
MACHINE LEARNING REPORTS

Workshop New Challenges in Neural
Computation 2012

Report 03/2012
Submitted: 18.08.2012
Published: 21.08.2012

Barbara Hammer1, Thomas Villmann2 (Eds.)
(1) University of Bielefeld, Dept. of Technology CITEC - AG Computational Intelligence,

Universitätsstrasse 21-23, 33615 Bielefeld
(2) University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html

Table of contents

New Challenges in Neural Computation - NC2 2012

(B. Hammer, T. Villmann) …... 4

Keynote Talk: Information Theoretic Feuture Selection for High-dimensional Data Analysis

(M. Verleysen) ... 5

Explorative Learning of Right Inverse Functions: Theoretical Implications of Redundancy

(M. Rolf, J. J. Steil) …... 6

Modeling Human Movements with Self-Organizing Maps using Adaptive Metrics

(M. Klingner, S. Hellbach, M. Kästner, T. Villmann, H.-J. Böhme) ….. 14

Learning Motor Primitives with Echo State Networks

(J. Gütschow, J. Lohmann, D. Koryakin, M. V. Butz) ….....................….. 20

Robotics with the Head in the Clouds

(S. Hellbach, H.-J. Böhme) …........................….. 34

Mixture of Gaussians for Distances Estimations with Missing Data

(E. Eirola, A. Lendasse, V. Vandewalle, C. Biernacki) ….. 37

Enhancement Learning in Functional Relevance Learning

(T. Villmann, M. Kästner, D. Nebel, M. Riedel) ….. 46

Discriminative Probabilistic Prototype Based Models in Kernel Space

(D. Hofmann, A. Gisbrecht, B. Hammer) ….. 58

Workshop New Challenges in Neural Computation 2012

2 Machine Learning Reports

No Perplexity in Stochastic Neighbor Embedding

(M. Strickert) …............….. 68

How to Visualize a Classifier?

(A. Schulz, A. Gisbrecht, K. Bunte, B. Hammer)…... 73

Locally Weighted Regression using an Error-based Allocation Strategy

(S. Vukanovic, N. Carey, R. Haschke, H. Ritter)...84

Classification in High-dimensional Spectral Data - Precision vs. Interpretability vs. Model Size

(A. Backhaus, U. Seiffert) …..............….. 88

Feature Extraction from Occupancy Grid Maps Using Non-negative Matrix Factorization

(M. Himstedt, S. Hellbach, H.-J. Böhme)... 97

Learning of Invariant Object Recognition in a Hierarchical Network

(M. Lessmann, R. P. Würtz)…...104

Experience in Training (Deep) Multi-Layer Perceptrons to Classify Digits

(J. Hocke, T. Martinetz) ...…..............…..113

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 3

New Challenges in Neural Computation

NC2 – 2012

Barbara Hammer1 and Thomas Villmann2

1 – Cognitive Interaction Technology – Center of Excellence,
Bielefeld University, Germany

2 – Faculty of Mathematics / Natural and Computer Sciences,
University of Applied Sciences Mittweida, Germany

The workshop New Challenges in Neural Computation, NC2, took place for
the third time, accompanying the prestigious DAGM conference in Graz, Aus-
tria. The workshop centers around exemplary challenges and novel developments
of neural systems covering recent research concerning theoretical issues as well as
practical applications of neural research. This year, fourteen contributions from
international participants have been accepted as short or long contributions,
respectively, covering diverse areas connected to challenges in robotics, visu-
alization, interpretation, and sparsity, learning in the context of non-Euclidean
data, and invariances and feature learning, respectively. In addition, we welcome
an internationally renowned researcher, Prof. Michel Verleysen from Université
Catholique de Louvain, who gives a tutorial about ‘Information theoretic fea-
ture selection for high-dimensional data analysis’. The invitation of an invited
speaker became possible due to the generous sponsoring of the European Neural
Networks Society (ENNS) and the German Neural Network Society (GNNS).
Following the workshop, a meeting of the GI working group on Neural Networks
took place.

We would like to thank our international program committee for their work
in reviewing the contributions in a short period of time as well as the organizers
of DAGM for their excellent support of the workshop.

Workshop New Challenges in Neural Computation 2012

4 Machine Learning Reports

Keynote talk: Information theoretic feature selection for
high-dimensional data analysis

Prof. Dr. Michel Verleysen, Université catholique de Louvain, Engineering Fac-
ulty - Electricity Department

Abstract:
Machine learning methods are used to build models for classification and regres-
sion tasks, among others. Models are built on the basis of information contained
in a set of samples, with few or no information about the underlying process.

The more information there is in the set of samples, the better the model
should be. However, this natural assumption does not always hold, since most
machine learning paradigms suffer from the ’curse of dimensionality’. The curse
of dimensionality means that strange phenomena appear when data are repre-
sented in a high-dimensional space. These phenomena are most often counter-
intuitive: the conventional geometrical interpretation of data analysis in 2- or
3-dimensional spaces cannot be extended to much higher dimensions.

Among the problems related to the curse of dimensionality, the feature re-
dundancy and concentration of the norm are probably those that have the largest
impact on data analysis tools. Feature redundancy means that models will lose
the identifiability property (for example they will oscillate between equivalent
solutions), will be difficult to interpret, etc.; although it is an advantage on the
point of view of information content in the data, the redundancy makes the
learning of the model more difficult. The concentration of the norm is a more
specific unfortunate property of high-dimensional vectors: when the dimension
of the space increases, norms and distances will concentrate, making the discrim-
ination between data more difficult. Most data analysis tools are not robust to
these phenomena. Their performance collapse when the dimension of the data
space increases, in particular when the number of data available for learning is
limited.

This tutorial will start by a presentation of phenomena related to the curse of
dimensionality. Then, feature selection will be discussed, as a possible remedy to
this curse. Feature selection consists in selecting some of the variables/features
among those available in the dataset, according to a relevance criterion. The goal
is twofold: to avoid redundancy between features, and to discard irrelevant ones.
State-of-the-art feature selection methods based on information theory criteria
will be presented, together with the respective advantages of filter, wrapper and
embedded methods.

The tutorial will conclude by opening new research questions about feature
selection with informatics theoretic criteria.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 5

Explorative learning of right inverse functions:
theoretical implications of redundancy

Matthias Rolf and Jochen J. Steil

Research Institute for Cognition and Robotics, Bielefeld University
{mrolf,jsteil}@cor-lab.uni-bielefeld.de

Abstract. We investigate the role of redundancy for exploratory learn-
ing of inverse functions, where an agent learns to achieve goals by per-
forming actions and observing outcomes. We present an analysis of linear
redundancy and investigate goal-directed exploration approaches, which
are empirically successful [1], but hardly theorized except negative results
for special cases [2], and prove convergence to the optimal solution.

1 Introduction

In many learning scenarios, agents perform actions in some action space, whereas
outcomes are measured in a different observation space. We assume that these
two spaces are connected by a forward function that turns actions into observa-
tions. In order to achieve some desired behavior, an inverse function is needed
that returns an appropriate action. A standard example is motor learning, in
which action are motor commands like joint angles or forces. A forward function
turns the actions into outcomes like effector positions. Learning a corresponding
inverse has to rely on exploration schemes that generate examples for supervised
learning. One substantial challenge is to deal with the redundancy in such do-
mains: often multiple actions are mapped on the same outcome, such as different
joint angles of an arm resulting in the same hand position. In this case learn-
ing can not be phrased as standard regression problem because multiple correct
solutions exist. Often, the action space is very high-dimensional, which makes
exhaustive exploration unfeasible. Yet, a number of practically efficient schemes
have been proposed based on “goal-directed” exploration. This idea has been
used for tuning of well initialized inverse functions [3–5]. Goal-directed explo-
ration is particularly beneficial for learning from scratch, because it is applicable
in very high-dimensional spaces [1]. Only very few theoretical results are avail-
able why and when such schemes can be successful. To the opposite, Sanger [2]
proved that certain formulations can fail systematically even in simple domains.

This paper aims to deepen the theoretical understanding of such learning
schemes in redundant domains. We first formalize the general problem and dis-
cuss its difficulties. Then, we provide a throughout analysis of the linear case
with redundancy, which is applied to goal-directed exploration. To our knowl-
edge, we thereby provide the first positive theoretical outcomes on such learning
by proving convergence to an optimal solution if exploratory noise is added.

Workshop New Challenges in Neural Computation 2012

6 Machine Learning Reports

(a) Relation of action and observation space (b) Learning gradient − ∂EX

∂W
(W)

Fig. 1. Left: a forward function f maps actions into a lower dimensional outcome. An
inverse g must suggest an action for a given target. Right: The performance gradient
pulls any value W towards MW =1. Gray contours show paths along the gradient.

2 Two Spaces and their Gradients

We consider an agent that can execute actions q in the action space Q⊆Rm. An
action results in an outcome x∈X⊆Rn in the observation space. Both variables
are coupled by the forward function f(q) = x. The agent is asked to achieve
some “goal” observation x∗∈X∗⊆X. It has to generate an action q̂, such that
x= f(q̂) = x∗. The agent’s selection of an action can be denoted by a function
g(x∗)= q̂. The learning task is to obtain a function g that can realize all goals:

f(g(x∗)) = x∗ ∀ x∗ ∈ X∗ (1)

Hence, g must be a right inverse function of f on the set of goals X∗. Inverse
functions do not always exist, so we need to require that f is surjective with
n ≤ m. For n < m different actions can result in the same outcome, which is
referred to as redundancy. An exemplary situation is shown in figure 1a.

2.1 The learning task in the observation space

In the observation space, obtaining a right inverse function can be directly for-
mulated as optimization problem. We parametrize the function g with W . For
some set of goals X∗ = {x∗0, ..., x∗K−1}, the performance error EX naturally
measures how much an inverse estimate g deviates from the solution in (1).

EX(W,X∗) =
1

2K

K−1∑

k=0

||f(g(x∗k,W))− x∗k||2 (2)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 7

Learning can be formulated as gradient descent on this error [6, 7]. The central
difficulty is that computing the performance gradient ∂EX/∂W requires analytic
knowledge about the forward function: Since W appears inside f(·), differentiat-
ing ∂EX/∂W requires to know the derivative of f . In general, inverse problems
do not provide a teacher to indicate such optimal gradient directions.

2.2 Explorative learning in the action space

If the performance gradient is not available, a feasible way to probe knowledge
is to generate examples (x, q) by exploration [1–5, 8, 9]. The setup starts by
performing some action ql, and observing the outcome xl = f(ql). The action
error on D={(xl, ql)}l measures how well the inverse estimate fits the data:

EQ(W,D) =
1

2L

L−1∑

l=0

||g(xl,W)− ql||2 . (3)

Learning is performed by descending the action gradient ∂EQ/∂W . Importantly,
this scheme is not a data-driven version of minimizing EX . In (3) we can replace
xl =f(ql) and see that the error evaluates on g(f(ql))− ql. Hence, reducing EQ

corresponds to learning a left inverse function g, while the learning task is to
obtain a right inverse function, which corresponds to minimizing EX in obser-
vation space. Empirical results show that a right inverse function can be learned
by minimizing EQ [1, 3, 8]. Why this is possible is not theoretically understood
for the general case. In fact, this kind of learning largely depends on how the
data set chosen, whether f is linear or not, and whether the system contains re-
dundancy: For the redundant case, left inverse functions do not exist on general
data sets because different ql can have the same outcome xl. Trying to fit such
inconsistent examples results in averaging, leading to invalid results in non-linear
domains [6]. Sanger [2] investigated goal-directed exploration in the non-linear
case without redundancy and showed that learning is not guaranteed to work.

This paper complements these previous, negative outcomes and investigates
redundancy in linear domains. As a first positive result, we show that performance-
and action-gradient have a non-negative angle and provide fix-point conditions.

3 Gradients in linear domains

In the linear domain, the relation between actions q ∈ Q ⊆ Rm and outcomes
x ∈ X = f(Q) ⊆ Rn is given by the linear forward function:

Definition 1 (Linear Forward Function). We define the forward function
as f(q)=M · q where M is a matrix M ∈Rn×m with n≤m and rank(M)=n.

Requiring M to have full rank implies solvability of the right inverse problem.
Correspondingly, we use a linear inverse estimates, with parameters W :

Definition 2 (Linear Inverse Estimate). We define the inverse estimate as
g(x∗,W) = W · x∗ where W is a real-valued parameter matrix W ∈ Rm×n.

Workshop New Challenges in Neural Computation 2012

8 Machine Learning Reports

Using these two definitions, we can re-write the right inverse equation (1) as
linear equation. Assuming that the goals x∗ span the entire space X we get:

f(g(x∗)) = x∗ ∀ x∗ ⇔ MW = 1n. (4)

Hence, W must be a right inverse matrix of M . This equation is exactly solvable
in W . For n<m it is ill-posed and multiple solutions W exist.

We can now insert these definitions in the error-functionals defined in the
last section and compute the gradients. For the performance gradient we get:

∂EX(W,X∗)
∂W

=
∂EX(W,X∗)

∂W
= MT(MW−1n)X∗ (5)

with X∗=
1
K

K−1∑

k=0

x∗kx
∗T
k ∈Rn×n.

Fig. 1b shows the performance gradient in relation to correct right inverse solu-
tions. As an example we have chosen a forward matrix M = (0.5, 0.5) ∈R1×2.
The figure shows the parameter space of W ∈R2×1. Right inverse matrices fulfill
MW = 11 or in scalar notation MW = 1. These solutions give ∂EX

∂W = 0. The
performance gradient drives any value of W straight to that solution manifold.

Considering a data set D={(xl, ql)}l with xl = Mql, we first define

Q =
L−1∑

k=0

qlql
T and X =

L−1∑

k=0

xlxl
T = MQMT .

Using this notation the action gradient is:

∂EQ(W,D)
∂W

=
∂EQ(W,Q)

∂W
= (WM−1m)QMT . (6)

We can now show a tight relation between minimizing EX and EQ:

Theorem 1. For any data set D, the action gradient is related to the perfor-
mance gradient on the observed {xl} positions by

MTM
∂EQ(W,Q)

∂W
=
∂EX(W,X)

∂W
. (7)

Proof.

MTM
∂EQ(W,Q)

∂W

(6)
= MTM(WM − 1m)QMT = MT (MWM −M)QMT

= MT (MW − 1n)MQMT = MT (MW − 1n)X (5)
=

∂EX(W,X)
∂W

ut

Both gradients have a non-negative angle since MTM is a positive semi-definite
matrix. For n=m, MTM is even positive definite which guarantees a positive
angle. Hence, learning a right inverse function is generally possible by minimizing

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 9

EQ. For n < m, MTM is singular and the action gradient can project in its
nullspace. This makes the redundant case mildly more complicated, but not as
difficult as the general non-convex case, for which no angle can be guaranteed
for arbitrary data sets. However, this theorem does not give a direct relation to
the performance on the actual goals EX(W,X∗). Whether a right inverse can be
learned depends on whether the observations {xl} in D span the entire space X.

4 Fixpoint analysis

In this section we investigate how the data set D, generated by exploration,
shapes the learning process. Starting from some initial parameter value W0, the
parameters are iteratively updated with the learning equation

Wt+1 = Wt − η
∂EQ(W,Q)

∂W
. (8)

Our main concern is whether learning converges to a W that satisfies the
right inverse function condition MW =1n. In order to check for this behavior,
we analyze the fixpoints ∂EQ/∂W =0 of the learning equation depending on D.

The following two theorems give general conditions for which combinations
of a parameter value W and data set D the action gradient becomes zero.

Theorem 2 (Sufficient fixpoint condition). If W is a partial left inverse of
M on the actions ql (i.e. WMql =ql∀ql∈D), then W is a fixpoint of eqn. (8).
Proof.

WMql =ql∀ql∈D ⇔WMQ=Q⇔ (WM−1m)Q = 0

⇒ (WM − 1m)QMT = 0 =
∂EQ

∂W
ut

Sanger [2] showed for goal-directed exploration that this condition is also suffi-
cient in the non-linear case with n=m. In fact, this condition is very general
because it indicates that the action error in eqn. (3) is zero. The learner already
fits the data. In a linear system with n = m, the condition is also necessary
because M is square with full rank. Therefore the right-multiplication with MT

in the proof is reversible and we get equivalence between both statements. For
redundant systems the condition is not necessary, since a left inverse does not
exist on arbitrary data sets. If, for instance, D contains data qi 6=qj and xi =xj ,
these samples can not be fitted. A more general condition is given by:

Theorem 3 (Necessary fixpoint condition). If W is a fixpoint of learning
equation (8), then W is a (partial) right inverse of M on the observed positions
xl, i.e. MWxl =xl ∀ xl∈D.
Proof.

∂EQ(W)
∂W

= 0 ⇒ M
∂EQ(W)
∂W

= 0

⇔M(WM − 1m)QMT = (MW − 1n)MQMT = (MW − 1n)X = 0
⇔MWX = X⇔MWxl = xl ∀ l ut

Workshop New Challenges in Neural Computation 2012

10 Machine Learning Reports

Like theorem 2 this statement becomes an equivalence for n=m (here because
the left-multiplication with M is reversible). We can summarize both theorems:

WMql = ql∀ l ⇒
∂EQ(W)
∂W

= 0 ⇒ MWxl = xl∀ l

Only for n=m we get a full equivalence between these conditions. This asym-
metry for n<m is the second result on the impact of redundancy, additionally
to the gradients losing their strictly positive relation in theorem 1. According to
theorem 3, learning from examples will always result in a right inverse solution
on the outcomes xl contained in the data set. If the outcomes do not span the
entire space X∗, the solution will only be valid in the corresponding subspace.

4.1 Goal-directed Exploration

With these fixpoint conditions we can investigate right inverse learning driven
by particular exploration processes. Goal-directed exploration has been discussed
for the generation of data D in [3], but using a formulation without exploratory
noise that can possibly fail even in non-redundant domains [2].

A data set Dt = {(x(t)
k , q

(t)
k)}k is newly generated for each learning step t.

The current inverse estimate g(x∗,Wt) is evaluated on X∗ = {x∗0, ..., x∗K−1} to
select actions q(t)k . In order to inject exploratory noise, we follow [1] and add a
perturbation function E(x∗k) to the inverse estimate. In the linear case we obtain
this by choosing actions with some generating matrix Wgen:

q
(t)
k = g(x∗k,Wt) + E(x∗k) = Wgenx

∗
k with Wgen ∼W + ε .

The components of the perturbation ε ∈ Rm×n are chosen i.i.d. with zero mean
and variance σ2. Examples for multiple perturbations are collected and used for
one gradient step according to equation (8). For our analysis we assume that
enough data is collected to approximate the learning process by the expectation
of this exploration process. First, we derive the expected action matrix:

Q = E
[
(W + ε)X∗(W + ε)T

]
ε

= E
[
WX∗WT +WX∗εT + εX∗W + εX∗εT

]
ε

Here we get E[WX∗εT] =E[εX∗W] = 0 because E[ε] = 0. Further we can derive
that E[εX∗εT] = trace(X∗)σ21m which gives the action matrix

Q = WX∗WT + trace(X∗)σ21m . (9)

Without noise (σ=0) this matrix has a rank of at most n, but can also become
zero if W is zero. This degeneration can cause failures of learning [2]. With noise,
it has full rank, which implies that all fixpoints are valid right inverse functions:

Proposition 1. For σ2 > 0: rank(Q) = m , rank(X) = n

Proof. rank(Q) = m: The symmetric formWX∗WT in eqn. 9 is positive-semidefinite.
The second term is positive-definite for σ2 > 0. The sum of a positive-semidefinite
and a positive-definite matrix is also positive-definite, which implies full rank.
rank(X) = rank(MQMT) = n then follows from basic linear algebra. ut

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 11

(a) Learning gradient without noise (b) Learning gradient with noise σ2 = 0.2

Fig. 2. Goal-directed exploration with noise converges to the pseudoinverse of M .

Proposition 2. For σ2 > 0, any fixpoint W of the learning equation 8 is a right
inverse of M .

Proof. We know from theorem 3 that MWX = X for any fixpoint. Since X has
full rank we can right-multiply with X−1 and get: MWX = X⇒MW = 1n ut

For a full analysis we insert Q into the gradient equation (6):

∂ÊQ(W)
∂W

= (WM−1m)(WX∗WT + trace(X∗)σ21m)MT .

Using this equation we can show that the exploration results in a unique fixpoint:

Theorem 4. For σ2 > 0, the unique fixpoint of the learning equation 8 is the
Moore-Penrose pseudoinverse: W = M# = MT (MMT)−1.

Proof. Expanding the gradient first gives for α = trace(X∗)σ2 > 0:

0 =
∂ÊQ

∂W
= WMWX∗WTMT +WMα1mM

T − WX∗WTMT − α1mM
T

We can now use the previous result MW = 1n and substitute MW with 1n:

WX∗ + αWMMT −WX∗ − αMT = αWMMT − αMT = 0
⇔WMMT = MT ⇔ W = MT (MMT)−1 ut

Fig. 2 illustrates the learning gradient for goal-directed exploration in the
example with M =(0.5, 0.5) without (a) and with noise (b). Without noise, the
procedure can end up in any of the fixpoints described by theorem 3. It stops in

Workshop New Challenges in Neural Computation 2012

12 Machine Learning Reports

any correct solution MW = 1, but also in the entire nullspace of M (MW = 0).
Gray lines show exemplary trajectories on which Wt is changed during learning.
Without noise, these trajectories are entirely concentric: the exploration never
leaves the initial column space and does not allow to orient for new stimuli. With
noise, the qualitative behavior is drastically changed (Fig. 2b). Noise removes
the erroneous fixpoints on MW = 0. The gradient is not concentric around
W = 0 anymore and allows W to change the column space. On the solution
manifold MW = 1 the gradient pulls W towards the pseudoinverse, which is
W =M# =

(
1.0
1.0

)
in the example.

5 Discussion

We have investigated the explorative learning of right inverse functions, in order
to let an agent perform actions that achieve some goal. It turns out that learning
from examples corresponds to learning left inverse function. For the redundant
linear case we have shown that such learning satisfies a non-negative gradient-
relation to the actual right inverse problem. The analysis of goal-directed explo-
ration as previously discussed in [2] shows that learning can lead to the discovery
of valid right inverse functions, but may also get stuck in subspaces if the ob-
servation matrices lose rank. Redundancy causes additional failure modes in the
Nullspace of the forward function. The new results for exploratory noise are
particularly encouraging. Obviously, exploratory noise spans the entire observa-
tion space which eliminates undesirable fixpoints in subspaces. If applied in a
redundant domain, noise even leads to the selection of the least-squares solution
among the infinite set of solutions. Here our analysis gives the first affirmative
results on goal-directed exploration from a theoretical perspective.

References

1. Rolf, M., Steil, J.J., Gienger, M.: Goal babbling permits direct learning of inverse
kinematics. IEEE Trans. Auto. Mental Development 2(3) (2010) 216–229

2. Sanger, T.D.: Failure of motor learning for large initial errors. Neural Computation
16(9) (2004) 1873–1886

3. Oyama, E., Tachi, T.: Goal-directed property of online direct inverse modeling. In:
IJCNN. (2000)

4. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: IROS.
(2001)

5. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for
operational space control. In: ICML. (2007)

6. Jordan, M., Rumelhart, D.: Forward models: supervised learning with distal teacher.
Cognitive Science 16 (1992) 307–354

7. Kawato, M.: Feedback-error-learning neural network for supervised motor learning.
In: Advanced Neural Computers. Volume 6. Elsevier (1990) 365–372

8. DeMers, D., Kreutz-Delgado, K.: Learning global direct inverse kinematics. In:
NIPS. (1992)

9. Haruno, M., Wolpert, D.M., Kawato, M.: Multiple paired forward-inverse models
for human motor learning and control. In: NIPS. (1999)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 13

Modeling Human Movements with Self-Organizing Maps
using Adaptive Metrics

Mathias Klingner1, Sven Hellbach1, Marika Kästner2, Thomas Villmann2, Hans-Joachim Böhme1

1 University of Applied Sciences Dresden, Artificial Intelligence and Cognitive Robotics Labs,
POB 12 07 01, 01008 Dresden, Germany

{klingner, hellbach, boehme}@informatik.htw-dresden.de
2 University of Applied Sciences Mittweida, Computational Intelligence and Technomathematics,

POB 14 57, 09648 Mittweida, Germany
{kaestner, thomas.villmann}@hs-mittweida.de

1 Introduction

A suitable human robot interface is of great importance for the practical usability of mobile
assistance and service systems whenever such systems have to directly interact with persons.
These interaction is commonly based on the learning and interpretation of the gestures and facial
expressions of the dialog partner in order to avoid collision and to infer the intention of them.
Therefore it is necessary to track the motion of the human body or rather the movements of
individual parts thereof.

This work proposes an enhancement of the approach presented in [1]. It relies on the image of
a depth camera from which a Self-Organizing Map (SOM) is extracted to model the human upper
body. In contrast to the approach presented in [2], which is based on a extensive generation of
training data and time-consuming training of classifiers for the individual body parts, a SOM is
far less expensive but just as quick, in particular without the need of an extensive prior training
process. Crucial in that context is the correct assignment of the SOM neurons to a specific re-
gion of the tracked person’s upper body. In [1] the best-matching neuron (BMN) for a presented
stimulus is determined based on the Euclidean distance with the three spatial dimensions x, y
and z. Computation of the minimal Euclidean distance seems to be the most straight forward
solution. However, it turned out to be insufficient for structured three-dimensional objects like the
upper body, irrespective of the applied learning paradigm. Furthermore, depending on the specific
technology used, additional problems may appear due to various sources of error and noise. This
leads to the situation that sometimes neurons migrate from one part of the upper body to another.
Without a verification of the SOM a future subsequent classification of the pose will produce incor-
rect results and maybe lead to wrong interpretation of the actual situation. Therefore we extended
the approach in [1] by reshaping the trained SOM to a skeleton model to estimate the anatomical
correctness of the pose. Having generated the skeleton model, incorrect Self-Organizing Maps will
be rejected if the subsequent verification failed. This reduces the number of false classifications
but it does not prevent the migration of the neurons. As it could be confirmed with a first naive
classifier. The further goal is to eliminate this problem by integrating adaptive metrics [3]. The
integration of the adaptive metrics presented in this paper is to be seen as ongoing work.

