis
(PCA). In order to compare with GMLVQ(M×N ), we apply PCA to the entire data set
and obtain a low-dimensional representation in terms of the first M principal compo-
nents. The projected training data is then used in LDA or serves as the reference set of
the NN classifier. In the case M = 16, the full data set is employed without performing
a PCA.
In Fig. 2, the achieved test accuracies are displayed for several values of M . For
large enough dimension M , the principal components capture all relevant information
and the performance of, both, LDA and NN is comparable to that of the GMLVQ(M×
N ) prescription. This finding is consistent with the M -dependence discussed in the
previous paragraph.
Significant differences can be observed for small M : The dimension reduction by PCA
(or any other unsupervised technique) does not take into account label information
and may focus on features with large variation but little relevance for the classifica-
tion. Therefore, the subsequent supervised training does not reach the quality of the
GMLVQ(M ×N ) scheme with one prototype per class. Here, the complexity of the
system is similar but the identification of a suitable low-dimensional representation is
directly guided by the classification, which facilitates superior performance. This is eas-
ily demonstrated by replacing the PCA based transformation by the matrix Ω obtained
in GMLVQ(M ×N) see Eq. (4). Now, the simple NN system performs significantly
better, as displayed in the left panel of Fig. 2. The idea of determining a discriminative
transformation directly within the KNN classification scheme has been put forward in
[WBS06], there without considering dimensional reduction.
GMLVQ(M×N ) with several prototypes per class and a global relevance matrix can
implement piecewise linear decision boundaries, which can exceed the complexity of
LDA or similar methods significantly. In this report we do not go into detail, but as
expected, the improvement of the accuracies is praticularly pronounced for small M .
Even the unrestricted matrix desplays only three non-zero eigenvalues. The increased
complexity due to the larer number of prootypes facilitates good performance in spite of
a very simple implicit representation of the data. The use of more eigendirection could
be enforced by means of a matrix regularization scheme suggested in [SBS+08b].

3.4 Visialization

The GMLVQ(M×N ) prescription with M = 2 or M = 3 can be readily employed as a
tool for the visualization of labeled data sets. In contrast to many standard methods, the
tasks of identifying an appropriate subspace and implementing the actual classification
is addressed in a single training phase.
The above discussed UCI segmentation data may serve as a first illustrative example.
From the 10 independent runs performed with M = 2 to obtain the results displayed
in Fig. 1 (single prototype) and for several prototypes per class, we have selected the
runs that achieved the best training accuracy in order to achieve the most discriminative
visualization. As mentioned above, the actual outcome can depend on the random
initialization of the GMVLQ system. With a single prototype per class, a maximum
accuracy of 87.4% on the entire data set is achieved. The use of 2 prototypes per class
(3 in class 5) yields a best accuracy of 90.4% on the entire set.
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Figure 3: Visualization of the UCI segmentation data set as transformed in GLMVQ(2×
N ). The x and y axes correspond to the components of the projection Ω̂~ξ. For the sake
of clarity we display only 50 examples per class. The left panel shows the result after
training with only one prototype per class, achieving an accuracy of 87.4%. The right
panel corresponds to the case of two prototypes per class (three in class 5) with 90.4%
of the data classified correctly. Here we have removed one unused prototype (class 4)
after training, which does not influence the classification.

Fig. 3 displays the data after the corresponding transformations. This multi-class prob-
lem allows for very good classification performance already in two dimensions. The use
of several prototypes even enhances the accuracy by realizing more complex piecewise
linear decision boundaries. We would like to point out once more that the identification
of an appropriate projection is not treated as a pre-processing step but as an integral
part of the supervised learning process. Further examples will be presented in the
following in order to illustrate the concept.
Discriminative visualization can be particularly useful in the context of medical data.
Here we apply the GMLVQ(M×N ) algorithm to two gene expression data sets which
were recently analysed by Faith, Mintram, and Angelova in [FMA06].
The first set concerns small round blue cell childhood tumors, and we refer to it as
SRBCT. It comprises cDNA microarray expression levels of 50 pre-selected genes in
83 different samples [KWR+01]. The target classification assigns every sample to one
of 4 tumor types.
We will refer to the second data set as NCI. It contains gene expression data from 60
cell lines from the National Cancer Institute anticancer drug screen [SRW+00]. Again
50 genes have been pre-selected and samples are to be assigned to one of 8 different
types of tissue.
For details of the data sets we refer to [FMA06] and references therein. The authors
present a method termed Targeted Projection Pursuit (TPP) and compare it with sev-
eral existing techniques, including Multi-dimensional Scaling (MDS) [EC01], VizStruct
[ZZR04], a dendrogram based method [ESBB98], and Projection Pursuit [LCKL05].
TPP is demonstrated to outperform most of these methods or to achieve at least com-
parable performance on the above data sets. The employed data sets as well as source
codes of TPP implementations are publically available [FMA06].
First, we apply GMLVQ(2×N ) with one prototype per class to the SRBCT data set. Re-
sults presented her are obtained after 1000 epochs with respect to the entire data set
of 83 samples. We observe almost no variability with respect to random initializations
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Figure 4: Two-dimensional, error-free visualizations of the SRBCT data set (left panel)
and the NCI data (right panel) obtained by GMLVQ(2×N ) with 1 prototype per class,
see the text for details.

of the system. A typical outcome is displayed in Fig. 4, left panel, the obtained 2D
visualization perfectly separates the four classes. Error free visualizations were also
obtained by Faith et al., see [FMA06] for comparison.
The analogous application of GMLVQ(2×N ) to the NCI 8-class-problem shows slightly
larger variability of results. In 10 runs with different random initialization we obtain
after 1000 epochs accuracies in the range from 95.1%-100%, with an average of 97.7%.
Fig. 4 (right panel) displays a perfectly separating visualization. In [FMA06], error free
visualizations of the NCI data are obtained by means of TPP in combination with PCA,
Projection Pursuit and subsequent LDA or KNN classification. For a visual inspection
of the achieved separation we refer to Figs. 9 and 11 in [FMA06], which display either
slightly overlapping classes or only very small gaps between some of them. Other
methods considered in [FMA06] yield less favorable results on this data set. Most of all,
we would like to point out that our method appears very simple and intuitive compared
to many other suggested approaches. However, it yields comparable or even superior
results.

4 Conclusions

In this report we present the GMLVQ(M ×N ) algorithm, a modification of General-
ized Matrix LVQ [SBH07a]. It employs rectangular transformation matrices to implic-
itly represent N -dim. feature vectors in an M -dim. space. This makes it possible to
limit the rank of the relevance matrices used in GMVLQ to parameterize an adap-
tive distance measure. The aim can be to incorporate prior knowledge of the intrinsic
dimension or to reduce the number of free parameters while maintaining good classi-
fication performance. First we illustrate the approach in terms of a multi-class bench-
mark data set and compare with other methods of similar complexity. We demon-
strate that GMVLQ(M×N ) is an efficient method for determining discriminative, low-
dimensional representations of labeled data and facilitates good generalization behav-
ior. In GMLVQ(M×N ), the search for the appropriate subspace is guided directly by
the classification performance in a single supervised training phase. This is in con-
trast with classical combinations of unsupervised dimension reduction and subsequent
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supervised learning.
A particular attractive application of the concept concerns the visualization of labeled
data sets. Setting M = 2 or 3 in GMLVQ(M ×N ) provides us with a discriminative
visualization of the original data set. Again, the advantage over many other methods is
that the search for the suitable representation is directly integrated into the supervised
training procedure. We demonstrate the usefulness of this concept in the context of
several real world multi-class problems.
In this paper we have not emphasized one particularly attractive feature of relevance
learning: The resulting transformation and relevance matrices can be readily inter-
preted and carry important information about the structure of the data. For instance, in
the visualization of gene expression data, Sec. 3.4, we note that several features (in-
tensities) essentially do not contribute to the highly discriminative linear combinations
defined by Ω̂. This type of information provides valid insights to the application expert
and should be exploited systematically.
In forthcoming projects we will also investigate several extensions of the method. So
far we only limit the maximum rank of relevance matrices by choice of the parameter
M , the effective dimension of the transformation can become even smaller. In applica-
tions, including visualization, it can be desirable to fix the rank and to make the system
exhaust the bound. This could be done in terms of an efficient regularization method
which we developed recently [SBS+08a]. Furthermore it is also possible to use local or
class-wise transformation matrices. This allows for much more complex, e.g. piecewise
quadratic, decision boundaries. In this frame one could then allow for different values
of M in different classes or regions of feature space. The resulting scheme should be
much more flexible in adapting to the structure of the data set 1.
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