The goal of our approach is the generation of a problem specific parameter vector for a group
of neurons. Therefor, the weight vector of a SOM neuron is extended compared to [1] including
features like RGB color values, texture and neighborhood descriptors and the three spatial dimen-
sions. By determining the relevant dimensions, a parameter vector is computed which includes a
weight for each dimension of the weight vector of a group of neuron. Afterwards, it is possible to
apply a simple feature selection or compute a metric based on the weights of the specific parameter
vector.

An approach for data driven metric adaption within a Kohonen framework is described in [4]
and [3]. The benefit of this method is binding neurons to a specific region by considering additional
parameters in the input vector - rather than only their coordinates. The estimation of the relevant
parameter and the computation of the metric is commonly estimated offline. In contrast to that,

Workshop New Challenges in Neural Computation 2012

14 Machine Learning Reports

we intend to perform both online enabling the system to automatically adapt to the requirements
of the scene. As an example, texture descriptors are more significant for the description of the
chest of a person with a checkered shirt than for a topless person where color descriptors may be
more meaningful.

(a) Initial skeleton model. (b) Related joint description.

Fig. 1. Subfigure 1(a) shows the skeleton model at the point of initialization. In our context a bone is
simply a vector. The origin of each bone is a joint which itself is the origin of a local coordinate system.
All joints of the model are named in 1(b). They are connected in a global space above the point of origin
of the skeleton model. Based on this we compare the bone length and the joint angles with corresponding
reference values from a table of body measurements [5] for the pose validation in reference to the anatomical
constraints.

2 Person detection and tracking

The separation of foreground and background in the captured scene image data is based on the
method presented in [1]. The assumption is that only the foreground contains data of a person.
In addition, we use a Viola Jones face detector in each frame to confirm this hypothesis. If a face
is found, we perform a basic segmentation by clipping the point cloud 90 cm in front and behind
the position of the detected face. Having successfully detected a face in the scene, the detector
will only be active every tenth frame. The remaining data space is segmented more precisely by
the Otsu threshold algorithm [6] to get only the person’s point cloud data.

After extracting we use the resulting point cloud data for the training of our pre shaped Self-
Organizing Map. Pre shaped means that the SOM’s topology is created in the form of an human
upper body with horizontally outstretched arms (Fig. 1(a)). At the initialization of the SOM the
midpoint of the upper 4 head neurons will be placed over the center of gravity of the previously
detected face in the input space. After initialization, the SOM is trained in the common way as
shown in [7]. For this, the best-matching neuron wB(t) for each data point x is computed and
adapted to wB(t+ 1) using the adaption rate η(t):

wB(t+ 1) = wB(t) + η(t) · (x− wB(t)) (1)

Hence, the best-matching neuron is determined by the computation of the minimal Euclidean
distance between the current data point x and all neuron wk of the SOM.

min
∀k
||x− wk|| (2)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 15

The condition for the best-matching neuron is therefore

∀k 6= B ||x− wB || ≤ ||x− wk|| . (3)

Exists more than one best-matching neuron under this condition, then one of the found will
randomly selected. The adaption rate η(t) is set to ηwB

(t) for the best matching neuron and is
defined to

ηwB
(t) = ηin · (

ηfi
ηin

)(
t

tmax
) (4)

with ηin as the initial and ηfi as the final adaption rate, t is the number of the current training
step and the maximum number of training steps is defined as tmax. For each best-matching neuron
a limited neighborhood is defined by a Manhattan distance of 1 between a neighborhood neuron
wn(t) and the best-matching neuron wB(t) on the grid structure of the SOM. Hence, the adaption
rate for the neighborhood is set to ηn(t) and defined as:

ηn(t) = ηwB
(t)/2 . (5)

A step t contains a one-time presentation of all data points, which will tmax times per frame
repeated.

As shown in equation 4, the learning rate used in the model decreases with the number of the
training steps t [1]. A reasonable choice of the data presentation of the point cloud is therefore
essential. The data presentation in the image processing usually starts in the upper left corner
and the data points are presented row by row and column by column until the lower right corner
is reached.

This kind of data presentation leads to a problematic situation. At the beginning of the training
cycle of a single frame each best-matching neuron strongly adapts to the presented stimuli because
ηwB

(t) is on its initially high value. Presenting the data points as they arrive from the sensor in
the mentioned order would adapt the SOM to the last presented stimuli, which lie at the lower
border of the image. In each subsequent training step of a single frame with the decreasing ηwB

(t)
and ηn(t) the current adaption distance decreases as well. Hence, the neurons will not as strongly
adapted as in the training step before. Consequently, the neuron would stay at the lower border of
the image and the SOM would not adapt correctly. The logical consequence is to present the data
in a random order. However, it might also happen that a randomly chosen but static permutation
of the input data leads to a bad adaption of the SOM. To avoid this, it makes sense to choose an
individual random order for each frame. To reduce computational efforts it is useful to generate a
permutation on a smaller set in each frame. Hence, we suggest a two level indexing method for a
maximum permutation of the index values.

The first level contains a maximum quantity of m precomputed sets of permutations, being
over the interval between 0 and the maximum resolution of the camera, with m being much smaller
than the maximum resolution of the camera. As described above, the first index level ensures the
correct development of the self-organizing map. For the second level, a frame dependent index set
contains a permutation between 0 and m, where m is the number of precomputed sets of the first
level. As a result, the algorithm uses a different randomly chosen set of permuted indices for each
frame and each training step, with lower computational costs. Experiments suggest that this is a
numerically stable method which assures a maximal unfolding of the SOM within the input space.
Figure 2(b) shows a final status of the adapted SOM.

Furthermore, our current implementation extends the original approach by means of detection
of the currently tracked person leaving the image. If this happens, the current SOM is discarded.
For this purpose, the between class variance also known as inter-class variance from the Otsu
threshold algorithm is monitored [6]. This variance describes the spread between the classes for
foreground and background. The maximum of this value in the current frame is stored and com-
pared to its subsequent value from the next frame. If the person leaves the scene these two values
will differ strongly. Using a threshold for this difference, the exit of the tracked person can easily
be detected.

Workshop New Challenges in Neural Computation 2012

16 Machine Learning Reports

(a) Part of a depth im-
age captured with the
kinect sensor.

(b) Cropped depth image
with foreground data and
adapted SOM.

(c) The related skeleton
model with the neurons of
the SOM.

Fig. 2. Subfigure a) shows the part from the captured scene containing a person in the foreground.
Subfigure b) shows the cropped view of this image part. Only the cropped data is included in the training
of the SOM. Finally subfigure c) shows the generated skeleton model with the neurons of the adapted
SOM. All three images correspond to a valid case.

2.1 Skeleton Model

Validating the trained SOM is essential as the information of the SOM serves as input for a future
motion classifier for human motions. Defective single poses are expected to be the main reason for
classification errors and subsequently for errors in the situation assessment. These might eventually
lead to invalid reactions of the robot.

To compensate this source of error we use a skeleton model with 10 bones and 9 joints. Figure 1
shows the model in its initialization state. It is generated in every frame out of a converged SOM
and is subsequently checked for anatomical correctness. Therefor, it was evaluated that only two
steps tmax are needed for the SOM to be in a stable or also converged state.

Every joint holds a local polar coordinate system in a forward kinematic chain. The reference
figures for the test of anatomical correctness are taken from a standard table of body measurements
[5]. The check includes the comparison of angles between child bone and their parent bones as well
as the bone length. Every angle as well as every bone length of the standard table has an average
measurement with a range of tolerance in proportion to the body size. If all parameters of the
model are within acceptable tolerances, than the current SOM would be passed to a classification
algorithm.

3 Adaptive Metrices

As described before, one of the most challenging problems for a to be implemented classification
algorithm is the erroneous migration of neurons through the borders of the body parts. The most
common cause of such an error are fast movements of the tracked person’s arms near to another
body part. Such sudden movements result in large changes of the point cloud in a short time. The
approach presented in [1] introduces a modification of the learning rule forcing the neighboring
neurons to stay closer together. This is by itself a substantial improvement. However, in situations
with significant changes of the point cloud or if body parts are too close together, structural errors
of the SOM still occur. A solution for such problems is to provide the neurons with information
about their neighborhood in the input space.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 17

Fig. 3. The left side of the graphic shows the typical input vector with three spatial dimensions, the vector
of the single neuron of the SOM and the Euclidean distance function. For each stimulus xT of the point
cloud, the best matching neuron wB(t) will be determined by the estimation of the minimal Euclidean
distance. The right side shows the enhancement of the stimulus and neuron vectors. In addiction to that a
possible metric for the adaption is given by dEuclidλ . The vector λ describes a specific region of the upper
body after the metric adaption.

Depth camera systems usually deliver far more information than only the point cloud data.
As an example, the Microsoft Kinect also contains a RGB camera. Therefore we can work with
the RGB data in combination with the depth information shown by Fig. 2(a). This enlargement
of the input vector with further information results in the necessity for the adaption of the used
metric.

The method described in [4] is such an extension of the common used metrics like Mahalanobis
or Euclid. Defining a set of parameters λ which control the influence of each input dimension n
for initialization:

λ = (λ1, · · · , λn) where
∑

i

λi = 1 (6)

and the corresponding metric:

dEuclidλ (x,wk) =
n∑

i=1

λi(xi − wki)2 (7)

In combination with the existing framework it also provides the possibility for online learning
of the metrics and the relevant parameters λi for a class of neurons. To keep the complexity of
the metric adaption as small as possible, the SOM illustrated by figure 2(b) is partitioned in 4
different parts: the head, the torso, the hands and the arms. Each part contains at least one neuron.
Furthermore, the single parts are variable in regard to the number of assigned neurons. Hence,
different styles of clothes, e.g., long-arm shirts and t-shirts can be processed by the algorithm. The
weights λi are initially chosen to be the same value for each input dimension:

∀i : λi = 1/n (8)

The training scheme works by detecting the person in the image, generating the SOM and
adapting them one time with the classic training rule based on the three space dimensions. After
this we obtain a stable, trained map with the neurons in the areas of the input space where they
are expected. Figure 2(b) illustrates the trained map with the remaining foreground data.

At that time it is possible to use the neurons to obtain initial information for the image de-
scriptors of the input vector. The λ parameters for each dimension i in the vector are subsequently

Workshop New Challenges in Neural Computation 2012

18 Machine Learning Reports

weighted at run-time. Appropriate parameters are formally defined or they are determined at run-
time by a stochastic gradient descent. The weights λi for the respective parameters wBi of the
actual best-matching neuron are adapted with the following rule:

λi(t+ 1) := λi(t)− ε(t) · (xi − wBi)2 with ε ∈ (0, 1) . (9)

In this equation is the factor ε(t) the learning rate comparably to η(t) in equation 1. To obtain
||λ|| = 1 and thereby to avoid numerical instabilities of the weighting factors a normalization is
added. The principle idea is to find a unique set of weighting factors for each defined body region
of the SOM. For more information see [8] and [9].

After the adaption of the weighting factors all following frames are trained with the adapted
metrics. At this point it should not longer be possible for neurons of a specific body part to migrate
to another one. This procedure leads to another possible advantage with regard to the resources
of a mobile system.

The hardware of such a system defines the amount of possible parallel processes, and there are
a lot more sensor systems than only the depth camera. Therefore we have to handle our resources
with care. We assume that the adaptation of the metrics was correct and the neurons only adapt
to their specific region of the body. The metric, so to speak, describes the spatial and textural
characteristics of each region. Furthermore, we assume that these characteristics are different in
particular to those of the background. Hence, it should not be possible that the neurons migrate
to regions belonging to the background. Which allows to switch off the foreground-background
segmentation without a loss of precision in the detection process after the metric has been adapted.

4 Conclusion

We presented a combination of an existing framework for people tracking and pose estimation
based on depth camera systems with a theoretical approach for a more specific teaching algo-
rithm. The basic approach by [1] is unsupervised, environment and also person independent.
The adaptive metrics extension maintains these advantages while simultaneously stabilizing the
adaption process, is expected to provide a reduction of the classification errors and reduces the
computational effort for the computation. As a next step the implemented system needs to be
evaluated. In particular, the advantages of the adapted metric need to be shown under real-world
conditions.

References

1. Haker, M., Böhme, M., Martinetz, T., Barth, E.: Self-Organizing Maps for Pose Estimation with
a Time-of-Flight Camera. In: Proceedings of the DAGM 2009 Workshop on Dynamic 3D Imaging.
Volume 5742 of Dyn3D ’09., Berlin, Heidelberg (2009) 142–153

2. Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake,
A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. In: CVPR, IEEE (2011)
1297–1304

3. Hammer, B., Villmann, T.: Effizient Klassifizieren und Clustern: Lernparadigmen von Vektorquan-
tisierern. Künstliche Intelligenz 3(6) (August 2006) 5–11

4. Hammer, B., Villmann, T.: Estimating Relevant Input Dimensions for Self-organizing Algorithms. In:
Advances in Self-Organizing Maps, Springer (2001) 173–180

5. Ryf, C., Weymann, A.: Range of Motion - AO Neutral-0-Method Measurements and Documentation.
Georg Thieme Verlag (1999)

6. Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems,
Man and Cybernetics 9(1) (1979) 62–66

7. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9) (1990) 1464–1480
8. Bojer, T., Hammer, B., Schunk, D., von Toschanowitz, K.T.: Relevance Determination in Learning

Vector Quantization. In: Proc. of European Symposium on Artificial Neural Networks. (2001)
9. Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization. Neural Networks 15

(2002) 1059–1068

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 19

Learning Motor Primitives with Echo State
Networks

Jakob Gütschow, Johannes Lohmann, Danil Koryakin, and Martin V. Butz

Cognitive Modeling, Department of Computer Science, University of Tübingen, Sand
14, 72076 Tübingen, Germany

Abstract. Movement control based on the combination of simple motor
patterns (movement primitives) has proven to be a suitable approach for
modeling human and robot behavior. Learning movement primitives in-
volves the approximation of movement trajectories that can be described
in terms of non-linear functions, different techniques have been proposed
to solve this task. Here we investigate the ability of a special type of
recurrent neural network, so called echo state networks, to perform this
learning task. Our results based on a simple 2D simulation show that
even quite small and simple structured networks are able to reproduce
complex motion patterns.

Keywords: Movement Primitives, ESN, Reservoir computing

1 Introduction

The planning and execution of precise reaching movements is a highly complex
challenge in robotics. Due to the high degrees of freedom of modern manipula-
tors, there is a high level of redundancy inherent in these tasks. Targets can be
reached on a large variety of trajectories and with a large variety of end-postures.

A promising approach to resolve this redundancy is to decompose the mo-
tions into basic patterns, so-called motor primitives [6]. The foundation for these
primitives comes from biology, where they are described as “motor patterns that
are considered basic units of voluntary motor control, thought to be present
throughout the life-span” or simply “building blocks of movement generation”
(see [11], p. 1). In vertebrates, the neuronal realization of motor primitives is
likely located in the spinal cord. Here populations of neurons were found that
recruit groups of muscles whose activities remained proportionally fixed through-
out their recruitment [2]. By flexibly combining just a relatively small number
of these building blocks, uncountable movement patterns and behaviors can be
generated. It has been speculated, that such motor primitives may be crucial
elements in early motor learning [2]. The existence of motor primitives implies
that there might be some kind of central pattern generator (CPG) that combines
simple low dimensional inputs to produce complex high dimensional outputs. A
combination of low dimensional inputs can be achieved for instance by blending
different motor primitives together.

Workshop New Challenges in Neural Computation 2012

20 Machine Learning Reports

To model such CPGs, two problems have to be addressed. First, the move-
ment patterns have to be defined in terms of trajectories; for instance as time-
series of task-space coordinates or angles in joint space. Second, a control process
is necessary to monitor the movement execution and to adapt it dynamically if
necessary. Apart from other approaches to learn and combine motor primitives
like dynamic movement primitives [15] or Gaussian mixture models [1,10], [5]
suggested an implementation via recurrent neural networks (RNNs). Especially
the ability to autonomously generate rhythmic activation in a self-recurrent way
is an interesting feature of RNNs as it seems to reflect the properties of biologic
pattern generators.

The idea to learn motor primitives with RNNs is not new (see for instance
[14]), but more recent research focuses on the capabilities of reservoir comput-
ing [18] to model a CPG. One architecture frequently used in studies on reservoir
computing is based on the echo state networks (ESNs) presented in [7]. Com-
pared to other RNNs, training of even very large ESNs is fast, easy to implement,
and quite robust. ESNs are especially well-suited for time-series learning, and
there are some examples for a successful application in the domain of movement
planning and movement control. [3] compares ESNs with other frequently used
algorithms used for time-series learning. [17] learned a bidirectional mapping
of forward and inverse kinematics to perform goal-directed reaching movements
within a single ESN. With an ESN applying leaky integrator neurons, [9] were
able to reproduce trajectories like the lazy figure eight. Additionally, [9] also
showed that the time scale of the reproduction of a certain ESN can be dy-
namically tuned. There have also been attempts to solve the mentioned control
problem, i.e. the ability to switch between different learned motor primitives,
within ESNs. As it was shown by [14], network dynamics can be shifted by bi-
furcation inputs. For instance, the architectures proposed by [19] and [13] proved
that this approach is also viable for ESNs. Both architectures fulfill the require-
ments of a model for a CPG. To sum up, there is plenty of evidence for the
ability of ESNs to account for the learning of movement primitives. With ar-
chitectures like the one proposed by [19] or [13] it is also possible to solve the
control problem within ESNs.

Even if these findings are promising, the applied networks were quite large
(300 neurons in [13], and up to 2200 neurons in [19]), used special types of
neurons with filter properties [20,19], or required more elaborate training mech-
anisms than the original ESNs 1. Therefore, we are interested in the ability of
“vanilla” ESNs to reproduce motor patterns in a completely self-recurrent way,
without any additional input. As a first step, we use a simple 2D-simulator of
an arm to define and execute basic movements to be learned and reproduced by
the networks. We are focusing on the kinematics of the movement. Hence, we
do not directly learn any dynamics. We concentrate on finding a coding scheme
for motion trajectories that can be accurately learned, that can generate stable
control commands, and that generalize well. Different encodings were employed

1 For instance [19] used ridge regression[4], instead of the simple linear regression,
proposed by [7].

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 21

to learn particular trajectories with ESNs. For instance, [13] as well as [3] used
two-dimensional task space coordinates, whereas [19] learned different joint angle
evolutions. In this work we assess the impact of different coding schemes on the
learning performance. More precisely, we investigate if different coding schemes
require different network parameters for successful learning.

As we are using networks that are guided by a constant output feedback loop
without any additional external input the notion of stability is crucial. Our aim
is to find output feedback stable networks in the sense of [16], i.e. networks that
are not driven into an extreme attractor state by there own recurrent feedback.
Some recent papers on output driven ESNs investigated which network proper-
ties are necessary to avoid error amplification due to recurrent feedback. While
[16] pointed out that regularized2 networks are less prone to error amplification,
[12] suggested a balancing between the scaling of the output feedback strength
and the amplitude of the learned time-series.

In the next section we provide a short introduction to ESNs. After this we
sketch out our experimental setup. Next, we evaluate performances with respect
to different coding schemes. A short discussion concludes the paper.

2 Echo State Networks

While a detailed description of the features and working of this architecture can
be found in [7] and [8], this section only gives an overview of its most important
features.

The basic ESN structure is quite similar to that of standard RNNs, consisting
of an (optional) input layer, a layer of the hidden neurons (the so-called, dynamic
reservoir), and an output layer. The crucial differences of ESNs compared to the
standard RNNs are the pre-wired dynamic reservoir and the simple training
procedure, which only optimizes the output weights. Figure 5 shows an overview
of the architecture. Within the dynamic reservoir different dynamics unfold over
time. These dynamics are combined to produce the output of the network.

It is necessary that the dynamic reservoir adheres to the so-called echo state
property. This property is a requirement for stable dynamics and leads to a fading
memory of the reservoir with respect to the input history. The echo state prop-
erty can be achieved by restricting the spread of the reservoir weights through
their division by the largest eigenvalue of the reservoir weight matrix and multi-
plying them with λ∗. This results in a matrix where the desired largest absolute
eigenvalue equals λ∗, in other words the spectral radius of the matrix equals λ∗.

The state of the dynamic reservoir at time-step n+ 1 can be described by:

x(n+ 1) = f(WINu(n+ 1) + Wx(n) + WOFBy(n)), (1)

where bold letters denote matrices and vectors. More precisely x(n) denotes the
state of the dynamic reservoir at the nth time-step, u(n+1) and y(n) denote the
current input and the previous output, respectively. The weight matrices WIN,
2 The term regularized refers to a low norm of the different weight matrices.

Workshop New Challenges in Neural Computation 2012

22 Machine Learning Reports

W, and WOFB contain weights of connections from the input neurons to the
reservoir neurons, recurrent connections within the reservoir, and output feed-
back connections from the output neurons to the reservoir neurons, respectively.
Finally, f denotes the transfer function of the units of the dynamic reservoir
— usually a sigmoid. The state of the units in the output layer is obtained as
follows:

y(n+ 1) = fOUT (WOUTu(n+ 1),x(n+ 1),y(n)), (2)

where fOUT denotes the transfer function of the output units — usually a linear
function.

Dynamic Reservoir
(N units)Input Layer

(K units)
Output Layer

(L units)

Fig. 1. Overview of the ESN-architecture. Dashed lines represent optional connections.
Optimized connections are those leading to the output layer.

As noted above, a unique feature of ESNs is that the randomly initialized
reservoir weights stay fixed. The only weights that are optimized during training
are those connecting the dynamic reservoir and optionally the input layer with
the output layer. To optimize the output weights the squared difference of the
network output and the desired time-series is minimized.

The training process itself is executed in three consecutive phases. First, the
initial transients of the dynamic reservoir are extinguished during a washout
phase.

Second, the crucial part of the training is executed in the sampling phase.
During this phase, teacher forcing is applied, feeding the intended output values
back into the network via the output feedback connection weights WOFB. The
resulting excitation of the reservoir is recorded in a matrix M (time-steps × in-
ternal nodes) while the corresponding teacher output values are collected within
a vector T . The optimal weights are then calculated by

WOUT = M−1T (3)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 23

where WOUT denotes the connections to the output layer. In the third phase,
the quality of the estimated weights is evaluated. To allow a direct comparison
between different target time series we use the normed root mean squared error
between the target signal and the network output to evaluate the quality of a
certain ESN:

NRMSE =

√√√√
I∑

i=1

T−1∑

t=0

‖di(t)− yi(t)‖2
Tσ2

i

, (4)

where I refers to the output dimension, T is the target sequence length int the
exploitation phase, yi(t) is the network output at time step t in output dimension
i, and σ2

i is the variance of the target dynamics di(n) in the i’th dimension. There
also exist online-learning procedures for training ESNs, which we do not consider
here.

3 Experimental Setup

We use a simple simulator of a 2D-arm. This arm can be customized with regard
to the number of segments and the length of these segments. Movement genera-
tion is carried out by first manually defining a trajectory for the endpoint. The
trajectory is then reproduced by the arm, while data is recorded according to
one of the coding schemes described below. The inverse kinematics are solved
directly, without considering additional planning techniques.

We either recorded the position of the end-effector of the arm in target space,
or the evolution of joint angles over time. Angles are measured in radiants sep-
arately for each joint. The location of the end point is recorded in pixels of a
coordinate system laid over the task space. To investigate the ability of the net-
works to generalize the learned trajectories we did not only collect the absolute
angles, or target locations, but also the differences in joint angles or end-effector
coordinates between two subsequent steps. For the training we applied the raw
data as well as data normalized to unity.

This data is then used for teacher-forcing. In case of joint angle data one
output unit per joint is used. For the recordings of the location in target space,
one output unit is used each for x- and y-coordinate, independent of the number
of arm-segments. After training the ESNs, the activations of the output units
in the exploitation phase are once again stored. These activations are the move-
ment data that are then again used by the simulator to reproduce the recorded
trajectory.

For our main evaluation trials, we used an arm setup with three segments,
to draw different 8-shaped trajectories and recorded them with different coding
schemes. Hence, the task we applied is similar to the lazy figure eight task de-
scribed in [9]. With respect to these schemes varied crucial network parameters
to identify the most effective ESN setup settings that yield the most successful
learning of the trajectories. In the first set of trials, we investigated the influence
of the spectral radius λ∗, the connectivity of the dynamic reservoir, as well as the
initialization range of the output feedback weights WOFB on the performance

Workshop New Challenges in Neural Computation 2012

24 Machine Learning Reports

of the ESNs. We used seven different spectral radii, nine different connectivities,
and nine different initialization ranges for the output feedback weights. Given
that for every factor combination 20 networks were trained, the whole sequence
required the training of 11340 networks. Ranges and step sizes of the parameter
variations are displayed in the figures. As we were interested in the reproduc-
tion of the motion patterns with small networks, we kept the size of the dynamic
reservoir fixed to 20 units in these runs. To estimate the influence of the different
parameters, we trained 20 networks per parameter combination.

In the second set of trials another parameter setup was used. First, the con-
nectivity of the reservoir was fixed to 0.9, as it did not show any significant
influence on the results in the first trials. Instead, we varied the reservoir size
from 10 to 20 units. Second, we varied the values of the initialization range of
the output feedback weights WOFB over a broader range. We used the same
variations of the spectral radius λ∗ as in the first set of trials. In this set of
trials we applied seven different spectral radii, 11 reservoir sizes, and 24 initial-
ization ranges for the output feedback weights. Again, we trained 20 networks
per parameter combination, yielding a total of 30800 networks.

In the third set of trials we further investigated the influence of the reservoir
size, creating networks with 25 to 100 units. The other parameters were the same
as in the second run, yielding a total of 19600 networks.

Due to the large body of data and the fact that we would like to present
the characteristics of the error distributions as detailed as possible, we decided
to use box and whisker plots. The grayed area indicates the inter-quartile range
covering 50% of the data, the outer whiskers indicate the 5% nad 95% quan-
tile, repectively. Values out of this range but within the doubled inter-quartile
range are considered as outliers (marked as open circles), values outside the
doubled inter-quartile range are considered as extreme values and, if existent,
are indicated with open triangles. The arithmetic mean is indicated by a black
dot, whereas the smallest error value in each distribution is indicated by a gray
square.

4 Results

As noted above, the coding schemes can be divided into schemes relying on joint
angles and task space coordinates.

4.1 Relative Location in Target Space

We first investigated the network performance with data obtained with the nor-
malized relative scheme, i.e. subsequent changes of the end effector position were
recorded and normalized to unity. Fig. 2 displays the results of our first series of
experiments. As can be deduced from the figure, the inter-quartile ranges of the
different parameter setups overlap. There was not much variance due to the pa-
rameter variation and the overall performance was quite good. As it was pointed
out by [8], the optimal spectral radius depends on the frequency of the desired

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 25

signal. Interestingly, the best performing network was found for a spectral radius
of 0.9 despite the fact that most networks generated with such a high spectral
radius performed worse than networks with a smaller spectral radius.

The initialization of the output feedback weights WOFB did not show a
clear influence in the investigated interval and all values resulted in similarly
good performance, the best results were found for an initialization interval of
[−0.08, 0.08]. The overall effect of variations of the output feedback range was
surprisingly small, therefore we decided to sample a broader interval in the next
experiments.

The influence of the connectivity was completely indistinct, therefore we did
not considered this parameter in the further analysis but fixed it to 0.9. Appar-
ently, this task can be easily learned with ESNs, as even the näıve initialization
could result in suitable networks.

In the second series of experiments, the variations once again failed to show
more than minor effects (see Fig. 3). The error-medians remained nearly constant
over the whole WOFB initialization interval, but the variance increased for the
extreme ranges of the initialization interval. However, the best networks were
found in these ranges as well: Either with an initialization interval of [−1.0, 1.0],
or with an initialization interval of [−10−15, 10−15]. For this scheme varying the
reservoir size had no general effect on the majority of the error-values. The effect
of the variation of the error interval had no strong effect. The best performing
networks were found for a reservoir size of 12 units. Concerning λ∗, a value of
0.9 led to the best results.

To sum up, the two-dimensional progression of end-effector changes in task
space can be learned with quite small networks. The only parameter with more
than a small effect was the spectral radius, with values above 0.9 increasing the
error variance. The data pattern obtained with absolute task space coordinates
was quite similar, hence we did not include the results.

Task Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 4 0
0 , 5 0

0 , 6 0
0 , 7 0

0 , 8 0
0 , 9 0

1 , 0 0

Spectral Radius

0 , 2 0
0 , 3 0

0 , 4 0
0 , 5 0

0 , 6 0
0 , 7 0

0 , 8 0
0 , 9 0

1 , 0 0

Connectivity in [%]

10E-3

20E-3

30E-3

40E-3

50E-3

60E-3

70E-3

80E-3

90E-3

Output Feedback Range

Fig. 2. Box-plots for results of parameter optimization for task space data (first ex-
perimental setup). Scaling is logarithmic. Extreme values (outside the doubled inter-
quartile range) are indicated by arrows. The minimum of each distribution is indicated
by a gray rectangle.

Workshop New Challenges in Neural Computation 2012

26 Machine Learning Reports

Task Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 3. Box-plots for results of parameter optimization for task space data (second
experimental setup). Scaling is logarithmic. Extreme values (outside the doubled inter-
quartile range) are indicated by arrows. The minimum of each distribution is indicated
by a gray rectangle.

4.2 Joint Angles

Given the fact that the small networks we applied were able to learn a two-
dimensional sequence we proceeded to the more complex task of learning a
three-dimensional joint angle evolution within one dynamic reservoir. We con-
sidered two options of coding the movements in joint space. Either we recorded
the absolute angles of each joint or we recorded the angular changes in consecu-
tive time-steps. This latter relative coding proved to be problematic. Even if it
was possible to learn and reproduce the time-series for the original initial arm
posture, generalization was extremely poor. The reproduction of the trajectories
was severely flawed when the initial arm posture was changed. Even small dis-
placements led to major distortions of the original movement. The overall results
are display in Fig. 5. Please note that these results were obtained for setups were
the initial arm-posture during the reproduction was the same as during training.
As noted before in this case the results are quite good, and only small effects of
the parameter variations are visible. Once again a spectral radius of 0.9 turned
out to produce the best results, even if the error distribution becomes broader
for higher spectral radii. The variation of the initialization range of the output
feedback weights only affected the broadness of the error distributions, the min-
imal values remained nearly unaffected. It is noteworthy that the reservoir size
had only a very small effect on the overall performance — again quite small
networks were able to reproduce the intended distribution. Because of the low
generalization ability of networks trained with data obtained with this encoding
scheme, we did not further investigate it.

More promising results were obtained with the absolute coding scheme (cf.
Fig. 6). Although the output of the most successful network had a quite high
NRMSE of 4.72, it produced a smooth trajectory very close to the original one
(cf. Fig. 4). To reach this value, we identified several important parameters of
the network. It turned out that the small reservoir size of 20 units was sufficient
to reproduce the three different joint trajectories. This is in line with the results
reported by [3] where it was also shown that quite small networks are able to
reproduce at least three dimensional output series. For the spectral radius a

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 27

value of 0.8 provided the best results. The overall effect of the spectral radius
resembles the one observed in the other setups. The minimum error decreases
with higher spectral radii, but the error distribution gets broader. We also varied
the initialization interval of the output feedback weights WOFB based on the
considerations in [12], where it was pointed out that these bounds should be
balanced with the interval of the target dynamics. Here, the best results were
achieved with a value of 1.0 for the weight initialization interval. Again, this
was a quite surprising result as the error distribution becomes much broader
with higher initialization ranges, i.e. the most networks initialized with these
values performed quite bad. But as the variation of the overall error range also
increased the best network belonged to this sub-sample. It is noteworthy that
even the smallest networks with a reservoir consisting of only 10 units were able
to reproduce the intended trajectory with only slight distortions (cf. Fig. 7).

For the third experimental setup we increased the reservoir size up to 100
in several steps to examine whether we could find a maximal suitable size as
reported in [12]. A major effect of this increase was a wider distribution of error
values (see Fig. 8), but also a major increase in the error magnitude (see the
different scaling of the y-axis in Fig. 6 and Fig. 8). Especially networks with
small spectral radii and networks with large reservoirs tend to produce extreme
error values. Nonetheless, a network with a reservoir consisting of 100 units also
produced the lowest errors of all tested networks. For a better comparison of
the minima of the different distributions, Fig. 9 displays the lower ranges of the
error distributions. No clear effect of the variation of the initialization bound of
the output feedback weights could be found.

To sum up, our results show that even small networks with reservoirs consist-
ing of only 10 units are suitable to adapt to at least three-dimensional time-series.
Once again, it is noteworthy that the reproduction took place in a completely
self-recurrent manner, without any additional inputs. Surprisingly, the parameter
variations we investigated primarily affected the broadness of the error distri-
butions but not the extreme values. Nearly all of the investigated setups lead
to the generation of at least a few suitable networks. This effect was especially
prominent for the variation of the reservoir sizes, where the largest reservoir size
of 100 units resulted in a nearly uniform error distribution.

5 Discussion

In this paper we described our current work on employing ESNs to learn and
reproduce simple motor patterns. We mainly concentrated on finding encoding
schemes to record movement data, which can be easily learned by ESNs. Com-
pared to other approaches to learning motor primitives with reservoir computing
techniques, we focused on small and simple networks similar to those applied by
[3]. The first scheme we found to be viable codes the absolute angle of each
joint of an arm over time. Although the quality of data reproduction depends
on the parametrization of the ESN, we showed that it is generally possible to
reach high reproduction accuracy with very simple networks. Additionally, this

Workshop New Challenges in Neural Computation 2012

28 Machine Learning Reports

Fig. 4. Left to right: Comparison of original and reproduced trajectory coded in joint
space (absolute), two examples of reproduction with the same learned target space
dataset.

Joint Space (relative)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 5. Box-plots for results of parameter optimization for joint space data recorded
with the relative coding scheme (second experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

scheme showed the interesting emergent effect of generating a smoothed and
more symmetrical version of the original trajectory.

Scaling this scheme to 3D-movements might result in problems of the training
due to the increased complexity of the data and the need for learning more time-
series data simultaneously. So far we did not investigate the scaling properties of
ESNs with respect to the movement data. [19] started with a network consisting
of 300 neurons to learn the movement pattern of a single joint-angle, and 2400
neurons to account for a system with 22 DoF. Given our results we are optimistic
to learn equally complex systems with a much smaller dynamic reservoir.

Another promising scheme encodes the movement in task space. It records
the relative movement of the end-effector between consecutive time steps. This
scheme has several advantages, apart from the general benefit that learning seems
quite easy. First, due to the relative nature of the data, the learned movements
can be simply transferred to any place in the task space, as long as it is not
too close to the boundaries. Second, the scheme is completely independent of
the number of arm-segments, as it only refers to the end-effector. Hence, there
should be no scaling problem when extending this coding scheme to a 3D task
space.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 29

Joint Space (absolute)

0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 6. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (second experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

Fig. 7. The left and the middle panel display the reproduction performance of two small
networks trained with absolute joint angle evolution. The rightmost panel displays the
intended trajectory.

To sum up, our experiments showed that it is possible to learn simple mo-
tor pattern with quite small and simple ESNs. Even without regularization of
the weight matrices (see for instance [16]), we found completely output-feedback
driven networks that remained stable, but analyses regarding the long term sta-
bility are pending. As it was mentioned in the introduction, the second aspect
of movement control with motor primitives, the adaptivity of movement con-
trol, is not realized yet. But as it was shown by [19] and [13], it is possible to
switch between different dynamics within the same reservoir to produce different
movements. This was achieved with a special input layer that served as a dy-
namic selection mechanism that enabled the selective activation of two different
movement patterns.

On the other hand, dealing with perturbations is a much greater problem,
which might not be solvable with our current approach. As it was mentioned
in [1], open-loop approaches like the one proposed here cannot adapt very well
to perturbations or delays. In [19], it was shown that reservoirs with suitable
weight matrices are able to recover from perturbations and to converge back to
the learned dynamic. At the moment experiments are missing that investigate if

Workshop New Challenges in Neural Computation 2012

30 Machine Learning Reports

Joint Space (absolute)

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0
6 5
7 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

2 5 3 0 3 5 4 0 5 0 7 5 1 0 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 8. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (third experimental setup). Scaling is logarithmic.
Extreme values (outside the doubled inter-quartile range) are indicated by arrows. The
minimum of each distribution is indicated by a gray rectangle.

Joint Space (absolute)

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

4 , 5

5 , 0

N
R

M
S

E
 (

lo
g

)

0 , 3 0
0 , 4 0

0 , 5 0
0 , 6 0

0 , 7 0
0 , 8 0

0 , 9 0
1 , 0 0

Spectral Radius

2 5 3 0 3 5 4 0 5 0 7 5 1 0 0

Reservoir size

1E-15

10E-15

100E-15

1E-12

10E-12

100E-12

1E-9
10E-9

50E-9

100E-9

500E-9

1E-6
5E-6

10E-6

50E-6

100E-6

500E-6

1E-3
5E-3

10E-3

50E-3

100E-3

500E-3

1E0

Output Feedback Range

Fig. 9. Box-plots for results of parameter optimization for joint space data recorded
with the absolute coding scheme (third experimental setup). Scaling is logarithmic
and restricted to a range of 105. Extreme values (outside the doubled inter-quartile
range) are indicated by arrows. The minimum of each distribution is indicated by a
gray rectangle.

the simple networks that we trained are also able to recover from perturbations.
So far we have shown that much simpler ESNs than previously thought are able
to learn stable movement primitives. Our next step is to investigate if a simulated
central pattern generator, like the ones proposed by [19] and [3], can be realized
with small and simple ESNs.

References

1. Gribovskaya, E., Khansari Zadeh, S.M., Billard, A.: Learning Nonlinear Multivari-
ate Dynamics of Motion in Robotic Manipulators [accepted]. International Journal
of Robotics Research (2010)

2. Hart, C.B., Giszter, S.F.: A neural basis for motor primitives in the spinal cord.
J. Neurosci. 30(4), 1322–1336 (2010), http://dx.doi.org/10.1523/JNEUROSCI.

5894-08.2010

3. Hellbach, S., Eggert, J.P., Körner, E., Gross, H.M.: Time series analysis for
long term prediction of human movement trajectories. In: Köppen, M., Kasabov,
N., Coghill, G. (eds.) Advances in Neuro-Information Processing, pp. 567–

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 31

574. Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-03040-6_69

4. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

5. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Networks 21(4), 642–653 (2008)

6. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In: Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on. pp. 1398–1403 (2002)

7. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Tech. Rep. GMD Report 148, German National Research Center for
Information Technology (2001)

8. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf
and the echo state network approach. Tech. Rep. GMD Report 159, Fraunhofer
Institute AIS (2002)

9. Jaeger, H., Lukoševičius, M., Popovice, D.: Optimization and applications of echo
state networks with leaky integrator neurons. Neural Networks 20(3), 335–352
(2007)

10. Khansari-Zadeh, S.M., Billard, A.: Learning Stable Non-Linear Dynamical Systems
with Gaussian Mixture Models. IEEE Transaction on Robotics (2011), http://
lasa.epfl.ch/khansari

11. Konczak, J.: On the notion of motor primitives in humans and robots. In:
Berthouze, L., Kaplan, F., Kozima, H., Yano, H., Konczak, J., Metta, G., Nadel,
J., Sandini, G., Stojanov, G., Balkenius, C. (eds.) Proceedings of the Fifth Inter-
national Workshop on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems. pp. 47–53 (2005), http://cogprints.org/4963/

12. Koryakin, D., Lohmann, J., Butz, M.V.: Balanced echo state networks. Neural
Networks (2012)

13. Krause, A.F., Bläsing, B., Dürr, V., Schack, T.: Direct control of an active tac-
tile sensor using echo state networks. In: Ritter, H., Sagerer, G., Dillmann, R.,
Buss, M. (eds.) Human Centered Robot Systems, Cognitive Systems Monographs,
vol. 6, pp. 11–21. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/
978-3-642-10403-9_2

14. Nishimoto, R., Tani, J.: Learning to generate combinatorical action sequences uti-
lizing the initial sensitivity of deterministic dynamical systems. Neural Networks
17(7), 925–933 (2004)

15. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learn-
ing and task outcome prediction for manipulation. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on (May 2011). pp. 3828–3834 (2011),
http://www-clmc.usc.edu/publications/P/pastor-ICRA2011.pdf

16. Reinhart, F., Steil, J.: Regularization and stability in reservoir networks with out-
put feedback. Neurocomputing 90, 96–105 (2012), http://www.sciencedirect.

com/science/article/pii/S0925231212001749, advances in artificial neural net-
works, machine learning, and computational intelligence (ESANN 2011)

17. Reinhart, R.F., Steil, J.J.: Reaching movement generation with a recurrent neural
network based on learning inverse kinematics for the humanoid robot icub. In:
Humanoids. pp. 323–330 (2009)

18. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental
unification of reservoir computing methods. Neural Networks 20, 391–403 (2007)

Workshop New Challenges in Neural Computation 2012

32 Machine Learning Reports

19. Wyffels, F., Schrauwen, B.: Design of a central pattern generator using reservoir
computing for learning human motion. In: ECSIS Symp. on LAB-RS. pp. 118–122
(2009)

20. Wyffels, F., Schrauwen, B., Stroobandt, D.: Stable Output Feedback in Reservoir
Computing Using Ridge Regression. In: Kurková, V., Neruda, R., Koutńık, J.
(eds.) Artificial Neural Networks (ICANN), Lecture Notes in Computer Science,
vol. 5163, pp. 808–817. Springer Berlin / Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-87536-9_83

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 33

Robotics with the head in the clouds

Sven Hellbach and Hans-Joachim Böhme

University of Applied Sciences Dresden, Artificial Intelligence and Cognitive Robotics Labs,
POB 12 07 01, 01008 Dresden, Germany
{hellbach;boehme}@htw-dresden.de

1 Introduction

Within the last decades an increasing application of methods from the field of artificial intelligence
in the domain of robotics has taken place. In this context, the demands on the computational power
of the robotic systems has also increased dramatically. However, the computer hardware does not
always meet these demands. This leads to solutions, where complex calculations are performed at
external high-performance computers or even distributed over the internet. The latter has attracted
plenty of research interest with the emerging of cloud computing [1]. Even at conferences with an
artificial intelligence background the topic is already present. At the 2012 World Congress of
Computational Intelligence (WCCI) Piero P. Bonissone mentioned in his invited talk: “The cloud
is here and it is here to stay – like the internet.” With this comes the fact that four accepted
papers at the same conference bear the word cloud at least in their title.

In most cases the approaches for distributed computation are kept simple. In the easiest case,
complete algorithms are computed off-line over the network and the system has to wait until the
solution is available (e.g. text recognition system on smart phones [2]). More complex ideas, divide
their methods into sub-tasks and have those sub-tasks computed on external computers [3].

2 Application Problems

Since the goal of robotics is to facilitate every-day situations, the research on assistance robots
needs to be evaluated on real-world applications. Hence, some approaches have to be rejected,
which were only developed under laboratory conditions. Especially such approaches that only
slightly fulfill real-time performance requirements. For these methods it sounds reasonable not to
rely solely on the on-board computer systems.

In particular, in the field of robotics two problems arise while distributing computations over
the network: On the one hand, the usage of the network itself and the fact that a computation
slot has to be available produces incalculable latencies not suitable for real-time performance. On
the other hand, with a network or server failure the computational results would be missing at
all. The absence of computational results might even lead to a failure of the robot system. To
clarify, we consider an example where the global occupancy map is kept only on the server and
only local maps for the close neighborhood are transferred to the robot for further processing. If
the connection to the server would be lost the localization of the robot could not be guaranteed
any more and hence the robot would need to be stopped.

Because of the high demands on the reactivity of the system and hence on the real time
conditions, from our point of view, there is a high necessity on approaches or methods to eliminate
the drawbacks coming with the use of distributed computing. In particular, existing methods
should be evaluated with respect to the possibilities for only distributing parts of the methods
and still being able to guarantee an adequate, not necessarily global optimal solution.

A principle approach is imaginable in a way that for local computing on the robot, computa-
tional fast methods are applied that allow to find a sub-optimal partial solution as a hypothesis for
further processing. Simultaneously, the idea of cloud-computing is used to solve the problem with
more computational power with an optimality constraint. For further processing, it is necessary
that with delayed arrival of the optimal partial solution the overall solution can be corrected with
respect to the error originating from the use of the sub-optimal partial solution.

Workshop New Challenges in Neural Computation 2012

34 Machine Learning Reports

(a) (b)

Fig. 1. Both figures show a visualization of a particle filter based SLAM implementation. The yellow and
magenta lines show trajectory hypotheses for different particles. The particle with the highest probability
is visualized in magenta together with the resulting occupancy map. (a) indicates the high variance within
the hypotheses before a loop closing could be detected. In (b) the variance collapses to almost a single
hypothesis. Figures have been captured from a video in the context of [5].

For illustrating this still abstract conceptional idea, the well known simultaneous-localization
and mapping (SLAM) problem [4] is taken as an example for further description. For a mobile
robot one of the most important tasks is to navigate within its environment. For this, the robot
always needs to know its position – the result of the localization. Usually, the navigation takes
place in unknown or changing environment. Hence, at the same time the robot needs to build a
map of the yet unknown environment (see Fig. 1). Since, only the odometry of the robot is not
sufficient to achieve this goal, different sensor systems are used, allowing the robot to perceive the
local surroundings. The basic idea of the SLAM approaches then is to recognize already visited
areas and with that information correct the wrong map hypotheses. In SLAM literature this idea
is referred to as the loop closing problem.

Figure 1 shows a particle filter based approach [6], visualizing the trajectory hypotheses for
different particles in Fig. 1(a). After loop-closing, particles propagating wrong hypothesis can be
identified comparing the current sensor readings with previous ones coded in the occupancy map.
Those particles are extinct.

Most state-of-the art approaches implement the entire SLAM framework on the robot’s local
computer, leaving not much room for further processing needed for human-machine interaction.
For example in [3] however, first attempts have been made to solve this problem from a more
engineering-like point of view.

Reconsidering our example in Fig. 1, it should be clear that the extinction of wrong particles
might as well take place several steps after being at the position of the loop closure. The first
idea that comes into mind, is to store the history of each particle for a predefined time window.
Basically, each particle needs to carry the information from which particle in previous time steps
it has been re-sampled. As soon as the particle specific computation from the remote system
arrives, the modeled distribution can be corrected by deleting particles that had survived because
of incomplete knowledge in the past.

Still the underlying approach – as well as other approaches in the field of robotics – promises
to allow a more methodical solution, fulfilling the above mentioned needs to be distributable and
to have a loose dependence on intermediate results. For this problem the key to a solution might
be the fact that the particle filter models a stochastic process with a strong Markov assumption
considering only the previous time step. However, extending the Markov assumption to previous
time steps as needed, offers the possibility to correct the position of the previously misplaced
particles.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 35

3 Summary

This paper was meant to serve as a statement for future research directions. Hence, our goal was
not to provide a practically applicable solution for the discussed problem. However, an example
was given to show a possible direction. In the following the demands on algorithms developed for
the suggested scenario are summarized:

– The algorithm should be able to cope with latencies occurring while parts are being
computed remotely.

– With that comes the possibility that results can be corrected afterwards with low
computational costs

– A possible loss of intermediate results should only have minor influence on the ac-
curacy of the final solution.

– In particular, a final solution should be possible at all.
– The results that are being computed locally on the robot need to be fast, but not

necessarily global optimal.

After all, the intention of the paper is to give a thought-provoking impulse for spending re-
search efforts in this direction – in particular from a methodical or mathematical standpoint. The
problems are already there and might become of increasing interest in the near future.

References

1. Jaatun, M.G., Zhao, G., Rong, C., eds.: Cloud Computing First International Conference, CloudCom
2009, Beijing, China, December 1-4, 2009. Proceedings. Lecture Notes in Computer Science. DOI:
10.1007/978-3-642-10665-1.

2. Berry, P.M., Gervasio, M., Peintner, B., Yorke-Smith, N.: Ptime: Personalized assistance for calendar-
ing. ACM Trans. Intell. Syst. Technol. 2(4) (July 2011) 40:1–40:22

3. Barkby, S., Williams, S., Pizarro, O., Jakuba, M.: A featureless approach to efficient bathymetric slam
using distributed particle mapping. Journal of Field Robotics 28(1) (2011) 19–39

4. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. Intelligent robotics and autonomous agents.
MIT Press (2005)

5. Schröter, C.: Probabilistische Methoden für die Roboter-Navigation am Beispiel eines autonomen
Shopping-Assistenten. PhD thesis, TU Ilmenau (2009)

6. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. The
Oxford Handbook of Nonlinear Filtering (December 2009) 4–6

Workshop New Challenges in Neural Computation 2012

36 Machine Learning Reports

Mixture of Gaussians for distance estimation
with missing data

Emil Eirolaa, Amaury Lendasseabce,
Vincent Vandewalledf , Christophe Biernackief

a Department of Information and Computer Science, Aalto University,
FI–00076 Aalto, Finland

b IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
c Computational Intelligence Group, Computer Science Faculty, University of the

Basque Country, Paseo Manuel Lardizabal 1, Donostia/San Sebastián, Spain
d EA 2694, Université Lille 2, 1 place de Verdun, 59045 Lille Cedex, France

e Laboratoire P. Painlevé, UMR 8524 CNRS Université Lille I, Bât M2,
Cité Scientifique, F–59655 Villeneuve d’Ascq Cedex, France.

f INRIA Lille – Nord Europe Parc Scientifique de la Haute Borne Park Plazza –
Bât A – 40 avenue Halley 59650 Villeneuve d’Ascq, France

Abstract. In order to estimate distances between samples in a data
set with missing values, a Gaussian mixture model is estimated from
the data. For fitting the model, an extension to the EM algorithm is
presented to make it applicable to missing data scenarios. The Gaussian
mixture model enables the calculation of conditional means and variances
for each missing value, and these are sufficient to calculate an estimate of
the distance between any two samples in the data set. Experimental sim-
ulations confirm that the proposed method provides accurate estimates
compared to alternative methods for estimating distances.

1 Introduction

Finite mixture models have proven to be a versatile and powerful modelling
tool in a wide variety of applications. Particularly mixture models of Gaussians
have been studied extensively to describe the distributions of data sets. The
general approach to estimating the model from data is maximum likelihood
(ML) estimation by the EM algorithm [5].

In this paper, we present how to apply the EM algorithm to estimate a
Gaussian mixture model when the data contains missing values. Furthermore,
the estimated model is used to estimate pairwise distance between samples. Using
a Gaussian mixture model is ideal for this scenario, as it 1) can be optimised
efficiently even in the presence of missing values, 2) allows one to derive estimates
of pairwise distances, 3) is flexible enough to cover any distribution of samples,
and 4) is sufficiently sophisticated to provide non-linear imputation.

In many real world machine learning tasks, data sets with missing values (also
referred to as incomplete data) are all too common to be easily ignored. Values

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 37

could be missing for a variety of reasons depending on the source of the data,
including measurement error, device malfunction, operator failure, etc. However,
many modelling approaches start with the assumption of a data set with a
certain number of samples, and a fixed set of measurements for each sample.
Such methods can not be applied directly if some measurements are missing.
Simply discarding the samples or variables which have missing components often
means throwing out a large part of data that could be useful for the model. It is
relevant to look for better ways of dealing with missing values in such scenarios.

In this paper, the particular problem of estimating distances between sam-
ples in a data set with missing values is studied. Being able to appropriately
estimate distances between samples, or between samples and prototypes, has
numerous applications. It directly enables the use of several standard statistical
and machine learning methods which are based only on distances and not the
direct values, e.g.: nearest neighbours (k-NN), support vector machines (SVM),
or radial basis function (RBF) neural networks [4].

An important consideration when dealing with missing data is the missing-
ness mechanism. We will assume that a missing value represents a value which
is defined and exists, but for an unspecified reason is not known. Following
the conventions of [8], the assumption here is that data are Missing-at-Random
(MAR):

P (M |xobs, xmis) = P (M |xobs),

i.e., the event of a measurement being missing is independent from the value
it would take, conditional on the observed data. The stronger assumption of
Missing-Completely-at-Random (MCAR) is not necessary, as MAR is an ignor-
able missingness mechanism in the sense that, for instance, maximum likelihood
estimation still provides a consistent estimator.

The paper is organised as follows. Section 2 reviews the EM algorithm for
mixtures of Gaussians, and introduces the extension to missing data. Section
3 presents the estimation of pairwise distances. Section 4 includes comparison
experiments on simulations of data with missing values.

2 EM for mixture of Gaussians with missing data

2.1 The standard EM algorithm

For the conventional EM algorithm for fitting a mixture of Gaussians, we follow
the presentation of [4, Section 9.2]. Given data X consisting of a set of N ob-
servations {xi}Ni=1, we wish to model the data using a mixture of K Gaussian
distributions. The log-likelihood is given by

logL(θ) = log p(X |µ,Σ,π) =
N∑

i=1

log

(
K∑

k=1

πkN (xi |µk,Σk)

)
, (1)

where N (x |µk,Σk) is the probability density function of the multivariate nor-
mal distribution. The log-likelihood can be maximised by applying the EM-
algorithm. Initialisation consists in choosing values for the means µk, covariances

Workshop New Challenges in Neural Computation 2012

38 Machine Learning Reports

Σk, and mixing coefficients πk for each component k. The E-step is to evaluate
the probabilities tik using the current parameter values:

tik =
πkN (xi |µk,Σk)

∑K
j=1 πjN (xi |µj ,Σj)

(2)

In the M-step, the parameters are re-estimated with the updated probabilities:

µk =
1
Nk

N∑

i=1

tikxi, Σk =
1
Nk

N∑

i=1

tik(xi − µk)(xi − µk)T , πk =
Nk

N
, (3)

where Nk =
∑N

i=1 tik. The E and M-steps are alternated repeatedly until con-
vergence is observed in the log-likelihood or parameter values.

2.2 Missing data extension of the EM algorithm

The input data X is now a set of observations {xi}Ni=1 such that for each sample
there is an index set Oi ⊆ {1, . . . , d} enumerating the observed samples. The
indices in the complement set Mi correspond to missing values in the data sample
xi. In the case with missing values, the log-likelihood can be written as

logL(θ) = log p(X |µ,Σ,π) =
N∑

i=1

log

(
K∑

k=1

πkN
(
xOi

i |µk,Σk

))
(4)

where as a shorthand of notation, N (xOi
i |µk,Σk) is also used for the marginal

multivariate normal distribution probability density of the observed values of xi.
In the EM algorithm, in order to account for the missing data, some ad-

ditional expectations need to be computed in the E-step. These include the
conditional expectations of the missing components of a sample (µ̃Mi

ik) with re-
spect to each Gaussian component k, and their conditional covariance matrices
(Σ̃MMi

ik). For convenience, we also define corresponding imputed data vectors
x̃ik and full covariance matrices Σ̃ik which are padded with zeros for the known
components. Then the E-step is:

tik =
πkN (xOi

i |µk,Σk)
∑K

j=1 πjN (xOi
i |µj ,Σj)

(5)

µ̃Mi

ik =µMi

k + ΣMOi

k (ΣOOi

k)−1(xOi
i − µOi

k), x̃ik =
(
xOi

i

µ̃Mi

ik

)
, (6)

Σ̃MMi

ik =ΣMMi

k −ΣMOi

k (ΣOOi

k)−1ΣOMi

k , Σ̃ik =
(

0OOi 0OMi

0MOi Σ̃MMi

ik

)
(7)

The notation µMi

k refers to using only the elements from the vector µk speci-
fied by the index set Mi, and similarly for xOi

i , etc. For matrices, ΣMOi

k refers
to elements in the rows specified by Mi and columns by Oi, and so on. The
expressions for the parameters in equations (6) and (7) originate from the obser-
vation that the conditional distribution of the missing components also follows
a multivariate normal distribution, with these parameters [2, Thm. 2.5.1].

The M-step remains functionally equivalent, the only changes being that
the component means are estimated from the imputed data vectors and the

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 39

covariance matrix estimate requires an additional term to include the covariances
concerning the imputed values.

µk =
1
Nk

N∑

i=1

tikx̃ik, Σk =
1
Nk

N∑

i=1

tik

[
(x̃ik − µk)(x̃ik − µk)T + Σ̃ik

]
, πk =

Nk

N

(8)

2.3 Implementation

In our implementation of the EM algorithm with missing data, the means µk

are initialised by a random selection of samples from the data (any missing
components can be imputed with the sample mean), and the covariances Σk are
initialised with the sample covariance of the data (ignoring samples with missing
values). Alternatively, the covariances can be initialised as diagonal matrices,
using only the sample variance of each variable.

The number of components is selected according to the Akaike information
criterion [1] with the small sample (second-order) bias adjustment [7]. Using the
corrected version is crucial, as the number of parameters grows relatively large
when increasing the number of components. The corrected Akaike information
criterion is a function of the log-likelihood:

AICC = −2 logL(θ) + 2P +
2P (P + 1)
N − P − 1

(9)

where P is the number of free parameters. P = Kd+K−1 + 1
2Kd(d+ 1) in the

case of full, separate, covariance matrices for each of the K components. With
high-dimensional data sets, the number of parameters quickly tends to become
larger than the number of available samples when increasing the number of
components, and the criterion would not be valid anymore. This effect can be
mitigated by imposing restrictions on the structure of the covariance matrices,
but this would also make the model less powerful.

3 Distance estimation with missing data

One application for the mixture of Gaussians model is to use it for distance
estimation. The problem of estimating distances between samples with missing
data is non-trivial, since even perfect imputation (by the conditional expectation)
results in biased estimates for the distance. Using additional knowledge about
the distribution of the data leads to more accurate estimates.

In the following, we focus on calculating the expectation of the squared Eu-
clidean (`2) distance. Estimating the `2-norm itself could be feasible, but due to
the square-root, the expressions do not simplify and separate as cleanly. Another
motivation for directly estimating the squared distance is that many methods for
further processing of the distance matrix actually only make use of the squared
distances (e.g., RBF and SVM), while others only consider the ranking of the
distances (nearest neighbours).

Workshop New Challenges in Neural Computation 2012

40 Machine Learning Reports

Given two samples xi,xj ∈ Rd with components xi,l, xj,l (1 ≤ l ≤ d), which
may contain missing values, denote by Mi ⊆ {1, . . . , d} the set of indices of the
missing components for each sample xi. Partition the index set into four parts
based on the missing components, and the expression for the squared distance
‖xi − xj‖2 can be split accordingly:

‖xi − xj‖2 =
d∑

l=1

(xi,l − xj,l)2 =
∑

l/∈Mi∪Mj

(xi,l − xj,l)2 +
∑

l∈Mj\Mi

(xi,l − xj,l)2

+
∑

l∈Mi\Mj

(xi,l − xj,l)2 +
∑

l∈Mi∩Mj

(xi,l − xj,l)2

The missing values can be modelled as random variables, Xi,l, l ∈ Mi. Taking
the expectation of the above expression, by the linearity of expectation:

E
[
‖xi − xj‖2

]
=
∑

l/∈Mi∪Mj

(xi,l − xj,l)2 +
∑

l∈Mj\Mi

(
(xi,l − E[Xj,l])2 + Var[Xj,l]

)

+
∑

l∈Mi\Mj

(
(E[Xi,l]− xj,l)2 + Var[Xi,l]

)

+
∑

l∈Mi∩Mj

(
(E[Xi,l]− E[Xj,l])2 + Var[Xi,l] + Var[Xj,l]

)

In the final summation, it is necessary to consider Xi,l and Xj,l to be uncorre-
lated, given the known values of xi and xj .

It thus suffices to find the expectation and variance of each random variable
separately. If the original samples xi are thought to originate as independent
draws from a multivariate distribution, the distributions of the random variables
Xi,l can be found as the conditional distribution when conditioning their joint
distribution on the observed values. Then finding the expected squared distance
between two samples reduces to finding the (conditional on the observed values)
expectation and variance of each missing component separately. Define x̃i to
be an imputed version of xi where each missing value has been replaced by its
conditional mean. Define σ2

i,l correspondingly as the conditional variance:

x̃i,l =

{
E[Xi,l |xOi

i] if l ∈Mi,
xi,l otherwise

σ2
i,l =

{
Var[Xi,l |xOi

i] if l ∈Mi,
0 otherwise

(10)

With these notations, the expectation of the squared distance can conveniently
be expressed as:

E
[
‖xi − xj‖2

]
= ‖x̃i − x̃j‖2 + s2i + s2j , where s2i =

∑

l∈Mi

σ2
i,l (11)

This form of the expression particularly emphasises how the uncertainty of the
missing values is accounted for. The first term – the distance between imputed
samples – already provides an estimate of the distance between xi and xj , but
including the variances of each imputed component is the deciding factor.

The conditional means and covariances can be calculated using the Gaus-
sian mixture model. These are calculated separately for each component in the

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 41

M-step, and it only remains to determine the overall conditional mean and co-
variance matrix. These are found weighted by the memberships as follows:

x̃i =
K∑

k=1

tikx̃ik, Σ̃i =
K∑

k=1

tik

(
Σ̃ik + x̃ikx̃

T
ik

)
− x̃ix̃

T
i (12)

The expression for the covariance is found by direct calculation of the second
moments. In order to estimate pairwise distances, the conditional variances σ2

i,l =
Σ̃i,ll can be extracted from the diagonal of the conditional covariance matrix.

4 Experiments

To study the performance of the algorithm, some simulated experiments are
conducted to compare the proposed algorithm to alternate methods on several
data sets with two different performance criteria. Starting with a complete data
set, values are removed at random with a fixed probability. As the true distances
between samples are known, the methods can then be compared on how well they
estimate the distances after values have been removed. Five different data sets
are selected from the UCI Machine Learning Repository [3]:

Iris Fisher’s famous Iris data set. N = 150 (samples), d = 4 (variables)
Glass Glass identification data set (ignoring id). N = 214, d = 9
CPU Computer hardware data of relative CPU performance. N = 209, d = 6
Servo Data from a simulation of a servo system N = 167, d = 4
Housing Concerns housing values in suburbs of Boston. N = 506, d = 13

To make distances meaningful, the variables in each data set are standardised to
zero mean and unit variance before values are removed. As the problem of pair-
wise distance estimation is unsupervised, the labels for the samples are ignored.

A total of six different methods are compared:

PDS The Partial Distance Strategy [6]. Calculate the sum of squared differences
of the mutually known components and scale to the missing components:

d̂2
ij =

d

d− |Mi ∪Mj |
∑

l/∈Mi∪Mj

(xi,l − xj,l)2 (13)

For samples which have no common known components, the method is not
defined. For such pairs, the average of the pairwise distances which were
possible to estimate is returned instead.

ICkNNI Incomplete-case k-NN imputation [9]. An improvement of complete-
case k-NN imputation, here any sample with a valid missingness pattern
is viable nearest neighbour. In accordance to the suggestions in [9], up to
k = 5 neighbours are considered. The imputation fails whenever there are no
samples with valid missingness patterns. For such cases, the missing value is
imputed by the sample mean for that variable.

1 Gaussian The expected squared distances as calculated by the proposed al-
gorithm with only one Gaussian component in the mixture. The square root
of the result is used to get an estimate of the distance.

Workshop New Challenges in Neural Computation 2012

42 Machine Learning Reports

Regression imputation Imputation by the conditional expectation when re-
stricted to one Gaussian component. This is equivalent to least-squares linear
regression, if the covariance matrix and mean were exactly known.

Mixture model The proposed method, where the number of Gaussian com-
ponents is selected by the AICC criterion.

Imputation only Using the mixture model to conduct non-linear imputation,
and calculating distances from the imputed data set.

The methods are evaluated by two different performance criteria. First, the
methods are compared by the root mean squared error (RMSE) of all the esti-
mated pairwise distances in the data set,

C1 =
(1
λ

∑

i>j

(d̂ij − dij)2
)1/2

where, dij is the true Euclidean distance between samples i and j calculated
without any missing data, and d̂ij is the estimate of the distance provided by
each method after removing data. The scaling factor λ is determined so that the
average is calculated only over those distances which are estimates, discarding
all the cases where the distance can be calculated exactly because neither sample
has any missing components: λ = MN − M(M+1)

2 .
A common application for pairwise distances is a nearest neighbour search,

and thus we also consider the average (true) distance to the predicted nearest
neighbour,

C2 =
1
N

N∑

i=1

di,NN(i), where NN(i) = arg min
j 6=i

d̂ij

Here, NN(i) is the nearest neighbour of the ith sample as estimated by the
method, and di,NN(i) is the true Euclidean distance between the samples as cal-
culated without any missing data. The criterion measures how well the method
can identify samples which actually are close in the real data.

Values are removed from the data set independently at a fixed probability p.
For each value of p, 100 repetitions are conducted for the Monte Carlo simulation,
and simulations are run for value of p of 0.10, 0.25, and 0.50. The EM algorithm
is run for 200 iterations, and repeated for a total of 5 times for each number
of components. The best solution in terms of log-likelihood is selected. Runs
are aborted if a covariance matrix becomes too poorly conditioned (condition
number over 1012).

Having 100 repetitions of the same set-up enables the use of statistical sig-
nificance testing to assess the difference between the mean errors of different
methods. The testing is conducted as a two-tailed paired t-test, with a signifi-
cance level of α = 0.05. Comparing the performance of the best method to that
of every other method results in a multiple hypothesis scenario, and thus the
Bonferroni correction is used to control the error rate.

The average RMSE values for each method are presented in Table 1, and the
table also displays the average for the number of selected Gaussians components
(K). It can clearly be seen that including the variance terms of equation (11)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 43

Table 1. Average RMSE of estimated pairwise distances, and standard deviations in
parenthesis. The best result for each row is underlined, and any results which are not
statistically significantly different from the best result are bolded.

Regression Mixture Imputation
PDS ICkNNI 1 Gaussian imputation model only Mean K

Iris
10% 0.517 0.287 0.290 0.297 0.259 0.268 2.44
25% 0.763 0.457 0.437 0.465 0.391 0.419 2.29
50% 1.108 0.895 0.763 0.894 0.736 0.840 3.28

Glass
10% 0.671 0.458 0.324 0.320 0.320 0.320 1.74
25% 1.146 0.848 0.649 0.649 0.652 0.660 1.77
50% 2.085 1.513 1.205 1.287 1.210 1.284 1.45

CPU
10% 0.808 0.510 0.551 0.534 0.545 0.534 3.82
25% 1.280 0.827 0.844 0.854 0.845 0.848 3.34
50% 1.944 1.346 1.271 1.346 1.323 1.367 2.28

Servo
10% 0.672 0.515 0.427 0.486 0.428 0.487 1.68
25% 0.951 0.692 0.553 0.683 0.558 0.683 1.73
50% 1.217 1.088 0.766 1.115 0.785 1.102 2.03

Housing
10% 0.668 0.438 0.428 0.447 0.432 0.449 1.28
25% 1.179 0.808 0.687 0.761 0.687 0.757 1.18
50% 2.278 1.589 1.066 1.321 1.081 1.317 1.18

tends to lead to an improvement in the accuracy compared to only conducing
imputation. For the Iris data set, the mixture model is notably more accurate
than any other method, whereas for the other data sets the errors are on par
with using one Gaussian for the model. This suggests that either using a sin-
gle Gaussian is enough to sufficiently model the data, or there are insufficient
samples to accurately fit a model of several Gaussians.

Table 2 shows the corresponding performances in terms of the true distance
to the predicted nearest neighbour. While the trends are similar, it is interesting
to note that in terms of this performance measure the mixture model appears
somewhat more capable than only looking at the RMSE. This seems to suggest
that the mixture model is more accurate when estimating small distances.

5 Conclusions

The problem of estimating distances in a data set with missing values can be re-
duced to finding the conditional means and variances separately for each missing
value. Having a Gaussian mixture model of the distribution of the data enables
these quantities to be estimated. In order to fit the mixture model, certain ex-
tensions to the standard EM algorithm are presented in Section 2.

The combination of these ideas provides for a method to estimate distances,
and the simulations in Section 4 show that the method is competitive, if not
better, than alternative methods in terms of accuracy.

For future work, it remains to investigate the most effective ways to extend
the method to high-dimensional cases where the number of parameters would
exceed the number of samples. Furthermore, it will be interesting to study the
influence of the distance estimation when used with machine learning methods
such as SVM and RBF neural networks.

Workshop New Challenges in Neural Computation 2012

44 Machine Learning Reports

Table 2. Average of the mean distance to the estimated nearest neighbour, and stan-
dard deviations in parenthesis. The best result for each row is underlined, and any
results which are not statistically significantly different from the best result are bolded.

Regression Mixture Imputation
PDS ICkNNI 1 Gaussian imputation model only Mean K

Iris
10% 0.670 0.423 0.385 0.418 0.379 0.413 2.44
25% 1.172 0.616 0.530 0.612 0.506 0.596 2.29
50% 1.509 1.063 0.857 1.040 0.839 1.024 3.28

Glass
10% 1.256 1.020 0.945 0.958 0.943 0.957 1.74
25% 1.998 1.378 1.203 1.241 1.204 1.250 1.77
50% 2.861 2.147 1.747 1.890 1.768 1.912 1.45

CPU
10% 0.852 0.631 0.610 0.622 0.592 0.626 3.82
25% 1.414 0.963 0.907 0.952 0.862 0.944 3.34
50% 1.809 1.499 1.320 1.462 1.327 1.475 2.28

Servo
10% 1.437 0.976 0.818 0.936 0.819 0.939 1.68
25% 1.851 1.286 1.035 1.239 1.038 1.244 1.73
50% 2.041 1.774 1.463 1.733 1.509 1.759 2.03

Housing
10% 1.270 1.046 1.045 1.045 1.039 1.043 1.28
25% 2.067 1.548 1.420 1.448 1.415 1.448 1.18
50% 3.659 2.746 2.094 2.221 2.088 2.220 1.18

References

1. Akaike, H.: A new look at the statistical model identification. Automatic Control,
IEEE Transactions on 19(6), 716–723 (Dec 1974)

2. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley-
Interscience, New York, third edn. (2003)

3. Asuncion, A., Newman, D.J.: UCI machine learning repository (2011),
http://archive.ics.uci.edu/ml/, University of California, Irvine, School of Informa-
tion and Computer Sciences

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), pp. 1–38 (1977)

6. Dixon, J.K.: Pattern recognition with partly missing data. Systems, Man and Cy-
bernetics, IEEE Transactions on 9(10), 617–621 (Oct 1979)

7. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small sam-
ples. Biometrika 76(2), 297–307 (1989)

8. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley-
Interscience, second edn. (2002)

9. Van Hulse, J., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation in
software measurement data. Information Sciences (2011), in Press, Corrected Proof

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 45

Enhancement Learning in Functional Relevance Learning

Vector Quantization

T. Villmann?, M. Kästner, D. Nebel, and M. Riedel

Computational Intelligence Group,
University of Applied Sciences Mittweida,09648 Mittweida, Germany

{villmann,kaestner,nebel,riedel}@hs-mittweida.de

Abstract. We present a modi�cation of relevance and matrix learning for the gener-
alized learning vector quantization algorithm. This modi�cation allows an enhanced
learning of the relevance or matrix weights by neighborhood cooperativeness between
the relevance weights. Thus relvance learning of a weight pro�ts from the weight
neighbors leading to an accelerated adaptation and smooth relevance pro�les or rel-
evamce matrices. Further we show that this enhancement scheme can be seen as a
new dissimilarity measure in standard generalized learning vector quantization such
that theoretical aspects like margin analysis remain valid.

1 Introduction

Relevance learning in learning vector quantization (GRLVQ) is a very well established and
powerful method in prototype based classi�cation for weighting of data attributes, which are
important for the classi�cation of respective data [5]. The automatic weighting of the data
dimensions in online learning is obtained as a gradient learning scheme of a cost function
based on that of the generalized learning vector quantization algorithm (GLVQ) proposed
by Sato&Yamada in [13], which assigns to each attribute a relevance weight indicating
the importance to separate the classes in the given problem. As the basis, the GLVQ can
be seen as a theoretically proven generalization of the standard learning vector quantization
algorithms (LVQ) introduced by T. Kohonen [8]. All relevance weights form the relevance
pro�le, however, their adaptation is performed independently in GRLVQ. Extensions of the
GRLVQ method consider some classi�cation dependent correlation matrices of the data
attributes to obtain better classi�cations (GMLVQ,[15,16]). Recent developments concern
the application of relevance learning to speci�c data, in particular, functional data like
spectra or time series, taking their speci�c functional property into account [7]. Functional
data are vectorized representations of continuous functions such that their relevance pro�le
can be taken as functions, too. In particular, if the functional data are representing smooth
functions, the resulting relevance pro�le should be also smooth. In the mentioned approach
[7] the (functional) relevance pro�le was determined by a superposition of adaptive smooth
basis functions, for example Gaussians or Lorentzians with di�erent widths end positions.
This functional approach of relevance learning usually converges faster because of the lower
degree of free parameters to be optimized and, obviously, carries some kind of inherent
regularization according to the choice of the set of used basis functions. As it is known

? corresponding author, email: thomas.villmann@hs-mittweida.de

Workshop New Challenges in Neural Computation 2012

46 Machine Learning Reports

from radial basis function networks or Parzen windows estimators in density estimating, the
learning of Gaussians is not trivial but su�ers from unstable behavior [6]. Another drawback
is that the set of adaptive basis functions has to be chosen in advance.

In this contribution we propose a di�erent approach to obtain smooth relevance pro-
�les for functional data classi�cation based on GLVQ. Again, the functional property of
the data is assumed to motivate the adaptation of the relevance pro�le. The new approach
does not handle the relevance pro�le entries independently as in GRLVQ. It introduces a
neighborhood cooperativeness between them under the assumption of their functional corre-
spondence. However, it does not require the determination of some kind of an a priori given
set of basis functions, to compose the relevance pro�le from that. The neighborhood cooper-
ativeness leads to a faster convergence. Further, the achived pro�les are smoother compared
to standard relevance and matrix learning because the neighborhood cooperativeness can
also be seen as a kind of regularization mechanism in relevance or matrix learning.

2 Relevance Learning and Metric Adaptation in Learning Vector

Quantization

Relevance learning in learning vector quantization is a paradigm that weights the data
attributes (dimensions) in such a way that a given classi�cation problem can be solved
better than using standard Euclidean metric. We suppose that the data are given as vectors
v ∈ V ⊆ Rn, and the prototypes of the LVQ model are the setW = {wk ∈ Rn, k = 1 . . .M}.
Each data vector v of the training data belongs to a class xv ∈ C = {1, . . . , C}. The
prototypes have labels ywk ∈ C indicating their responsibility to the several classes. The
dissimilarity of data and prototypes is judged by the dissimilarity d (v,w) : Rn ×Rn → R+

given in the data space V and frequently chosen as the (quadratic) Euclidean metric. Yet,
it is only required that the dissimilarity measure is di�erentiable with respect to the second
argument, but not necessarily symmetric [12].

Standard LVQ distributes the prototypes in such a way that the classi�cation error
is optimized but in a heuristically manner [8]. The generalization thereof, the generalized
LVQ (GLVQ) minimizes an approximated classi�cation error based on a stochastic gradient
descent scheme [13]. The cost function minimized by GLVQ is

E (W) =
1
2

∑

v∈V
f (µ (v)) (1)

where the function

µ (v) =
d+ (v)− d− (v)
d+ (v) + d− (v)

(2)

is the classi�er function with d+ (v) = d (v,w+) denotes the dissimilarity between the data
vector v and the closest prototype w+ with the same class label yw+ = xv, and d

− (v) =
d (v,w−) is the dissimilarity degree for the best matching prototype w− with a class label
yw− di�erent from xv. The transformation function f is a monotonically increasing function
usually chosen as sigmoidal or the identity function. A typical sigmoidal choice is the Fermi
function

f (x) =
1

1 + a · exp
(
− (x−x0)

2

2ς2

) (3)

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 47

with x0 = 0 and a = 1 as standard parameter values. The ς-parameter allows a control of
the sensitivity of the classi�er at class borders but usually �xed with ς = 1. Learning of w+

and w− is performed in GLVQ by the stochastic gradient with respect to the cost function
E (W) for a given data vector v according to

∂SE (W)
∂w+

= ξ+ · ∂d
+

∂w+
and

∂SE (W)
∂w−

= ξ− · ∂d
−

∂w−
(4)

with

ξ+ = f ′ · 2 · d− (v)
(d+ (v) + d− (v))2

(5)

and

ξ− = −f ′ · 2 · d+ (v)
(d+ (v) + d− (v))2

. (6)

For the quadratic Euclidean metric we simply have the derivative ∂d±(v)
∂w± = −2 (v −w±)

realizing a vector shift of the prototypes.

2.1 Standard Relevance Learning and Metric Adaptation

Standard relevance learning replaces the quadratic Euclidean metric in GLVQ by a
parametrized dissimilarity

dΛ (v,w) = (v −w)> Λ (v −w) (7)

with Λ being a positive semi-de�nite diagonal matrix [5]. The diagonal elements λi =
√
Λii

form the relevance pro�le weighting the data dimensions. During the learning phase, the
relevance parameter λi are adapted in addition to the prototype update, again as a stochastic
gradient descent

∂ES (W)
∂λj

= ξ+ · ∂d
+
Λ

∂λj
+ ξ− · ∂d

−
Λ

∂λj
(8)

of the cost function and subsequent normalization such that
∑
i λ

2
i =

∑
i Λi,i = 1. The

respective algorithm is denoted as GRLVQ. The obvious generalization of this scheme is to
generalize the relevance metric (7) to be a positive semi-de�nite quadratic form choosing
Λ = Ω>Ω such that (7) can be written in the form

dΩ (v,w) = (Ω (v −w))2 (9)

with Ω ∈ Rm×n [2,15,16]. The resulting derivatives ∂d±

∂w± for the prototype update in (4) are

obtained as ∂d±(v)
∂w± = −2Λ (v −w±) accompanied by the Ω-update

∂SE (W)
∂Ωr1,r2

= ξ+ · ∂dΩ (v,w+)
∂Ωr1,r2

+ ξ− · ∂dΩ (v,w−)
∂Ωr1,r2

(10)

with
∂dΩ (v,w)
∂Ωr1,r2

= 2 [Ω (v −w)]r1 [v −w]r2 (11)

for the determination of the Ω-update. Again, a normalization has to take place to ensure∑
i,j Ω

2
i,j =

∑
i Λi,i = 1. We refer to this matrix variant as GMLVQ.

Workshop New Challenges in Neural Computation 2012

48 Machine Learning Reports

2.2 Functional Relevance Learning and Metric Adaptation

In functional vector quantization the data vectors are representations of functions v (t) with
given values vi = v (ti). Examples are hyper-spectra in remote sensing, time series or funtion
pro�les.. In case of GRLVQ and GMLVQ this may lead to a huge number of relevance or
matrix parameter to be adjusted during the metric adaptation1. Yet, if the data vector are
discrete representations of functions, both relevance and matrix learning can make use of
this functional property to reduce the number of parameters in relevance learning. More
precisely, we assume in the following that data vectors v = (v1, . . . , vn)

T
are representations

of functions v (t) with given values vi = v (ti).
In functional relevance learning the relevance pro�le in (7) is also interpreted as a function

λ (t) with λj = λ (tj) in agreement with the data vector interpretation. In the recently
proposed generalized functional relevance LVQ (GFRLVQ) [7], the relevance function λ (t)
is taken as a superposition

λ (t) =
K∑

l=1

βlKl (t) (12)

of simple basis functions Kl depending on only a few parameters with the restriction∑K
l=1 βl = 1. Famous examples are standard Gaussians or Lorentzians:

Kl (t) =
1

σl
√

2π
exp

(
− (t−Θl)2

2σ2
l

)
(13)

and

Kl (t) =
1
ηlπ

η2
l

η2
l + (t−Θl)2

, (14)

respectively.
Relevance learning in GFRLVQ takes place by adaptation of the parameters βl, Θl,σl

and ηl, respectively. For this purpose, again the stochastic gradient scheme is applied as
before, such that for an arbitrary parameter ϑl of the functional relevance pro�le (12) we
have

∂SE

∂ϑl
= ξ+ · ∂d

+
Λ

∂ϑl
+ ξ− · ∂d

−
Λ

∂ϑl

in complete analogy. Obviously, this idea can be easily transferred to matrix learning as-
suming here that the matrix Ω in (9) is a discrete representation of a continuous function
Ω (t1, t2) [11]. We again assume a superposition

Ω (t1, t2) =
K∑

l=1

βlKl (t1, t2) (15)

1 For GMLVQ the number of free parameters scales with the square of the number of input dimen-
sions although a slight self-regularizing mechanism leads to the fact that the e�ective number
of free parameters is decreased, because their is a weak tendency of the (squared) matrix Ω to
converge to a degenerated state such that the columns represent the �rst eigenvector of the data
covariance matrix [1,14].

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 49

of two-dimensional basis functions Kl (t1, t2), such that we have

Λ (t1, t2) =
ˆ

Ω (t1, t) Ω (t, t2) dt

and, therefore,

Λ (t1, t2) =
K∑

l=1

K∑

m=1

βlβm ·
ˆ

Kl (t1, t) ·Km (t, t2) dt . (16)

The basis functions Kl (t1, t2) are now two-dimensional. For the (symmetric) Gaussian ex-
ample we have

Kl (t1, t2) =
1

σ1,l · σ2,l · 2π
exp

(
−
(

(t1 −Θ1,l)
2

2σ2
1,l

+
(t2 −Θ2,l)

2

2σ2
2,l

))
(17)

whereas for the (symmetric) Lorentzian we get

Kl (t1, t2) =
1

η1,l · η2,l · π2

(
η2
1,l

η2
1,l + (t1 −Θ1,l)

2 ·
η2
2,l

η2
2,l + (t2 −Θ2,l)

2

)
. (18)

Yet, numerical simulation have shown that simpler handling can be obtained if a factorized
version of (15) is applied instead without signi�cant loss in performance [11]. This factoriza-
tion approach is based on the consideration about the structure of the matrix Ω in GMLVQ,
see footnote 1.

2.3 Gaussian Enhancement Learning for Functional Relevance and Matrix

Learning

Although functional (matrix) relevance learning shows stable dynamic and good perfor-
mance, the learning of the parameters like the position, the widths and the weights of the
basis functions is di�cult and requires a good �ne tuning of the learning parameters [11].
This behavior is also known from radial basis function networks, where the determination
of the parameters for the radial basis functions is crucial [6]. Therefore, a more robust alter-
native for functional (matrix) relevance learning is mandatory but keeping the idea to take
the functional character of data into account.

2.3.1 Enhancement of Relevance Learning The idea presented here is to enhance the
learning of the relevance weights around a certain data dimension according by an neigh-
borhood term. This term is chosen as a Gaussian decay as it is known from neighborhood
learning in self-organizing maps (SOM, [8]) or neural gas (NG, [10]), but there applied to
neighborhood cooperativeness between prototypes.. More speci�c, we introduce a Gaussian
enhancement function

hσλ (i, j) = exp

(
− (i− j)2

2σ2
λ

)
(19)

Workshop New Challenges in Neural Computation 2012

50 Machine Learning Reports

for updating the relevance weights λi of around the data dimension j. Then the relevance
enhancement update should become

∂dδ (v,w)
∂λi

=
n∑

j=1

hσλ (i, j) · [v −w]2j . (20)

This update corresponds to a dissimilarity measure

dδλ (v,w) =
n∑

i=1

δ (i,v,w, λ) (21)

with local distortions

δ (i,v,w, λ) =
n∑

j=1

λi · hσλ (i, j) · [v −w]2j (22)

to be used in the cost function (1).
The value σλ describes the in�uence range of the enhancement learning. The idea is

illustrated in Fig. 1

2.3.2 Matrix Learning In analogy to the enhanced relevance learning we introduce for
matrix learning of Λ = Ω>Ω an enhancement matrix according to

H = {hσλ}ns,i=1 ∈ Rn×n, (23)

based on the enhancement function (19). Hence, the dissimilarity measure becomes

dδΩ (v,w) =
m∑

i=1

(
n∑

k=1

Ωi,k

n∑

s=1

hσλ(s, k) [v −w]s

)2

(24)

for Ω ∈ Rm×n instead of (9). Setting now δk =
∑n
s=1Hs,k [v −w]s we easily calculate

dδΩ (v,w) =
m∑

i=1

(
n∑

k=1

Ωi,kδk

)2

= (ΩH (v −w))2 . (25)

Thus, enhancement learning of the matrix corresponds to a matrix multiplication of Ω with
the enhancement matrix H. To emphasize this more general description we denote dδΩ (v,w)
by dHΩ (v,w). The derivatives for the enhanced matrix update are determined by

∂dHΩ (v,w)
∂Ωa,b

= 2 [H (v −w)] b [ΩH (v −w)]a , (26)

which is similar to the usual determination (11).

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 51

Fig. 1. Illustration of the idea of the enhancement learning for relevance weights λi including a
neighborhood cooperativeness (top - standard relevance learning without neighborhood learning;
bottom - enhanced relevance learning.

Workshop New Challenges in Neural Computation 2012

52 Machine Learning Reports

3 Exemplary Application

To verify the e GMLVQ we choose a well known real world example the Indian Pine data
set [9]. The whole data set was generated by means of an AVIRIS sensor capturing an
area with 145 × 145 pixels in the Indian Pine test site in the northwest of Indiana. The
spectrometer operates in the visible and mid-infrared wavelength range (0.4− 2.4nm) with
n = 220 equidistant bands. The area include 16 di�erent kinds of forest or other natural
perennial vegetation and some non-agriculture sectors. The latter one we removed from the
data set as usual. Additionally, we remove 20 wavelengths, mainly a�ected by water content.
Finally all spectra were normalized according to the l2-norm. This overall preprocessing is
usually applied for this data set [9].

Fig. 2. Mean spectra of the 16 ground cover classes of the Indian Pine data set [9]. The spectra
show relative smooth shapes according the functional character of the data.

The mean spectra of the 16 classes are depicted in Fig.2. We observe smooth mean
spectra emphasizing their functional character.

The data set of overall N = 145× 145 data points was divided into 25% of training data
points per class and the remaining for test. The number of prototypes per class was chosen
according to the class distributions, because of the high variance in the number of pixel
per class. Altogether we used 108 prototypes. With the standard GMLVQ and m = 11, i.e.
Ω ∈ Rm×n, we achieved for the test data set an accuracy of 74.1 % (training: 81.1%). The
standard functional GFMLVQ obtains 74.0% for test and 67.7% for training, where K = 20
Gaussian basis functions (17) were applied for the matrix decomposition of Ω according to
(15). The reduced accuracy compared to standard GMLVQ shows the di�culty to learn an

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 53

appropriate matrix representation by the Gaussians. This e�ect can be observed also in the
visualization of the matrix Λ = Ω>Ω. Signi�cant correlations are mainly obtained for lower
wavelengthes, see Fig. 3.

Fig. 3. Visualization of matrix Λ = Ω>Ω for the GFMLVQ. Signi�cant correlations are primarily
obtained for lower wavelengths.

This is in contrast to the matrix Λ obtained for standard GMLVQ, see Fig. 4.

GMLVQ also takes correlations between higher wavelengths into account for classi�-
cation, which results in signi�cant better accuracy. However, the correlation matrix Λ for
GMLVQ is not smooth as we would expect from the smooth shape of the data, compare to
Fig. 2. Applying now the eGMLVQ a drastically increased test accuracy of 81.7% is achieved
with a slightly improved training accuracy 85.0%, both compared to GMLVQ. The obtained
correlation matrix Λ is visualized in Fig. 5.

We recognize that for eGMLVQ the matrix is smoother compared to that from GMLVQ,
which demonstrates the regularizing ability of the enhancement learning. This property can
also concluded from the decreased discrepancy between training and test error compared
to GMLVQ and GFMLVQ. Moreover, the resulted correlation matrix also takes correla-
tions between higher wavelengths into account as GMLVQ, which is, however, in contrast to
GFMLVQ ignoring these correlations. Moreover, we observe a speedup in matrix learning
convergence for eGMLVQ compared to GMLVQ emphasizing the neighborhood coopera-
tiveness learning aspect as a stabilizing learning behavior, which also known from SOM and
NG.

Workshop New Challenges in Neural Computation 2012

54 Machine Learning Reports

Fig. 4. Visualization of matrix Λ = Ω>Ω for the GMLVQ. Signi�cant correlations are obtained
for a wide range of wavelengths and are not restricted to the lower wavelengthes like in GFMLVQ,
see Fig. 3. However, the correlation matrix Λ is not smooth as expected for smooth data like the
spectra in Fig. 2.

Fig. 5. Visualization of matrix Λ = Ω>Ω for the eGMLVQ. Signi�cant correlations are especially
arround the diagonal and not restricted to the lower wavelengthes like in GFMLVQ, see Fig. 3. Yet,
the matrix is smoother compared to that from GMLVQ, Fig. 4.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 55

4 Discussion and concluding remarks

We introduced in this paper an enhancement scheme for relevance and matrix learning in
learning vector quantization in case of functional data. The underlying idea is the utilization
of the functional character of the data, in particular its domain correlation, for enhancement
of matrix learning by neighborhood cooperativeness. This leads to a speedup in matrix learn-
ing and the enhancement model shows regularization e�ects obtaining smoother relevance
pro�les or matrices. Further we have shown that the enhancement learning can be trans-
lated into usual GLVQ learning with modi�ed dissimilarities dδλ and dHΩ , respectively. Thus,
margin propositions from standard GRLVQ and GMLVQ remain valid [3]. Moreover, the
dissimilarity dδλ could be related to an earlier approach used in splice site recognition, i.e.
the locality improved kernel (LIK) [4]. The di�erence is that Gaussians are de�ned on an un-
limited domain and only operational during relevance adaptation, while the LIK is focusing
on local triangular convolutions between attributes (data dimensions).

So far Gaussian neighborhood functions were investigated for enhancement learning.
Looking at eq. (25) we can draw more general conclusions: The matrix H can be seen
in the dissimilarity measure dHΩ (v,w) as a kind of structural expert knowledge about the
data and their dissimilarity relations. For example, asymmetric choices of H could re�ect
aspects of time series with knowledge about the past. However, one has to take care for such
modi�cations of H regarding the resulting properties of dHΩ (v,w) to ful�ll at least minimum
standards of dissimilarity measures [12].

Workshop New Challenges in Neural Computation 2012

56 Machine Learning Reports

References

1. M. Biehl, K. Bunte, F.-M. Schleif, P. Schneider, and T. Villmann. Large margin discriminative
visualization by matrix relevance learning. In H. Abbass, D. Essam, and R. Sarker, editors,
Proc. of the International Joint Conference on Neural Networks (IJCNN), Brisbane, pages
1873�1880, Los Alamitos, 2012. IEEE Computer Society Press.

2. K. Bunte, P. Schneider, B. Hammer, F.-M. S. T. Villmann, and M. Biehl. Limited rank matrix
learning, discriminative dimension reduction and visualization. Neural Networks, 26(1):159�173,
2012.

3. B. Hammer, M. Strickert, and T. Villmann. Relevance LVQ versus SVM. In L. Rutkowski,
J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors, Arti�cial Intelligence and Soft Computing
(ICAISC 2004), Lecture Notes in Arti�cial Intelligence 3070, pages 592�597. Springer Verlag,
Berlin-Heidelberg, 2004.

4. B. Hammer, M. Strickert, and T. Villmann. Prototype based recognition of splice sites. In
U. Sei�ert, L. Jain, and P. Schweitzer, editors, Bioinformatic using Computational Intelligence
Paradigms, pages 25�56. Springer-Verlag, 2005.

5. B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15(8-9):1059�1068, 2002.

6. S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan, New York, 1994.
7. M. Kästner, B. Hammer, M. Biehl, and T. Villmann. Functional relevance learning in general-

ized learning vector quantization. Neurocomputing, 90(9):85�95, 2012.
8. T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences.

Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).
9. D. Landgrebe. Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken, New

Jersey, 2003.
10. T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network for vector quantiza-

tion and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558�
569, 1993.

11. D. Nebel and M. Riedel. Generalized functional matrix learning vector quantization. Master's
thesis, University of Applied Sciences Mittweida, Germany, 2012.

12. E. Pekalska and R. Duin. The Dissimilarity Representation for Pattern Recognition: Founda-
tions and Applications. World Scienti�c, 2006.

13. A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8.
Proceedings of the 1995 Conference, pages 423�9. MIT Press, Cambridge, MA, USA, 1996.

14. P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and M. Biehl. Regularization
in matrix relevance learning. IEEE Transactions on Neural Networks, 21(5):831�840, 2010.

15. P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quan-
tization. Neural Computation, 21:3532�3561, 2009.

16. P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector quantization.
Neural Computation, 21:2942�2969, 2009.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 57

Discriminative probabilistic prototype based
models in kernel space

Daniela Hofmann, Andrej Gisbrecht, and Barbara Hammer

CITEC centre of excellence, Bielefeld University, Germany
{dhofmann|agisbrec|bhammer}@techfak.uni-bielefeld.de

Abstract. Robust soft learning vector quantization (RSLVQ) consti-
tutes a supervised prototype-based classification scheme which models
data by a mixture of Gaussians representing the classes. Training opti-
mizes the likelihood ratio of the model and since the class centers can be
inspected directly, it is interpretable. While offering intuitive and flexi-
ble classifiers for standard vectorial data, RSLVQ cannot be used if more
general data formats are given. We propose an extension towards a ker-
nelized variant which, together with standard preprocessing, makes the
method applicable to data described by pairwise similarities only. The
resulting model, kernel RSLVQ, represents prototypes implicitly as lin-
ear combinations in feature space only such that direct interpretability
is lost. We propose to approximate prototypes by the k nearest exem-
plars, this way arriving at an efficient and interpretable discriminative
model for general similarity data. The suitability is tested on a couple of
benchmarks.

1 Introduction

Machine learning techniques such as neural networks, self-organizing maps, sup-
port vector machines, or Bayesian modeling constitute standard techniques in
many application areas ranging from time series forecasting in the financial area,
biomedical applications, up to robotics. Relying on such models, it is often pos-
sible to infer a classification or regression prescription with excellent accuracy
directly from the data. In recent years, a paradigm shift can be observed in
several application areas: due to more and more complex learning scenarios and
application domains, often, not only an excellent classification or prediction is
aimed at, but interpretability of the model constitutes another vital aspect [24].
One prominent example for this demand can be found in the area of biomedi-
cal applications, where e.g. a medical test should be substantiated by relevant
biomarkers to accompany the results by a medical explanation, and to be capable
of developing efficient high-throughput diagnostic technology.

In machine learning, many state-of-the-art techniques act as black boxes such
that a direct interpretation is not possible. Examples are k-nearest neighbor clas-
sifiers, which are particularly suited if storage is not an issue, but instantaneous
learning is required. Due to its dependency on all data seen so far, interpretabil-
ity of the full model is usually difficult. Another example is given by the support

Workshop New Challenges in Neural Computation 2012

58 Machine Learning Reports

vector machine which represents a solution in terms of support vectors which
describe the decision boundary as accurately as possible. Due to this focus on
the class boundaries, excellent classification accuracy is usually obtained, but
interpretability is lost and the size of the solution usually scales with the size of
the training set. In consequence, applicants cannot interpret the results in such
settings and it is hardly possible to substantiate a machine classification by a
semantic explanation.

Prototype-based methods represent solutions in terms of prototypical class
representatives and, thus, they offer a direct interface for the user: prototypes
can be inspected in the same way as data points, and class typical characteris-
tics can be inferred thereof. There exists a variety of different prototype-based
learning schemes in the supervised as well as the unsupervised domain [14]. For
supervised classification, the family of learning vector quantization (LVQ) type
algorithms constitutes one of the most popular technique to train such a model
based on given data. While many basic LVQ techniques rely on heuristics only,
a variety of learning rules has been derived from a formal objective function
[20, 23]. In this contribution, we focus on robust soft learning vector quantiza-
tion (RSLVQ) as proposed in [23] since it can be derived from a probabilistic
model where underlying assumptions are explicit and can easily be changed de-
pending on the application area. Training is derived as a maximization of the
likelihood ratio. RSLVQ resembles the classical LVQ2.1 algorithm in the limit
of small bandwidth with the restriction that corrections are performed only if
classifcation errors are present. While the limit case as well as standard LVQ2.1
do not achieve optimum behavior already in simple model situations [1], RSLVQ
displays excellent generalization ability in the original probabilistic setting [22].

In many application areas, data sets are becoming more and more complex,
and dedicated similarity measures are used to compare such data. Examples
are bioinformatics sequences, graphs, or tree structures as they occur in lin-
guistics, time series data, functional data arising in mass spectrometry, rela-
tional data stored in relational databases, etc. These data are no longer repre-
sented as Euclidean vectors, rather, pairwise similarities are available. Several
machine learning techniques can deal with such non-vectorial data: technologies
include structure kernels, recursive and graph networks, functional methods, re-
lational approaches, and similar [7, 21, 9, 19, 11]. In the last years, several popular
prototype-based algorithms have been extended to deal with more general data.
Some techniques rely on a matrix of pairwise similarities or dissimilarities only
rather than explicit feature vectors. In this setting, median clustering as provided
by median self-organizing maps, median neural gas, or affinity propagation char-
acterizes clusters in terms of typical exemplars [8, 15, 6]. More general smooth
adaptation is offered by relational extensions such as relational neural gas or
relational learning vector quantization [10]. A further possibility is offered by
kernelization such as proposed for neural gas, self-organizing maps, or different
variants of learning vector quantization [17, 4, 18]. By formalizing the interface
to the data as a general similarity or dissimilarity matrix, complex structures

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 59

can be easily dealt with: structure kernels for graphs, trees, alignment distances,
string distances, etc. open the way towards these general data structures [16, 9].

In this contribution, we present an extension of RSLVQ to a general kernel.
A statistically well motivated model is obtained which achieves excellent results.
For more general similarities, the technique can be combined with standard
preprocessing such as clip or flip, as we will demonstrate in experiments. The
prototypes are represented implicitly as linear combinations in the feature space,
thus interpretability is lost. We investigate the possibility to approximate the
model by using the k nearest neighbors of the prototypes, to arrive at an accurate
and interpretable model for general similarity data in many cases.

2 Robust soft learning vector quantization

Learning vector quantization (LVQ) offers a class of discriminative prototype
based learning schemes which can naturally deal with any number of classes
[14]. Unlike SVM, the model complexity is defined by the applicant, and usually
only few prototypes are sufficient to represent the given classes. Since classes
are represented by typical examples rather than its boundaries, a representation
and inspection of the classes in terms of the prototypes is possible. This feature
has been used e.g. in the context of life-long learning models, see e.g. [13]. Basic
LVQ learning algorithms as proposed by Kohonen include LVQ1 which is directly
based on Hebbian learning, and improvements such as LVQ2.1, LVQ3, or OLVQ
which aim at a higher convergence speed or better approximation of the Bayesian
borders. These types of LVQ schemes are essentially heuristically motivated and
a valid cost function does not exist [2]. One of the first proposals of a cost function
of LVQ can be found in [20, 12]. An alternative which is based on a probabilistic
model of the data has been proposed in [23]. This method, robust soft LVQ
(RSLVQ) models data by a mixture of Gaussians. Learning rules are derived
thereof by means of a maximization of the log likelihood ratio of the given data.
In the limit of small bandwidth, a learning rule which is similar to LVQ2.1 but
which performs adaptation in case of misclassification only, is obtained.

Now we formally define the basic RSLVQ scheme. Assume data ξk ∈ Rn are
labeled with discrete labels yk. A RSLVQ network models data by a mixture
distribution characterized by m prototypes wj ∈ Rn with priorly fixed labels
c(wj) and bandwidths σj . The mixture component j defines the probability

p(ξ|j) = K(j) · exp(f(ξ, wj , σ
2
j))

with normalization constant K(j) and function f

f(ξ, wj , σ
2
j) = −∥ξ − wj∥2/σ2

j

based on the Euclidean distance or a generalization thereof. This induces the
probability of data point ξ:

p(ξ|W) =
∑

j

P (j) · p(ξ|j)

Workshop New Challenges in Neural Computation 2012

60 Machine Learning Reports

with prior P (j) and parameters W of the model. The probability of a data point
ξ and label y is

p(ξ, y|W) =
∑

c(wj)=y

P (j) · p(ξ|j) .

Learning aims at an optimization of the log likelihood ratio

L =
∑

k

log
p(ξk, yk|W)

p(ξk|W)
.

A stochastic gradient ascent yields the following update rules, given (ξk, yk)

∆wj = α ·
{

(Py(j|ξk) − P (j|ξk)) · K(j) · ∂f(ξk, wj , σ
2
j)/∂wj if c(wj) = yk

−P (j|ξk) · K(j) · ∂f(ξk, wj , σ
2
j)/∂wj if c(wj) ̸= yk

with learning rate α > 0 and the probabilities

Py(j|ξk) =
P (j) exp(f(ξk, wj , σ

2
j))∑

c(wj)=yj
P (j) exp(f(ξk, wj , σ2

j))

and

P (j|ξk) =
P (j) exp(f(ξk, wj , σ

2
j))∑

j P (j) exp(f(ξk, wj , σ2
j))

.

If the standard Euclidean distance is used, class priors are equal, and small
bandwidth is present, a learning rule similar to LVQ2.1, learning from mistakes,
results.

Given a novel data point ξ, its class label is the most likely label y correspond-
ing to a maximum value p(y|ξ, W) ∼ p(ξ, y|W). For typical settings, bandwidths
are chosen equally σ2

j = σ2, and the same holds for the priors P (j) = const.
Further, the simple Euclidean distance is used. Then, this rule can be approxi-
mated by a simple winner takes all rule, i.e. ξ is mapped to the label c(wj) of
the closest prototype wj . It has been shown in [23] that RSLVQ yields excel-
lent classification results while preserving interpretability of the model due to
prototypical representatives of the classes given by wj .

3 Kernel robust soft learning vector quantization

RSLVQ is restricted to Euclidean vectors. A kernelization of the method makes
the technique applicable for more general data sets which are characterized in
terms of a Gram matrix only. We assume that a kernel k is fixed corresponding
to a feature map Φ. Then, it holds

kkl := k(ξk, ξl) = Φ(ξk)tΦ(ξl)

for all data points ξk, ξl. We assume that prototypes are represented by linear
combinations of data

wj =
∑

m

γjmΦ(ξm) .

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 61

Note that this assumption is not necessarily fulfilled for vectorial RSLVQ due to
the error correction, i.e. anti-Hebbian terms. However, it is reasonable to assume
that prototypes are contained in the convex hull of the data if interpretability
should be guaranteed. In this case coefficients γjm are non-negative and sum up
to 1. The cost function of RSLVQ becomes

L =
∑

k

log

∑
c(wj)=yk

P (j)p(Φ(ξk)|j)
∑

j P (j)p(Φ(ξk)|j) .

We assume equal bandwidth σ2 = σ2
j , constant prior P (j) and mixture com-

ponents induced by normalized Gaussians. These can be computed in the data
space based on the Gram matrix because of the identity

∥Φ(ξi) − wj∥2 = ∥Φ(ξi) −
∑

m

γjmΦ(ξm)∥2 = kii − 2 ·
∑

m

γjmkim +
∑

s,t

γjsγjtkst

where the distance in the feature space is referred to by ∥ · ∥2. Thus the update
rules become ∆wj =

∑
m ∆γjmΦ(ξm) =

α · K(j) ·
{

(Py(j|Φ(ξk)) − P (j|Φ(ξk))) (Φ(ξk) − ∑
m γjmΦ(ξm)) if c(wj) = yk

−P (j|Φ(ξk)) (Φ(ξk) − ∑
m γjmΦ(ξm)) if c(wj) ̸= yk

A stochastic gradient ascent yields the following adaptation rules for γjm:

∆γjm = α·K(j)·

−(Py(j|Φ(ξk)) − P (j|Φ(ξk)))γjm if ξm ̸= ξk, c(wj) = yk

(Py(j|Φ(ξk)) − P (j|Φ(ξk)))(1 − γjm) if ξm = ξk, c(wj) = yk

P (j|Φ(ξk))γjm if ξm ̸= ξk, c(wj) ̸= yk

−P (j|Φ(ξk))(1 − γjm) if ξm = ξk, c(wj) ̸= yk

This adaptation performs exactly the same updates as RSLVQ in the feature
space if prototypes are in the convex hull of the data. To guarantee non-negativity
and normalization, a correction takes place after every adaptation step.

4 k-approximation of the prototypes

Kernel RSLVQ yields prototypes which are implicitly represented as linear com-
binations of data points

wj =
∑

m

γjmΦ(ξm) .

Since the training algorithm and classification depends on pairwise distances
only, simple linear algebra allows us to compute the distance of a data point
and a prototype based on the pairwise similarity of the data point and all train-
ing data only, i.e. the given Gram matrix, as specified above. However, direct
interpretability of the prototype is lost this way.

Here we propose to use a simple approximation of the prototypes to maintain
interpretability and flexibility of the clustering. As already proposed in the con-
text of life long learning for relational approaches, a prototype is approximated
by the k nearest exemplars in the given training set [10]. These exemplars can
easily be determined by a linear scan of the training set.

Workshop New Challenges in Neural Computation 2012

62 Machine Learning Reports

5 Experiments

We compare RSLVQ and its k-approximation with different values of k on a
variety of benchmarks as introduced in [5]. The data sets consist of similarity
matrices which are, in general, non-euclidean. Non-euclideanity can be quanti-
fied by the signature of the data set, i.e. the number of positive and negative
eigenvalues of the Gram matrix. The matrices are symmetrized and normalized
before processing. In general, data do not constitute a valid kernel such that a
probabilistic representation using the above formulas is no longer well-defined
due to potentially negative distances. There exist standard preprocessing tools
which transfer a given similarity matrix into a valid kernel, as presented e.g. in
[5, 16]. Typical corrections are:

– Spectrum clip: set negative eigenvalues of the matrix to 0. Since this can be
realized as a linear projection, it directly transfers to out-of-sample exten-
sions.

– Spectrum flip: negative eigenvalues are substituted by their positive values.
Again, this can be realized by means of a linear transformation.

These transforms are tested for kernel RSLVQ with according preprocessing.
We use training data in analogy to [5].

– Amazon47 : This data set consists of 204 books written by 47 different au-
thors. The similarity is determined as the percentage of customers who pur-
chase book j after looking at book i. The signature is (192, 12, 0). The class
label of a book is given by the author.

– Aural Sonar : This data set consists of 100 wide band solar signals corre-
sponding to two classes, observations of interest versus clutter. Similarities
are determined based on human perception, averaging over two random
probands for each signal pair. The signature is (62, 38, 0). Class labeling
is given by the two classes: target of interest versus clutter.

– Face Rec: 945 images of faces of 139 different persons are recorded. Images
are compared using the cosine-distance of integral invariant signatures based
on surface curves of the 3D faces. The signature is (794, 151, 0). The labeling
corresponds to the 139 different persons.

– Patrol : 241 samples representing persons in eigth different patrol units are
contained in this data set. Similarities are based on responses of persons in
the units about other members of their groups. The signature is (117, 124, 0).
Class labeling corresponds to the eigth patrol units.

– Protein: 213 proteins are compared based on evolutionary distances compris-
ing four different classes according to different globin families. The signature
is (171, 42, 0). Labeling is given by four classes corresponding to different
globin families.

– Voting : Voting contains 435 samples with categorical data compared by
means of the value difference metric. The signature is (226, 209, 0). Class
labeling into two classes is present.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 63

kernel RSLVQ 1-approx 2-approx 3-approx 4-approx
Amazon47 15.37 (0.36) 36.83 (0.35) 29.27 (0.42) 29.65 (0.53) 30.97 (0.44)
clip 15.37 (0.41) 31.65 (0.26) 26.29 (0.48) 28.06 (0.43) 29.96 (0.42)
flip 16.34 (0.42) 31.28 (0.25) 28.91 (0.35) 29.85 (0.39) 30.95 (0.40)
Aural Sonar 11.50 (0.37) 25.13 (1.15) 20.62 (1.56) 21.62 (0.96) 21.62 (0.79)
clip 11.25 (0.39) 24.75 (0.78) 21.75 (1.06) 18.50 (0.66) 17.00 (0.83)
flip 11.75 (0.35) 24.75 (0.99) 21.50 (0.48) 21.00 (0.57) 21.62 (0.53)
Face Rec 3.78 (0.02) 3.70 (0.02) 5.92 (0.02) 8.99 (0.03) 11.70 (0.04)
clip 3.84 (0.02) 3.76 (0.02) 6.00 (0.02) 8.95 (0.03) 11.90 (0.04)
flip 3.60 (0.02) 3.33 (0.02) 5.64 (0.03) 8.58 (0.04) 11.57 (0.03)
Patrol 17.50 (0.25) 54.94 (0.96) 46.69 (1.02) 39.33 (0.77) 35.46 (0.49)
clip 17.40 (0.29) 32.46 (0.90) 21.89 (0.34) 22.36 (0.43) 20.28 (0.31)
flip 19.48 (0.34) 37.42 (0.85) 26.36 (0.45) 22.27 (0.25) 21.96 (0.27)
Protein 26.98 (0.37) 55.12 (0.67) 49.97 (0.77) 49.57 (0.75) 47.38 (0.92)
clip 4.88 (0.17) 22.44 (0.51) 25.81 (0.98) 28.20 (0.92) 29.42 (0.89)
flip 1.40 (0.05) 23.26 (0.26) 22.77 (0.34) 22.56 (0.47) 23.37 (0.52)
Voting 5.46 (0.04) 8.56 (0.06) 8.71 (0.07) 8.59 (0.07) 8.56 (0.05)
clip 5.34 (0.04) 8.65 (0.07) 9.22 (0.09) 9.08 (0.09) 8.82 (0.09)
flip 5.34 (0.03) 7.84 (0.04) 7.82 (0.03) 8.13 (0.03) 8.56 (0.04)

Table 1: Results of kernel RSLVQ and its k-approximation for k ∈ {1, . . . , 4}.
The classification error in % and standard deviation in parenthesis are given.

Prototypes are initialized by means of normalized random coefficients γjm

where the prior class label c(wj) determines the non-zero elements. The number
of prototypes is taken as a small multiple of the number of classes (Amazon47: 94,
Aural Sonar: 10, Face Rec: 139, Patrol: 24, Protein: 20, Voting: 20). Other meta-
parameters are optimized on the data sets using cross-validation. The results
reported in Tab. 1 stem from a 20-fold cross-validation.

The results obtained with kernel RSLVQ are generally good and reach state-
of-the art accuracy as reported in [5]. In general, preprocessing using spectrum
clip or flip can be beneficial. Surprisingly, a naive application of kernel RSLVQ
for the (non-euclidean) similarity matrix already yields surprisingly good results.
The results of a k-approximation are heterogeneous. For some of the data sets,
the k-approximation is generally acceptable and yields results comparable to
kernel RSLVQ itself (Voting). For others, the 1-approximation yields worse re-
sults with a decrease of the accuracy by more than 10%, but a sufficient number
k yields acceptable results (Aural Sonar, Patrol). Interestingly, there is also the
opposite case, a 1-approximation yielding acceptable results, but larger values
k leading to more than 5% loss of accuracy (FaceRec). For Amazon47 and Pro-
tein, the classification results of all approximations are significantly worse as
compared to direct kernel RSLVQ.

To further inspect this behavior, we exemplarily plot the results obtained
by kernel RSLVQ and its 1-approximation for the data sets Aural Sonar and
Voting in Fig. 1. For visualization, we use multidimensional scaling, which rep-

Workshop New Challenges in Neural Computation 2012

64 Machine Learning Reports

resents measurements of similarity or dissimilarity among pairs of objects as
distances between points of low-dimensional multidimensional space [3]. In all
cases, the training data, the prototypes obtained by kernel RSLVQ, and its
1-approximation are shown. It is obvious that the obtained prototypes consti-
tute good representatives of the classes. For Aural Sonar, this also holds for
the 1-approximation, while it indicates for Voting that prototypes are partially
approximated by exemplars stemming from the wrong class. This bevahior can
potentially be attributed to initialization issues or a wrong choice of the band-
width, since kernel RSLVQ corresponds to a learning from mistakes rule for small
bandwidth, hence prototypes are not necessarily driven towards the class centers
if the classification is correct.

Fig. 1: Visualizing the Aural Sonar flip (left) and Voting clip (right) sets together
with prototypes (black) and 1-approximation (pale) using multidimensional scal-
ing.

6 Discussion

We have investigated kernel robust soft LVQ and the possibility to obtain in-
terpretable sparse models by means of a k-approximation. While kernel RSLVQ
generally yields very good results comparable to SVM, the situation is less clear
for the k-approximations. In some cases, a high classification accuracy is main-
tained, while the classification accuracy is decreased by more than 15% for others.
So far, approximation is based on the distance of the exemplar to the prototype
only, neglecting label information or classification accuracy on the training set.
It is the subject of ongoing work to incorporate this information in the selection
process.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 65

Acknowledgement

This work has been supported by the DFG under grant number HA2719/7-1
and by the CITEC center of excellence.

References

1. M. Biehl, A. Ghosh, and B. Hammer. Dynamics and generalization ability of LVQ
algorithms. Journal of Machine Learning Research, 8:323–360, 2007.

2. M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors. Similarity Based
Clustering. Springer Lecture Notes Artificial Intelligence Vol. 5400/2009, Springer,
2009.

3. I. Borg and P. J. F. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, 2nd edition, 2005.

4. R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel SOM and related Lapla-
cian methods for social network analysis. Neurocomputing, 71(7-9): 1257-1273,
2008.

5. Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-based
classification: Concepts and algorithms. JMLR, 10:747–776, June 2009.

6. M. Cottrell, B. Hammer, A. Hasenfuss, and T. Villmann. Batch and median neural
gas. Neural Networks, 19:762–771, 2006.

7. P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing
of data structures. IEEE TNN, 9(5):768–786, 1998.

8. B. J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315:972–976, 2007.

9. T. Gärtner. Kernels for Structured Data. PhD thesis, Univ. Bonn, 2005.
10. B. Hammer and A. Hasenfuss. Topographic mapping of large dissimilarity datasets.

Neural Computation, 22(9):2229–2284, 2010.
11. B. Hammer, A. Micheli, and A. Sperduti. Universal approximation capability of

cascade correlation for structures. Neural Computation, 17:1109–1159, 2005.
12. B. Hammer and T. Villmann. Generalized relevance learning vector quantization.

Neural Networks, 15(8-9):1059–1068, 2002.
13. S. Kirstein, H. Wersing, H.-M. Gross, and E. Körner. A life-long learning vec-

tor quantization approach for interactive learning of multiple categories. Neural
Networks, 28:90–105, 2012.

14. T. Kohonen. Self-Oganizing Maps. Springer, 3rd edition, 2000.
15. T. Kohonen and P. Somervuo. How to make large self-organizing maps for non-

vectorial data. Neural Networks, 15(8-9): 945-952. 2002.
16. E. Pekalska and R. P. Duin. The Dissimilarity Representation for Pattern Recog-

nition: Foundations and Applications. World Scientific, 2005.
17. A. K. Qin and P. N. Suganthan. Kernel neural gas algorithms with application to

cluster analysis. In Proceedings of the 17th International Conference on Pattern
Recognition Volume 4 (ICPR ’04), pages 617–620, Washington, DC, USA, 2004.

18. A. K. Qin and P. N. Suganthan. A novel kernel prototype-based learning algorithm.
In Proceedings of the 17th International Conference on Pattern Recognition Volume
4 (ICPR ’04), pages 621–624, Cambridge, UK 2004.

19. F. Rossi and N. Villa-Vialaneix. Consistency of functional learning methods based
on derivatives. Pattern Recognition Letters, 32(8):1197–1209, 2011.

20. A. Sato and K. Yamada. Generalized Learning Vector Quantization. In NIPS,
1995.

Workshop New Challenges in Neural Computation 2012

66 Machine Learning Reports

21. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. Compu-
tational capabilities of graph neural networks. IEEE TNN, 20(1):81–102, 2009.

22. P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector
quantization. Neural Computation, 21:2942–2969, 2009.

23. S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation,
15:1589-1604, 2003.

24. A. Vellido, J.D. Martin-Guerroro, and P. Lisboa. Making machine learning models
interpretable. In ESANN’12, 2012.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 67

No Perplexity in Stochastic Neighbor Embedding

Marc Strickert

Department of Mathematics and Computer Science, SYNMIKRO,
Philipps Universität Marburg, Germany

marc.strickert@uni-marburg.de

Abstract. Excellent results of stochastic neighbor embedding (SNE)
methods are strongly dependent on the definition of data neighborhood
probabilities. A rigorous definition is proposed that circumvents typi-
cal trial and error search or heuristics for the so-called perplexity value
parametrizing data-specific neighborhood ranges. The new definition is
parameter-free and yields excellent embeddings, and it indicates that
the assumption of symmetric neighborhood probabilities in the original
t-distributed SNE formulation is problematic, especially when utilizing
rigorous optimization schemes.

1 Background of stochastic neighbor embedding

Stochastic neighbor embedding is an increasingly popular visualization technique
for embedding very general pairwise data relationships in the Euclidean space [3,
6]. The flexibility of treating metric relationships, dissimilarities and pairwise
scoring data in the same manner can be achieved by using only the probabilities
of data items being neighbored, more precisely, of the pairwise neighborhood
degree. Thereby, neighborhood scores can be provided as very general measure-
ments, such as Minkowski distances, but also normalized compression distance
or greedy string tiling [5], such scores allowing for intuitive visual exploration of
document topics and transcriptome data [2], for example.

Formally, SNE optimization aims at placing points yi in a Euclidean space
such that the Kullback-Leibler divergence KL between the original neighborhood
probabilities P of n given objects and those of their corresponding embedded
points Q(Y) are minimized, i.e.

Y = argminY′

n∑

i=1

KL(Pi,Qi(Y
′
))

which can be conveniently accomplished by gradient-based methods. Recent
work shows how other divergence measures can be used in application-specific
scenarios [1]. After all, the neighborhood probability distributions of points in
the embedding space should reflect best the distributions of their original neigh-
borhoods. Alternatively, the non–point-specific distribution of all neighborhood
probabilities can be reconstructed, i.e. the reconstruction is not specific to rows
Pi of P; this is misleadingly called symmetric SNE in [6], because the authors
in addition claim symmetry Psym ∝ P + PT for improved convergence.

Workshop New Challenges in Neural Computation 2012

68 Machine Learning Reports

2

2 Neighborhood probability

SNE minimization of KL depends both on adjustable Q(Y), i.e. on the embed-
ded points Y, but also on the original neighborhood distribution P. The original
density estimates are based on Gaussians centered over each high-dimensional
data point with a common variance value determining the entropy, that is the
rather counter-intuitive log-perplexity, of the neighborhood probability distribu-
tion. Implicitly this approach assumes input and output spaces with spatially
constant data densities. Gaussian widths can be manually set or fit for a given
perplexity by information-theoretically motivated interval bisection optimiza-
tion [6]. For ease of optimization and for faster convergence, perplexity-based
neighborhood probability matrices are rendered symmetric, as indicated above.
Such an assumption is in contrast to commonly asymmetric Euclidean neigh-
borhood probability relationships such as required for describing even simple
systems like three points a, b, and c randomly located in the plane where for b,
the nearest neighbor of a, c might be nearest neighbor.

An observable incompatibility of concentrated distances encountered in high-
dimensional Euclidean input spaces and widely distributed distances in low-
dimensional output spaces is addressed by modeling the embedding relationships
by Student t-distribution instead of a Gaussian. This approach is referred to as
t-SNE and was found to be more successful in neighborhood preservation of
high-dimensional data [6].

For using perplexity-based neighborhood probability estimations with SNE
methods, score data and dissimilarities are usually turned into pseudo distances
with minimum of zero by using some ’standard’, yet distorting, transformation.
Alternatively, in the following, pairwise relationships of item j are assumed to
be located in rows of the data score matrix S, the degree of neighborhood being
related to the rank of scores in that row, thereby ignoring self-pairings (j, j). Us-
ing all data pairs, the largest values constitute the score distribution of nearest
neighbors, the smallest values characterize the farthest neighbors. The prob-
ability of a specific score to exceed other scores can be approximated by the
mid-rank, compensating for ties, of each score sij within all scores in S. This is
summarized in Figure 1 together with an exact neighbor probability estimation
approach. Both procedures allow for asymmetric source probability matrices P∗.

1a: P* ← S – S # empty matrix
2a: For all unique scores sij in S
3a: Ω ← { (k,l) | skl ≥ sij ∈ S }
4a: P*Ω ← P*Ω + | { skl = sij } |
5a: End

1b: R ← Mid-rank column-major order vectorized S
2b: P* ← Column major order (n x n)-constructed R

End: Scale rows of P* to unity sum.

Precise, but slow : Approximation, fast :

Fig. 1. Neighborhood probability estimation procedure based on the marginal proba-
bility of pairwise score exceedance (left) and tie-averaging approximation (right).

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 69

hammer
Text Box

3

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

asymm. SNE with P*

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

symm. t-SNE with P*

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

asymm. SNE with perpl. 50

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

symm. t-SNE with perpl. 10

Fig. 2. Alternative stochastic neighbor embeddings of the Persian words ’artificial in-
telligence’ being combined with a logarithmic spiral. The top left panel provides an
almost perfect reconstruction of the 2D source data by asymmetric SNE of the pro-
posed neighborhood probability inference. Slight tilt is caused by PCA normalization
being applied to all four embeddings. Asymmetric t-SNE would yield very good results
too, but trying to embed the asymmetric relationships P∗ with a symmetric t-SNE
implementation results in a compromise solution with scatter artifacts for this unre-
solvable configuration, shown in the top right panel. The two panels on the bottom
show typical SNE (left) and t-SNE (right) results for symmetric perplexity-based neigh-
borhood probability estimators. Point sizes reflect the total absolute forces, attracting
and repelling, acting on each point according to the contributions to KL; larger points
indicate higher tension and highlight potentially problematic embeddings.

3 Embedding results

Persian words for ’artificial intelligence’ were rasterized in the plane and com-
bined with a logarithmic spiral. This data set of 1164 points exhibits cluster
structures, distance ties caused by the raster grid, and asymmetric properties in
the spiral with increasing gaps between points. In the experiments, this set of
2D points is either directly fed into perplexity-based SNE methods or the corre-
sponding distance matrix is turned into ’pseudo-scores’ S by just switching signs
before calculating P∗. Resulting embeddings are shown in Figure 2. The size of
the crosses is proportional to the magnitude of forces, i.e. the sum of squared
derivatives of the KL divergence, acting on the corresponding points. Note that
the sum of repelling and attracting forces are zero, resulting in absence of point
movement and leading to convergence after all.

Workshop New Challenges in Neural Computation 2012

70 Machine Learning Reports

hammer
Text Box

4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 101 102 103

’q
ua

lit
y’

neigborhood size

asymm. SNE
symm. t-SNE

asymm. SNE-50
symm. t-SNE-10

-0.3

-0.2

-0.1

0

0.1

0.2

100 101 102 103

’b
eh

av
io

r’

neigborhood size

asymm. SNE
symm. t-SNE

asymm. SNE-50
symm. t-SNE-10

Fig. 3. Embedding quality assessment according to [4]. Left: quality of neighborhood
preservation over neighborhood size with one being optimum. Right: behaviour of em-
bedding; positive values indicate undesired mapping to neighbored points (intrusion),
negative values indicate missed mappings of truly neighbored points (extrusion).

The embedding by asymmetric SNE with P∗ in the top left panel is visually
identical to the original set of points (not shown). Also the symmetric t-SNE
(top right panel) comes quite close, but it can be seen that boundary points like
those of the logarithmic spiral being exposed to asymmetric neighborhoods fail to
be recovered validly under symmetric modeling assumptions. Asymmetric SNE
with a perplexity of 50 (bottom left) takes into account a rather high number
of effective neighbors and yields rather smooth reconstructions. As a result,
connected shapes stay together, but the overall organization is locally twisted,
and the logarithmic spiral does not exhibit its exponential radius growth. The
t-SNE plot based on a perplexity of 10 (bottom right panel) exhibits the typical
starfield-like structure that can be often observed for t-SNE embeddings. Natural
’clusters’ get well-separated, but some connected shapes are torn apart, and the
overall connectivity is lost. As an often observed result, local outlier structures
like the spiral get placed in the center of the embedding to become ’equally
unlikely’ neighbors to other points. No perplexity value could be found, though,
leading to embeddings similar to the ones based on P∗.

The quality of the plots is assessed by neighborhood rank violations be-
tween the original points and those in the embeddings [4]. For each neighborhood
size, these violations are measured similar to the Spearman rank correlation be-
tween source and target neighborhoods around each point, shown in the left
panel of Figure 3. Asymmetric SNE on the proposed P∗ yields almost perfect
reconstructions along all neighborhood ranges. Its symmetric t-SNE counterpart
improves over the two perplexity-based versions for ranges greater than about
60 neighbors. For these two, a dramatic quality loss is indicated at a range of
400–500 neighbors. The type of embedding failure is displayed in the right ’be-
haviour’ panel which is in visual correspondence to the embeddings in Figure 2.
Each method has certain problems for ranges up to 4–6 neighbors; these are
caused by the nature of tied data neighborhood distances that are unlikely to
become reconstructed as exact ties in the embedding. Perplexity-based SNE cre-
ates false neighborhood relations for neighborhood ranges greater than 100, for
which perplexity-based t-SNE misses reconstruction of neighbors. Less of such
intrusive and extrusive behaviour is shown by using P∗

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 71

hammer
Text Box

5

4 Discussion

The proper estimation of neighborhood probability distributions has been ne-
glected since the invention of SNE 10 years ago. Allowing for an incompatibility
between distributions in the input and output space like in t-SNE, the present
approach completely decouples estimation procedures in both spaces, now aim-
ing at the best description P∗ of the input space, as described by most general
pairwise score assumptions, and using a reasonable estimation for Euclidean
embedding spaces. Experiments with a controlled data set show the benefits of
such an alternative distribution estimation. Due to the structural difference of
P∗ and perplexity-based estimates, final KL divergence values might be lower
for perplexity-based neighborhood estimation although the results for P∗ look
more realistic. Optimizing embeddings for Q∗(Y) calculated like P∗ would be
the best, yet, computationally much more demanding approach.

MATLAB/GNU-Octave estimators of P∗ and (l-)BFGS gradient-based opti-
mizers for (t-)SNE are available at http://mloss.org as package ’xSNE’.

References

1. Kerstin Bunte, Sven Haase, Michael Biehl, and Thomas Villmann. Stochastic neigh-
bor embedding (sne) for dimension reduction and visualization using arbitrary di-
vergences. Neurocomputing, 90:23–45, 2012.

2. Natascha Bushati, James Smith, James Briscoe, and Christopher Watkins. An
intuitive graphical visualization technique for the interrogation of transcriptome
data. Nucleic Acids Research, 39(17):7380–7389, 2011.

3. Geoffrey Hinton and Sam T. Roweis. Stochastic neighbor embedding. In Suzanna
Becker, Sebastian Thrun, and Klaus Obermayer, editors, Neural Information Pro-
cessing Systems 15 (NIPS), volume 15, pages 857–864. MIT Press, 2002.

4. J.A. Lee and M. Verleysen. Quality assessment of dimensionality reduction: Rank-
based criteria. Neurocomputing, 72:1431–1443, 2009.

5. Bassam Mokbel, Sebastian Gross, Markus Lux, Niels Pinkwart, and Barbara Ham-
mer. How to quantitatively compare data dissimilarities for unsupervised machine
learning? In Proceedings of the 5th International Workshop on Artificial Neural
Networks in Pattern Recognition (ANNPR), to appear, 2012.

6. Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Jour-
nal of Machine Learning Research, 9:2579–2605, 2008.

Workshop New Challenges in Neural Computation 2012

72 Machine Learning Reports

hammer
Text Box

How to visualize a classifier?

Alexander Schulz, Andrej Gisbrecht, Kerstin Bunte, and Barbara Hammer

University of Bielefeld - CITEC centre of excellence, Germany
{aschulz|agisbrec|kbunte|bhammer}@techfak.uni-bielefeld.de

Abstract. We propose a general framework to nonlinearly visualize a
given classifier and training set. We assume a classifier, which not only
provides crisp classification results, but also smooth values indicating the
distance from the nearest class boundary. Furthermore, we discuss the
requirements which this framework poses on a nonlinear dimensionality
reduction method used for the visualization.

1 Introduction

More and more complex data sets and learning scenarios pose new challenges
for standard data analysis tools: often, an exact objective is not clear a priori;
rather, the users specify their interests and demands interactively when applying
data mining techniques and inspecting the results [27]. Due to this fact, analysis
tools have to offer an intuitive interface for the users such that they can directly
interpet or refine the results on demand. Hence, apart from a good accuracy,
interpretability of machine learning techniques becomes a central issue [24, 20].
Naturally, the notion of what means ‘interpretable’ is not clear a priori and it
severely depends on the given data set and problem setting. However, visualiza-
tion often plays an essential part in this context with the human visual system
being one of our most advanced senses.

Classification constitutes one of the standard tasks in data analysis. At
present, the major way to display the result of a classifier and to judge its suit-
ability is by means of the classification accuracy. Visualization is used in only
a few places when inspecting a classifier: If the data lives in a low dimensional
space, such that direct visualization of the data points and classification bound-
aries in 2D or 3D is possible. For high D data, which constitutes the standard
case, a direct visualization of the classifier is not possible. One line of research
addresses visualization techniques to accompany the accuracy by an intuitive
interface to set certain parameters of the classification procedure, such as e.g.
ROC curves to set the desired specificity, or more general interfaces to optimize
parameters connected to the accuracy [11]. Surprisingly, there exists relatively
little work to visualize the underlying classifier itself for high dimensional set-
tings. For the popular support vector machine (SVM), for examples, only some
specific approaches have been proposed: one possibility is to let the users decide
an appropriate linear projection dimension by means of tour methods [5]. As
an alternative, some techniques rely on the distance of the data points to the
class boundary and present this information using e.g. nomograms [12] or by

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 73

using linear projection techniques on top of this distance [19]. A few nonlinear
techniques exist such as SVMV [26], which visualizes the given data by means
of a self-organizing map and displays the class boundaries by means of sam-
pling. These techniques offer first steps to visually inspect an SVM solution such
that the users can judge e.g. remaining error regions, the modes of the given
classes, outliers, or the smoothness of the separation boundary based on a visual
impression.

However, so far, these techniques are often only linear, they require additional
parameters, and they provide combinations of a very specific classifier such as
SVM and a specific visualization technique. In this contribution we discuss a
general framework which allows to visualize the result of a given classifier and
its training set in general, using a suitable nonlinear dimensionality reduction
technique. We specify demands which such a nonlinear dimensionality reduction
technique should fulfill to be eligible. Further, we demonstrate the method in an
example.

2 The general framework

We assume the following scenario: a data set including points xi ∈ X = Rn is
given. Every data point is labeled with li ∈ L belonging to a finite set of differ-
ent labels L. In addition, a classifier f : X → L has been trained on the given
training set, such as a support vector machine or a learning vector quantization
(LVQ) network. The standard way to evaluate the performance of the classifier
f is by inspecting the classification error of the function on the given training set
or a hold out test set. This gives us an indication whether the classifier is nearly
perfect, corresponding to 100% accuracy, or whether errors occur. However, the
classification error does not give us a hint about the geometric distribution of
the errors (are they equally distributed in the space, or do they accumulate on
specific misclassified regions), whether errors are unavoidable (due to overlap-
ping regions of the data or outliers), whether the class boundaries are complex
(e.g. due to multiple modes in the single classes), etc. A visualization of the given
data set and the classifier would offer the possibility to visually inspect the clas-
sification result and to answer such questions. We propose a general framework
how to visualize a classifier and a given data set such as the training set of the
classifier.

In recent years, many different nonlinear dimensionality reduction techniques
have been proposed to project a given data set onto low dimensions (usually 2D
or 3D), see e.g. [3, 14, 23]. These techniques substitute the points xi ∈ X by low-
dimensional counterparts p(xi) = yi ∈ Y = R2, such that the structure of the
original data points xi is preserved by the low dimensional projections p(xi) = yi

as much as possible. It is in-general ill-posed what ‘structure-preservation’ means
in this context, and, consequently, the techniques differ in the formalization of
this demand as a mathematical objective. Several popular approaches aim at
a preservation of distances, similarities, pairwise probabilities, or similar. Some
methods aim at a preservation of the underlying manifold such as [22, 17, 2].

Workshop New Challenges in Neural Computation 2012

74 Machine Learning Reports

First approaches how to formally evaluate the success of such a technique have
been proposed in the last years, one generally accepted way e.g. measuring the
preservation of local k-ary neighborhoods while projecting the data [15].

These techniques, however, map a given finite set of data points only. They
do neither represent the structure of the data points as concerns a given classifier
nor their relation to the classification boundary. Which possibilities exist to ex-
tend a given nonlinear dimensionality reduction method such that an underlying
classifier is displayed as well?

We assume a classifier f is present. In addition, we assume that the label
f(x) is accompanied by a nonnegative real value r(x) ∈ R which indicates the
distance from the closest class boundary. Assuming a nonlinear dimensionality
reduction method is given, a naive approach could be like follows:

– Sample the full data space X by points zi.
– Project these points nonlinearly to two dimensional points p(zi) using some

nonlinear dimensionality reduction technique.
– Display the data points xi and the contours induced by the sampled function

(p(zi), r(zi)), the latter approximating the boundaries of the classifier.

This simple method, however, fails unless X is low dimensional because of two
reasons:

– Sampling X sufficiently requires an exponential number of points, hence it
is infeasible for high dimensional X.

– It is impossible to map a full high dimensional data set zi faithfully to low
dimensions, hence topological distortions are unavoidable when projecting
the class boundaries.

The problem lies in the fact that this procedure tries to visualize the class bound-
aries in the full data space X. It would be sufficient to visualize only those parts
of the boundaries which are relevant for the given training data xi, the latter
usually lying on a low-dimensional sub-manifold of the data space X.

How can this sub-manifold be sampled? We propose the following three steps,
which are displayed in Fig. 1:

– Project the data xi using a nonlinear discriminative visualization technique
leading to points p(xi) ∈ Y = R2.

– Sample the projection space Y leading to points z′i. Determine points zi in
the data space X which are projected to these points p(zi) ≈ z′i.

– Visualize the training points xi together with the contours induced by the
sampled function (z′i, r(zi)).

Unlike the naive approach, sampling takes place in R2 only and, thus, it is fea-
sible. Further, only those parts of the space X are considered which correspond
to the observed data manifold xi, i.e. the class boundaries are displayed only as
concerns these training data.

Two questions remain in this context: what does it mean to consider a dis-
criminative nonlinear dimensionality reduction technique? How can we deter-
mine inverse points zi for given projections z′i which correspond to inverse images
in the data manifold?

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 75

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dim1

d
im

2
class 1

class 2
class 2

0

0.5

1

0
0.5

1

0

0.2

0.4

0.6

0.8

1

dim1
dim2

d
im

3

class 1

class 2

00.511.5

0
0.5

1
−0.2

0

0.2

0.4

0.6

0.8

1

dim2

dim1

d
im

3

class 1

class 2

SVs

train classifier

project data down

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

dimI

d
im

II

class 1

class 2

SVs

sample

project up

classify

Fig. 1: Principled procedure how to visualize a given data set and a trained
classifier. The example displays a SVM trained in 3D.

Workshop New Challenges in Neural Computation 2012

76 Machine Learning Reports

3 Discriminative nonlinear visualization

Dimensionality reduction is an inherently ill-posed problem, and the result of a
dimensionality reduction tool largely varies depending on the chosen technology,
the parameters, and partially even random aspects for non-deterministic algo-
rithms. Often, the reliability and suitability of the obtained visualization for the
task at hand is not clear at all since a dimensionality reduction tool might focus
on irrelevant aspects or noise in the data. Discriminative dimensionality reduc-
tion, i.e. the integration of auxiliary information by an explicit labeling of data
can help to partially overcome these problems: in discriminative dimensionality
reduction, the aim is to visualize those aspects of the data which are particularly
relevant for the given class information. Thus, the information which is neglected
by the dimensionality reduction method is no longer arbitrary but directly linked
to its relevance for the given classes.

In the given setting, an explicit labeling is available by the given classifier.
To visualize the behavior of the classifier, it is relevant to visualize those as-
pects of the data which contribute to the class labeling. Since this captures the
information which is relevant in this case, we propose to use a nonlinear discrim-
inative visualization technique which can capture the underlying data manifold
as concerns the class labeling.

A variety of different discriminative dimensionality reduction techniques has
been proposed, such as the linear techniques Fisher’s linear discriminant analysis
(LDA), partial least squares regression (PLS), informed projections [7], or global
linear transformations of the metric to include auxiliary information [10, 4], ker-
nelization of such approaches [16, 1], or a combination of standard techniques
with an adaptation of the underlying metric according to information theoretic
principles, see e.g. [13, 18, 25, 8].

In principle, every such technique could be used in the given approach. Here,
we use Limited Rank Matrix LVQ (LiRaM LVQ) [4] since it constitutes a very
fast nonlinear discriminative dimensionality reduction technique which preserves
the local manifold structure as much as possible, being a locally linear approach.

4 Inverse nonlinear dimensionality reduction

Assume a nonlinear projection of points xi ∈ X to p(xi) = yi ∈ R2 and addi-
tional data points z′i ∈ R2 are given. What are points zi such that its projections
approximate z′i ≈ p(zi) and, in addition, zi are contained in the data manifold?
Some problems have to be considered: usually, an explicit mapping p is not given,
rather only discrete projections of the data, albeit a few approaches to extend
a mapping of points to a mapping of data have recently been proposed for the
general case [9, 3]. Second, since X is high dimensional, the projection p is in
general not invertible.

Here, we propose an interpolation technique similar to the kernel mapping
as introduced in [9] for nonlinear dimensionality reduction which interpolates
the given pairs (p(xi),xi). Since this mapping will be trained on the points

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 77

corresponding to the data manfiold X only, inverse points which correspond to
this subset result for arbitrary z′i. We assume the following functional form

p−1 : Y → X,y 7→
∑

i αiki(yi,y)∑
i ki(yi,y)

= Ak

where αi ∈ X are parameters of the mapping and ki(yi,y) = exp(−∥yi−y∥2/σ2
i)

constitutes a Gaussian kernel with bandwidth determined by σi. The matrix
A contains the vectors αi in its columns and k is a column vector with the
ith element being ki(yi,y)∑

i ki(yi,y) . Summation is over a subset of the given data
projections yi = p(xi), often including the most informative points such as the
projections of support vectors for an SVM or the prototypes of an LVQ classifier.
Depending on the choice of these data and the bandwidth, the problem can
constitute an overdetermined system of equations such that we rely on a least
squares solution of

min
A

∑

j

∥∥xj −Akj

∥∥2
.

This can directly be computed using the Moore-Penrose pseudo inverse, since the
mapping is of generalized linear form. Depending on the form of the original data
manifold, this inverse function maps the Euclidean plane to that part of the data
manifold which centers around the data, thereby neglecting irrelevant dimensions
due to the choice of p. In addition to an optimization of the parameters αi, an
optimization of the bandwidth parameters σi is possible by means of a gradient
technique.

5 Experiment

We exemplarily demonstrate this technique for a standard SVM and a Gener-
alized Matrix LVQ (GMLVQ) classifier as introduced in [21]. Both techniques
provide a distance of a data point to the closest class boundary in addition to
the class label itself. For LVQ, this is given by the normalized hypothesis mar-
gin, given by (d2 − d1)/(d1 + d2) assuming d1 and d2 constitute the distances
to the closest two prototypes with different class labels. For the SVM, a one
versus one classification and majority vote is used for multiple classes based on
the LIBSVM implementation [6]. The margin is determined by the SVM which
label corresponds to the final output and which displays the smallest margin.
For visualization, discriminative LiRaM LVQ as described in [4] is used.

Gene expression data

Using matrix LVQ techniques has the benefit that, due to the local linearity of the
classifier and the explicit mapping provided by (local) LiRaM LVQ [4], an explicit
computation of class boundaries is possible. The visualization result obtained
by our framework can be compared based on ground truth. Nevertheless, our
visualization technique can be applied to any given classifier.

Workshop New Challenges in Neural Computation 2012

78 Machine Learning Reports

The gene expression data set consists of 83 samples described by 50 char-
acteristics of small round blue cell childhood tumor. Four different classes are
given. For the projection to the high dimensional space, 43 randomly chosen
points are used. The width σ = 0.8 is assigned to all kernels in the 2D space.
In Fig. 2, the original class boundaries obtained with a local matrix LVQ tech-
nique and the class separation obtained using our nonlinear mapping technique
are displayed. In addition to the class boundaries, the values of the normalized
hypothesis margin are displayed. These values are coded as the color intensity
in the image, allowing for a visual judgement of the certainty of the classifica-
tion results. Furthermore, black contour lines code regions with the same margin
value. Obviously, very good agreement between the ground truth and our ap-
proximation can be observed.

Letter data set

The UCI letter data set consists of 20, 000 handwritten letters with a resolution
of 16× 16 grey values. For training and visualization, a subset of 1, 300 points is
used. The visualization of a trained matrix LVQ network and a SVM is displayed
in Fig. 3. For both classifiers, the same visualization parameters are used: The
kernel widths are calculated per class by averaging the distances from each point
of that class to its nearest neighbour with additional scaling by a constant. As
before, the margin is coded by the color intensity, while this time, the contour
lines are omitted for the sake of clarity.

Again, a very clear visualization of the classification result is obtained this
way.

6 Conclusions

We have proposed a general framework how to nonlinearly visualize a data set
and a given classifier in low dimensions. We have demonstrated the usefulness
of this technique in two examples. Further experiments incorporating alterna-
tive discriminative visualization techniques, further classifiers, and more complex
data sets which include a significant overlap are the subject of ongoing work.

Further open problems concern a formal evaluation measure for the given vi-
sualization. Possibilities are given by a comparison of the classification accuracy
of the classifier in the original space and in the projection. Further, extensions
of the standard co-ranking framework [15] to include the Fisher information as
proposed e.g. in [8] could be extended to also take the class boundaries into
account.

References

1. G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel ap-
proach. Neural Computation, 12:2385–2404, 2000.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 79

2. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15:1373–1396, 2003.

3. K. Bunte, M. Biehl, and B. Hammer. A general framework for dimensionality
reducing data visualization mapping. Neural Computation, 24(3):771–804, 2012.

4. K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl.
Limited rank matrix learning, discriminative dimension reduction and visualiza-
tion. Neural Networks, 26:159–173, 2012.

5. D. Caragea, D. Cook, H. Wickham, and V. Honavar. Visual methods for examining
svm classifiers. In S. J. Simoff, M. H. Böhlen, and A. Mazeika, editors, Visual
Data Mining, volume 4404 of Lecture Notes in Computer Science, pages 136–153.
Springer, 2008.

6. C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

7. D.Cohn. Informed projections. In S. Becker, S. Thrun, and K. Obermayer, editors,
NIPS, pages 849–856. MIT Press, 2003.

8. A. Gisbrecht and B. Hammer. Discriminative dimensionality reduction mappings,
submitted.

9. A. Gisbrecht, W. Lueks, B. Mokbel, and B. Hammer. Out-of-sample kernel exten-
sions for nonparametric dimensionality reduction. In ESANN 2012, pages 531–536,
2012.

10. J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood com-
ponents analysis. In Advances in Neural Information Processing Systems 17, pages
513–520. MIT Press, 2004.

11. J. Hernandez-Orallo, P. Flach, and C. Ferri. Brier curves: a new cost-based visuali-
sation of classifier performance. In International Conference on Machine Learning,
June 2011.

12. A. Jakulin, M. Možina, J. Demšar, I. Bratko, and B. Zupan. Nomograms for
visualizing support vector machines. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, KDD ’05, pages
108–117, New York, NY, USA, 2005. ACM.

13. S. Kaski, J. Sinkkonen, and J. Peltonen. Bankruptcy analysis with self-organizing
maps in learning metrics. IEEE Transactions on Neural Networks, 12:936–947,
2001.

14. J. A. Lee and M. Verleysen. Nonlinear dimensionality redcution. Springer, 2007.
15. J. A. Lee and M. Verleysen. Scale-independent quality criteria for dimensionality

reduction. Pattern Recognition Letters, 31:2248–2257, 2010.
16. B. Ma, H. Qu, and H. Wong. Kernel clustering-based discriminant analysis. Pattern

Recognition, 40(1):324–327, 2007.
17. R. Memisevic and G. Hinton. Multiple relational embedding. In L. K. Saul,

Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Sys-
tems 17, pages 913–920. MIT Press, Cambridge, MA, 2005.

18. J. Peltonen, A. Klami, and S. Kaski. Improved learning of riemannian metrics for
exploratory analysis. Neural Networks, 17:1087–1100, 2004.

19. F. Poulet. Visual svm. In C.-S. Chen, J. Filipe, I. Seruca, and J. Cordeiro, editors,
ICEIS (2), pages 309–314, 2005.

20. S. Rüping. Learning Interpretable Models. PhD thesis, Dortmund University, 2006.
21. P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning

vector quantization. Neural Computation, 21:3532–3561, 2009.
22. J. Tenenbaum, V. da Silva, and J. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

Workshop New Challenges in Neural Computation 2012

80 Machine Learning Reports

23. L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008.

24. A. Vellido, J. Martin-Guerroro, and P. Lisboa. Making machine learning models
interpretable. In ESANN’12, 2012.

25. J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval
perspective to nonlinear dimensionality reduction for data visualization. Journal
of Machine Learning Research, 11:451–490, 2010.

26. X. Wang, S. Wu, X. Wang, and Q. Li. Svmv - a novel algorithm for the visualization
of svm classification results. In J. Wang, Z. Yi, J. Zurada, B.-L. Lu, and H. Yin,
editors, Advances in Neural Networks - ISNN 2006, volume 3971 of Lecture Notes
in Computer Science, pages 968–973. Springer Berlin / Heidelberg, 2006.

27. M. Ward, G. Grinstein, and D. A. Keim. Interactive Data Visualization: Founda-
tions, Techniques, and Application. A. K. Peters, Ltd, 2010.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 81

dimI

d
im

II

1

2

3

4

prototypes

Fig. 2: Visualization of the Gene data set showing the original class boundaries
of LiRaM LVQ (top) and our sampling strategy (bottom).

Workshop New Challenges in Neural Computation 2012

82 Machine Learning Reports

Fig. 3: Visualization of the Letter data set and a matrix LVQ classifier (top) or
a SVM (bottom), respectively.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 83

Locally Weighted Regression using an
Error–based Allocation Strategy

Slobodan Vukanović, Nicole Carey, Robert Haschke, Helge Ritter

Cognitive Interaction Technology Excellence Cluster (CITEC)?, Bielefeld University

Locally weighted regression (LWR) approximates the target function
with a number of spatially localized Gaussian weighted linear models. The
output to a given query is computed as a combination of the outputs of
the local regression models [1]. LWR is robust to destructive interference,
and the complexity of the approximating function can be incrementally
increased by adding new models, making it a suitable choice for learning
in online scenarios, where data is discarded after updates and where input
and output distributions are unknown and prone to change over time [2].
Implementations of LWR must address the structure of the models, the
definition of locality of its models, and the strategy that allocates new
models [3]. This work focuses on adapting the model allocation strategy
of LWPR [4], a state–of–the–art [3] receptive field based LWR algorithm,
with the goal of simplifying its initialization.

A receptive field – the region that defines locality of each local model
– is described by an ellipsoid with the center c in the n–dimensional input
space and a distance metric D, a positive–definite matrix:

(x− c)TD(x− c) = 1 (1)

The decision to insert a new model is based in the input space. If no
existing model yields an activation above a certain threshold, wgen, a
new local model is created with its center c set to the input datum and
its distance metric D set to Dinit, a critical open parameter. Certain
values of Dinit will create many models while others will create only a
few models. Each of these situations may pose problems: training many
models is computationally expensive, and, with a small number of models,
many examples are necessary for the network to converge to the target
function.

We propose an allocation strategy that adds local models based on
the current predictive ability of the network, as measured by its error.
The aim is to achieve a good approximation of the target function with
as few models as possible. The strategy will simplify the initialization of
LWPR by removing the Dinit and wgen parameters.
? This work was supported by the DFG CoE 277: CITEC.

Workshop New Challenges in Neural Computation 2012

84 Machine Learning Reports

Rather than allocating new models in the parts of the input space
that have not yet been covered, our strategy starts with an initial model
that covers as much of the input space as possible. The model is then
subdivided (split) based on the comparison of the desired error to the
network’s current error. The splitting continues until the desired error is
reached. A candidate for splitting is chosen based on its local error erf ,
which is the history of its contributions to the prediction error:

en+1
rf =

wnen
rf + w(||y − ŷ||2)

wn + w
(2)

where w is the current activation weight of the receptive field, wn are
the accumulated weights, y ∈ Rm is the target output, and ŷ ∈ Rm is the
output of the network. The existing receptive field is split geometrically
into two equal receptive fields that cover the same space. An example of
splitting in two dimensions is shown in Figure 1.

c

c1

c2

x1

x2

p1

p2

L

E

Fig. 1. A two–dimensional receptive field described by the ellipse E (dashed) centered
at c split into two equal parts along the line L. The centers c1, c2 of the new receptive
fields lie on L, halfway between c and the points x1, x2 of intersection of L with E.
One of the semi–axes of the new receptive fields lies on L. The other is perpendicular
to it, and its length is max(||p1 − c1||, ||p2 − c1||).

The initial results of training LWPR with default and our allocation
strategies are shown in Figure 2. The training set of size 20000 was gen-
erated from y = max{exp(−10x2

1), exp(−50x2
2), 1.25exp(−5(x2

1 + x2
2))}+

N(0, 0.05). For the default implementation of LWPR, the initial shape of
the receptive fields and the threshold for adding local models were set to
the recommended values of Dinit = 50I (where I is the identity matrix)
and wgen = 0.2 respectively [4]. The testing set consisted of 1681 noiseless
samples from a 41 × 41 grid on the unit square in input space. LWPR
with the default allocation strategy creates 59 receptive fields and has a

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 85

mean square error of 0.002353 on the testing data. LWPR with our allo-
cation strategy creates 50 receptive fields and has a mean square error of
0.002924 on the testing data. We thus achieve comparable approximation
of the target function without having to specify the Dinit and wgen pa-
rameters. The accuracy of the network using our error–based allocation
strategy is slightly lower than that of the default LWPR strategy This
is attributed to the empty spaces between the receptive fields that result
from the adaption of their shapes. LWPR’s receptive field shape update
rule considers the network’s current prediction error, and the receptive
fields can shrink if the error is too high. Since our strategy starts with
only a few receptive fields, they will initially shrink as the network does
not have enough resources to learn the complex target function. This is
evident in Figure 2(e), where the initial model is split vertically into two
receptive fields that shrink in the location of high curvature where the
error is high. Since the existing receptive fields are only split, no new
receptive fields will be allocated in locations that are not covered. As a
result, the peak of the cross function is not learned well (Figure 2(c)).

Our current work involves increasing the accuracy of our strategy and
extending it to handle shifting input distributions.

References

1. C. G. Atkeson, A. W. Moore, and S Schaal. Locally weighted learning. Artificial
Intelligence Review, 11:11–73, 1997.

2. Stefan Schaal and Christopher G. Atkeson. Constructive incremental learning from
only local information. Neural Computation, 10:2047–2084, 1997.

3. O. Sigaud, C. Salaun, and V. Padois. On-line regression algorithms for learn-
ing mechanical models of robots: a survey. Robotics and Autonomous Systems,
59(12):1115–1129, December 2011.

4. Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental online learning
in high dimensions. Neural Computation, 17:2602–2634, 2005.

Workshop New Challenges in Neural Computation 2012

86 Machine Learning Reports

(a)

(b) (c)

(d) (e)

y

x1 x2

y

x1 x2

y

x1 x2

x1

x2

x1

x2

Fig. 2. (a) The target function. (b) The function learned with LWPR’s default allo-
cation strategy. (c) The function learned with our allocation strategy. (d) Receptive
fields created by LWPR’s default allocation strategy visualized in the input space. (e)
Receptive fields created by our allocation strategy visualized in the input space.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 87

Classification in High-dimensional Spectral
Data – Precision vs. Interpretability vs. Model

Size

Andreas Backhaus and Udo Seiffert

Fraunhofer IFF, Magdeburg, Germany
[Andreas.Backhaus, Udo.Seiffert]@iff.fraunhofer.de

Abstract. This paper evaluates aspects of precision, interpretability
and model size of several computational intelligence based classifica-
tion methods in the context of hyperspectral imaging and Raman spec-
troscopy. It is focussed on state-of-the-art representative paradigms of a
number of different concepts, such as prototype based, kernel based, and
support vector based approaches.

Keywords: classification, Learning Vector Quantization (LVQ), Radial
Basis Function (RBF) networks, Support Vector Machines (SVM), hy-
perspectral imaging, Raman spectroscopy.

1 Introduction

Hyperspectral imaging as recent extension to traditional non-invasive spectro-
scopic analysis techniques (e.g. NIR spectroscopy) has paved the way to obtain
the biochemical constitution of inspected solid materials with the additional
advantage of a two-dimensional spatial resolution. For the examination of liq-
uid sample, Raman spectroscopy has been shown to be a viable tool to gather
information without sample preparation [1].

Regarding pattern recognition and data mining in the acquired spectral data,
computational intelligence based methods are still providing powerful tools to
cope with this kind of high-dimensional and complex data (see Fig. 1, left panel).

From the computational intelligence point of view the recent developments
in hyperspectral camera technology with increasingly high resolution in both
the spectral and spatial domain have led to high-dimensional input spaces and a
large number of training vectors. Both aspects even more motivate and demand
computational intelligence based algorithms.

Besides unsupervised visualisation and clustering typically used to get a
(first) graphical representation of the acquired spectral data, classification and
multivariate regression is often required by the underlying application. Here, cor-
responding labelled data is necessary. Since suitable wet lab analysis to provide
continuously valued reference data are typically expensive, frequently categorical
labels are provided. This leads to a classification task. Industrial applications in

Workshop New Challenges in Neural Computation 2012

88 Machine Learning Reports

2

Fig. 1. Left: This figure illustrates the typical data cube obtained by hyperspectral
imaging. It consists of three dimensions – two dimensions covering the spatial resolution
and a third one containing the spectral data at each spatial position. A particular
pixel is characterised by a vector containing the spectral reflectance along the acquired
wavelength bands. The number of acquired wavelength bands represents the input
dimensionality of subsequent data processing, whereas each pixel is one training sample.
Right: This figure demonstrates a sample spectral fingerprint acquired at a particular
position of a hyperspectral image. It shows the normalised intensity over the acquired
spectral bands.

product quality control and sorting also demand on-line classification at a low
systems cost.

Therefore this classification task has in general three, sometimes conflicting,
objectives to address. The first objective is a classification model of high accu-
racy. The second objective is a as small as possible classification model for quick
calculation. A third objective is the restriction to necessary information / fea-
tures of the examined objects for the classification task at hand. In spectral data
processing this means the restriction of necessary spectral bands. This not only
speeds up calculation but also leads to less expensive spectral sensor systems.
Therefore classification models need to offer a certain degree of interpretability.
Relevance profiles for example can indicate the importance of the used input
variables, in this case the acquired spectral bands. Additionally, classification
models should require small or no expert interference in order to tune model
parameters which could lead to biased, non-optimal decisions by the user.

Keeping these requirements in mind, a number of computational intelligence
paradigms appear to be particularly suitable. Among them are prototype-based
neural networks, such as the LVQ (Learning Vector Quantisation) family, RBF
(Radial Basis Function) networks, and Support Vector Machines (SVM). These
three approaches span the scope of the presented paper. The qualification of
these three different approaches regarding classification data from the hyper-
spectral imaging domain as well from Raman spectra data in terms of several
theoretical considerations as well as practical aspects is evaluated. In order to

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 89

hammer
Text Box

3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
o
rm

a
liz
e
d
 R

e
la
ti
v
e
 R

e
fl
e
c
ta
n
c
e

Sunflower Stone

Dough

Background

0 50 100 150 200 250
0

0.02

0.04

0.06

R
e
le
v
a
n
c
e

Spectral Chanel

0 50 100 150 200 250
2

3

4

5

6

R
e
le
v
a
n
c
e

10
-3

G
R

L
V

Q
rR

B
F

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

R
e
le
v
a
n
c
e

0 50 100 150 200 250 300 350 400
1

2

3

4

5

R
e
le
v
a
n
c
e

10
-3

0 50 100 150 200 250
0

0.05

0.1

R
e
le
v
a
n
c
e

0 50 100 150 200 250
0

0.005

0.01

0.015

R
e
le
v
a
n
c
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
o
rm

a
liz
e
d
 R

e
la
tiv

e
 R

e
fle

ct
a
n
ce

Indian Robusta

Peru Arabica

Medelin Arabica

Texico Robusta

750

800

850

900

950

1000

1050

1100

1150

In
te
n
si
ty

Ardbeg

Edradour

Macallan

Green Coffee Spectra Whiskey Spectra Crispbread Spectra

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Spectral Chanel Spectral Chanel

Spectral Chanel Spectral Chanel Spectral Chanel

Spectral Chanel

0 50 100 150 200 250 0 50 100 150 200 250

Spectral ChanelSpectral Chanel

0 50 100 150 200 250 300 350 400

Fig. 2. Datasets and relevance profiles: (a)-(c) show the mean spectra per class for
the different datasets used in this study; (d)-(i) depict the relevance profiles acquire
for with the rRBF and GRLVQ for the different classification tasks; GRLVQ clearly
acquired highly sparse profiles while the rRBF profiles are flat or less specific.

derive practically relevant information from this study, several real-world data
set are used.

2 Classification Problems

2.1 Green Coffee Spectra

Quality control of coffee products, from basic green coffee to the finished roasted
coffee by hyperspectral imaging offers the means for a non-invasive, on-line and
automated screening method to control large product quantities [2, 3]. For ex-
ample green coffee has to be inspected for the Robusta or Arabica varieties since
Arabica based coffee is sold at a different price then Robusta based coffee. The
spatial resolution of hyperspectral imaging makes it the ideal tool for loose mate-
rial sorting especially in the case where information from color, shape or texture
is not sufficient for differentiation.

For the hyperspectral image acquisition coffee beans of four different green
coffee varieties, two varieties of Arabica and two varieties of Robusta and a stan-
dard optical PTFE (polytetrafluoroethylene) calibration pad were positioned on

Workshop New Challenges in Neural Computation 2012

90 Machine Learning Reports

hammer
Text Box

hammer
Text Box

4

a translation table. Hyperspectral images were recorded using a HySpex SWIR-
320m-e line camera (Norsk Elektro Optikk A/S). Spectra are from the short-wave
infra-red range (SWIR) of 970 nm to 2,500 nm at 6 nm resolution yielding a 256
dimensional spectral vector per pixel. The camera line has a spatial resolution of
320px and can be recorded with a maximum frame rate of 100fps. Radiometric
calibration was performed using the vendors software package. Coffee beans were
segmented from background via Neural Gas clustering. Spectra are normalized
to a vector length of one. The dataset comprised of the four green coffee varieties
forming a 4-class problem with 2000 spectra per class. Figure 2a shows average
spectra for the four green coffee classes.

2.2 Whisky Spectra

The automated, on-line assessment of high-priced liquor products is essential for
the standardization and quality monitoring in liquor production as well as poten-
tial fraud detection. An ideal sensor should be compact for mobile applications
and require no special sample preparation while measure quality instantaneously.
In [1] an optofluidic chip was presented that uses Raman spectroscopy to acquire
a Raman spectrum of the fluid sample.

The procedure to acquire the Raman spectra from whisky samples is shown
in detail in [1]. In Raman spectroscopy a sample is illuminated with a laser
beam. The laser light interacts with molecular vibrations, phonons or other ex-
citations in the system, resulting in the energy of the laser photons being shifted
up or down. The shift in energy gives information about the vibrational modes
in the system. Raman spectroscopy is commonly used in chemistry, since vibra-
tional information is specific to the chemical bonds and symmetry of molecules.
Therefore, it provides a fingerprint by which molecules can be identified.

Whisky samples of 20µl were directly loaded into the microfluidic chip with-
out any preparation. After Raman acquisition, any remaining liquid at the sam-
ple inlet was wiped off and 40 µl of deionized water rinsed the system. Raman
excitation was performed with 200 mW of laser power at a wavelength of 785
nm.

Six commercially available Scotch whisky brands and their variants were used
to build the dataset. All available data was labeled according to their distillery
of origin resulting in a 6-class problem. For each class, 400 Raman spectra were
available. Each dataset was scaled so the maximum across spectral bands was
one. Figure 2b shows average spectra for three whisky classes with standard
deviation.

2.3 Crispbread Spectra

Hyperspectral imaging offers the possibility to examine the spatial distribution
and degree of coverage of food ingredients on the product surface in order to
check with the design reference. As an example we consider the segmentation
problem of sunflower stones on crispbread. Here a classifier of very high accuracy
is needed to label each pixel with their respective class. Subsequent processing

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 91

hammer
Text Box

5

steps could remove some classification errors but have to become more sophisti-
cated with lower classification accuracy.

Crispbread Samples containing sunflower stones where placed with a stan-
dard optical PTFE calibration pad on a translation table. Hyperspectral images
were recorded using the same HySpex SWIR-320m-e line camera as used in the
coffee dataset. Dough, sunflower stones and background material where manually
marked and formed a 3-class problem with 616 spectra per class. Radiometric
calibration and spectra preprocessing was identical to the coffee dataset. Figure
2c shows the mean spectra per class.

3 Machine Learning

For machine learning, three different classification models are considered, the
Radial Basis Function (RBF) Network with Relevance Learning [4, 5], General-
ized Relevance Learning Vector Quantization (GRLVQ) [6] as well as a Support
Vector Machine [7]. RBF and GRLVQ Networks are similar in terms that they
process the input data in a layer of prototypical data points. While the RBF gen-
erates activation due to the similarity with prototypes which are accumulated
in a second layer for the network output, the GRLVQ directly assigns classes
to prototypical data points. Prototypes usually represent central positions in a
data cloud. In contrast, the Support Vector Machines stores support vectors, e.g.
data points from the border of a data cloud. The used Support Vector Machine
implementation from the freely available libSVM package1 takes up a variable
amount of support vectors.

In order to compute the distance of spectral data point v and a prototype w
in the rRBF and GRLVQ, we used the weighted Euclidean distance metric

d (v,wr, λ) =
∑

i

λi (vi − wir)
2 (1)

where λi is the relevance factor per spectral band which is adapted during
the learning process to form the relevance profile. The rRBF and GRLVQ learn-
ing approach is in both cases essentially an energy minimization problem. In
the standard learning scheme, stochastic gradient descent with step-sizes man-
ually set for different parameters are used. In order to avoid a manually chosen
parameter, we used the non-linear conjugate gradient approach with automatic
step size from the freely available Matlab optimization toolbox ’minFunc’ 2. For
this purpose we had to provide the objective/energy function along with the first
derivatives according to the optimization parameters.

For the rRBF the objective function is the accumulated quadratic error of the
network output y and target value t across network outputs and data samples.

1 www.csie.ntu.edu.tw/˜cjlin/libsvm/
2 http://www.di.ens.fr/ mschmidt/Software/minFunc.html

Workshop New Challenges in Neural Computation 2012

92 Machine Learning Reports

hammer
Text Box

6

E (V,W, λ) =
1
2

∑

j

∑

k

{
yk

(
vj

)
− tj

k

}2

(2)

with yk (v) =
∑

r urkφ (d (v,wr, λ)) and φ (x) = exp
(
− x

2σ2

)
. The partial

derivatives are as follows

∂E

∂wir
=

∑

j

∑

k

{
yk

(
vj

)
− tj

k

}
urkφ

(
d

(
vj ,wr, λ

))
(
xj

i − wir

)

σ2
r

(3)

∂E

∂σr
=

∑

j

∑

k

{
yk

(
vj

)
− tj

k

}
urkφ

(
d

(
vj ,wr, λ

)) ∑
i λi (vi − wir)

2

σr
(4)

∂E

∂λi
= −

∑

j

∑

k

{
yk

(
vj

)
− tj

k

} ∑

r

urkφ
(
d

(
vj ,wr, λ

))
(
vj

i − wir

)2

2σ2
r

(5)

The output weight urk are yielded by direct update UT = Φ†T where † de-
notes the pseudo inverse [8]. For the classification task a 1-out-of-N coding
scheme for the target vector was used. For the GRLVQ the objective function is
the accumulated difference in shortest distance of a data point to a prototype
representing its class d+

r and a prototype representing any other class d−r :

E (V,W, λ) =
∑

v∈V

Φ

(
d+

r − d−r
d+

r + d−r

)
. (6)

The partial derivatives are as following

∂E

∂w+
ir

= − 2 · d−r(
d+

r + d−r
)2 2

(
vi − w+

ir

) ∂E

∂w−
ir

=
2 · d+

r(
d+

r + d−r
)2 2

(
vi − w−

ir

)
(7)

∂E

∂λi
=

2 · d−r(
d+

r + d−r
)2

(
vi − w+

ir

)2 − 2 · d+
r(

d+
r + d−r

)2

(
vi − w−

ir

)2
(8)

All partial derivatives not belonging to the winning prototype of same class w+
r

and any other class w−
r is set to zero. The derivatives are accumulated for all

data points (batch learning).
Both networks, rRBF and GRLVQ are trained till the step size fell below a

threshold with a maximum number of allowed iterations and function evaluations
respectively. For the classification, the number of prototypes per class is varied
in the GRLVQ. To ensure similar model sizes, the rRBF number of prototypes is
always the number of class times number of prototypes per class in the GRLVQ.
Before the training with the respective method was started, prototypes were pre-
trained using the Neural Gas algorithm. In the rRBF all training data is used to

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 93

hammer
Text Box

7

Table 1. Test accuracies for the three classification tasks; Results are averaged across a
5-fold cross-validation with standard deviation in brackets. The model size denotes the
total number of prototypes (rRBF, GRLVQ) and support vectors (SVM) respectively.

Method Green Coffee Data Crispbread Data Whiskey Data
4 classes 3 classes 6 classes

Accuracy Size Accuracy Size Accuracy Size

rRBF 0.430 (0.018) 4 0.964 (0.011) 3 0.753 (0.012) 6
0.901 (0.081) 12 0.988 (0.004) 9 0.946 (0.013) 12
0.962 (0.020) 16 0.989 (0.006) 15 0.957 (0.009) 24
0.963 (0.018) 24 0.990 (0.004) 30 0.954 (0.002) 36
0.967 (0.011) 32 0.983 (0.004) 45 0.963 (0.007) 48

GRLVQ 0.821 (0.011) 4 0.958 (0.003) 3 0.803 (0.009) 6
0.870 (0.017) 12 0.986 (0.006) 9 0.885 (0.013) 12
0.821 (0.016) 16 0.987 (0.005) 15 0.918 (0.012) 24
0.872 (0.033) 24 0.988 (0.006) 30 0.929 (0.011) 36
0.902 (0.027) 32 0.984 (0.004) 45 0.939 (0.014) 48

SVM (linear) 0.969 (0.003) 3159.2 0.984 (0.006) 176 0.841 (0.007) 1590.4
(7.855) (5.292) (44.97)

adapt all prototypes while in GRLVQ prototypes are learnt only on the training
data of their respective class. Especially for the GRLVQ using a large number of
prototypes this proved to increase model performance significantly in comparison
to random initialisation or initialisation at central class data positions. Data
was divided into training and test set according to a 5-fold cross validation.
Classification accuracy was averaged and standard deviation was computed.

4 Results

Table 1 shows the test accuracy values for all three classification tasks for all
methods and chosen model sizes. Methods generally reached high accuracy values
in all classification task showing that all three problems are solvable by machine
learning of spectral data. In order to achieve a high classification accuracy, the
SVM classifier took up a very high number of support vectors for example over
three thousand for the coffee sample. This poses a significant obstacle for the
implementation of real time classification methods. In comparision, GRLVQ and
rRBF reached similar level of accuracy with significantly smaller number of pro-
totype, e.g. model sizes. For the obviously ’challenging’ classification tasks of
classifying green coffee and whiskey distilleries, the rRBF also showed better
performance at smaller model sizes then the GRLVQ, with exception in the case
of one prototype per class. However, the RBF contains a second layer which
contributes to the computational steps as well as the calculation of the expo-
nential function while the GRLVQ only needs to perform the comparison of a
data vector with all prototypes vectors. Still, a SVM is much easier to handle in

Workshop New Challenges in Neural Computation 2012

94 Machine Learning Reports

hammer
Text Box

8

terms of model training. Optimization methods with automatic step sizes in the
GRLVQ and rRBF however decrease the complexity for the user significantly.

In Figure 2d-i the relevance profile of the rRBF and GRVLQ are depicted.
This offers some interpretability to the classification model and the information
it bases its decision on which is lacking in the Support Vector Machine approach.
It is very obvious that the relevance learning in the GRLVQ lead to much more
pronounced and sparse relevance profiles. This ability is especially useful to re-
duce the number of spectral bands or narrow down the spectral range that is
important to the classification task to reduce system cost significantly. On the
other hand, relevance profiles of the rRBF are flat or very unspecific and not
as clear as the GRLVQ profiles. This might explain the ability of the rRBF to
classify data with a smaller model size using the full range of spectral informa-
tion. In further work, classification accuracy and model sizes of method with and
without relevance learning should be compared.

5 Conclusion

The practical application of machine learning methods in spectral data process-
ing offers an efficient approach to generate classification models without deeper
insight into the chemical and physical processes underlying a spectral signa-
ture. This approximation ability and the flexibility of machine learning method
opens the way to inspection systems for multiple applications based on pattern
producing sensor hardware. However, the creation of classification models from
reference data is still an expert task.

Support Vector Machine gained an increasing popularity due to its relative
easiness of use at high accuracy levels. As this study showed, SVM can become
impractical for real time implementation due to the high number of support vec-
tors. GRLVQ and rRBF, offering smaller model sizes, are still depending on too
many learning parameters. Using more advanced optimisation method, parame-
ters that have to be fine tuned by the user could be reduced. In further research,
the application of growing model structures should be considered to avoid the
need to choose an explicit model size. The question remains how to integrate the
change of model size into the objective function. Optimization approaches that
do not need a differentiable objective function like genetic algorithms or simplex
algorithms should be considered here.

The relevance learning offers a level of interpretability that becomes very
useful in the area of spectral data processing. System cost are still too high for
a number of applications. Reducing the number of spectral information needed
for a particular task will help reduce cost as well as increase the processing
speed. The GRLVQ showed very good capability to classify spectral data with a
minimal amount of information while the rRBF did not produce sparse relevance
profiles. For applications, where the full spectral range is available, the rRBF
might proof advantageous in terms of accuracy at small model sizes.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 95

hammer
Text Box

9

Acknowledgements

The authors want to thank Barbara Hammer and Thomas Villmann for motivat-
ing this study under practical considerations. We would like to thank Röstfein
Magdeburg as well as Thomas Villmann and Marika Kästner for providing cof-
fee samples. Furthermore, the authors are grateful to Praveen Ashok, Bavishna
Praveen and Kishan Dholakia for providing us with extensive data sets of Scotch
Whisky samples.

References

1. Praveen C. Ashok, Bavishna B. Praveen, and K. Dholakia. Near infrared spectro-
scopic analysis of single malt scotch whisky on an optofluidic chip. Opt Express,
19(23):22982–22992, Nov 2011.

2. A.G. Fiore, R. Romaniello, G. Peri, and C. Severini. Quality assessment of roasted
coffee blends by hyperspectral image analysis. In In Proc. 22nd International Con-
ference on Coffee Science, Campinas, Brazil, 2008.

3. Andreas Backhaus, Felix Bollenbeck, and Udo Seiffert. High-throughput quality
control of coffee varieties and blends by artificial neural networks from hyperspectral
imaging. In F. Travaglia, M. Bordiga, J.D. Cöısson, M. Locatelli, V. Fogliano, and
M. Arlorio, editors, Proceedings of the 1st International Congress on Cocoa, Coffee
and Tea (CoCoTea), volume 1, pages 88–92, Novara, Italy, 2011.

4. John Moody and Christian J. Darken. Fast learning in networks of locally tuned
processing units. Neural Computation, 1:281–294, 1989.

5. Andreas Backhaus, Felix Bollenbeck, and Udo Seiffert. Robust classification of
the nutrition state in crop plants by hyperspectral imaging and artificial neural
networks. In In Proc. 3rd Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing, Lissabon, Portugal, 2011.

6. Barbara Hammer and Thomas Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15:1059–1068, 2002.

7. Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka,
1974.

8. Cristopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press., 1995.

Workshop New Challenges in Neural Computation 2012

96 Machine Learning Reports

hammer
Text Box

Feature extraction from Occupancy Grid Maps using
Non-negative Matrix Factorization

Marian Himstedt, Sven Hellbach, Hans-Joachim Boehme?

Artificial Intelligence Lab, University of Applied Sciences, Dresden, Germany
{ himstedt; hellbach; boehme }@htw-dresden.de

1 Introduction

Localization and mapping are fundamental problems in the field of mobile robotics. In order to
navigate autonomously a mobile robot requires the knowledge about its position and orientation
within the surrounding environment. If both, map and position, are unknown, the robot has to
concurrently maintain estimates about its position as well as the traversable environment which
is well known as the Simultaneous Localization and Mapping (SLAM) problem. If, in contrast, a
prior map of the environment is available, the goal is to continously localize the robot within this
representation. This paper focusses on the latter problem motivating a novel approach to sparse
map description and localization on this structure. An occupancy grid map is successively decom-
posed into basis primitives using non-negative matrix factorization. These can be understood as
geometric features which are not determined a-priori but instead are automatically extracted from
the given environment description. As a result a sparse description of the map containing only
basis primitives and their distributions is obtained. In opposite to other approaches, we do not
presuppose specific geometric features like lines or edges, as, for instance, presented in [1]. This
enables optimal representations of different environment types while simultaneuously preserving
a generic model. Tipaldi and Arras proposed an approach to region of interest (ROI) extraction
from 2D range data [2]. Bosse and Zlot perform laser scan based map matching using local sur-
face orientations within a SLAM framework [3]. Either of the methods [1–3] work on raw sensor
data, specifically measurements from a laser range finder. Contrary to these methods, Schroeter
et al. introduced Map Match SLAM [4, 5] utilizing occupancy grid maps which is similiar to our
approach. This enables a more abstract representation of the underlying sensor data. Localization
is then carried out in a Bayesian manner through association of locally observed feature distribu-
tions with those extracted a-priori from an occupancy grid map. Our approach enables efficient
localization on highly compact environment representations. First experiments on a mobile robot
navigating in a museum are carried out. In addition to that, the proposed approach is applied to
publicly available datasets. First promising results are qualitatively depicted motivating further
investigation in the application of NMF for localization and mapping.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization (NMF) [6] is meant
to solve the source separation problem. Hence, a set of training data is decomposed into basis
primitives W and their respective activations H:

V ≈W ·H (1)

Each training data sample is represented as a column vector Vi within the matrix V. Each
column of the matrix W stands for one of the basis primitives. In matrix H the element Hj

i

determines how the basis primitive Wj is activated to reconstruct training sample Vi.

? This work was supported by ESF grand number 100076162

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 97

For generating the decomposition, optimization-based methods are used. Hence, an energy
function E has to be defined:

E(W,H) =
1
2
‖V −T ·W ·H‖2 + λ

∑

i,j

Hj
i (2)

By minimizing the energy equation, it is now possible to achieve a reconstruction using the matrices
W and H. This reconstruction is aimed to be as close as possible to the training data V.

Theoretically the basis primitives are invariant to several transformations as rotation, trans-
lation and scale. This is achieved by adding a transformation matrix T to the decomposition
formulation [7]. For each allowed transformation the corresponding activity has to be trained in-
dividually. To avoid trivial or redundant solutions a further sparsity constraint is necessary. Its
influence can be controlled using the parameter λ [8].

Enabling only translational invariance reduces the problem to a convolution over all transla-
tions. This is efficiently implemented by transforming the data into the frequency domain based
on FFT. In order to reduce the complexity, rotation and scale are not taken into correspondence
for the presented approach.

The minimization of the energy function can be done by gradient descent. The factors H
and W are updated alternately with a variant of exponentiated gradient descent or using NMFs
multiplicative update rule until convergence.

3 Localization and mapping using NMF

The data basis of our NMF-based approach to localization and mapping is given by occupancy
grid maps. Introduced by Elfes [9] occupancy grid maps have demonstrated to be very advanta-
geous in robot navigation. The entire environment structure is decomposed into grid cells with
each expressing a likelihood of being occupied. They are well suited for a multitude of range mea-
suring sensors, though our approach focusses on laser range finders. Occupancy grid maps can
be interpreted as an abstraction of the actual sensor data. Instead of correlating the current scan
with previously captured ones, a continuous representation associating adjacent scans is built. The
majority of existing methods for grid map based localization matches entire laser scans against a
prior occupancy grid map. The simplest model projects measured laser beams into the map trac-
ing them until they hit an occupied cell (raycasting model) as detailed in [10]. Though ignoring
some of the laser beams enormously reduces the complexity, this method is still expensive. The
proposed approach, in contrast, does not consider each laser beam or grid cell itself, but introduces
a further abstraction level working on geometric primitives. This enables efficient map matching
while simultaneuously considering semantic environment structures.

The states expressed by the occupancy grid cells are converted into a binary representation
differing only free and cells. This procedure does not significantly modify the actual states when the
data is obtained from a laser range finder since distributions of occupancy likelihoods are trimodal
possessing peaks around the states occupied, free and unknown. The occupancy likelihood pi of
grid cell i is transfered to the binary representation bi as follows:

bi =
{
occupied (pi > 0.5)
free (pi ≤ 0.5) (3)

Excluding the state unknown simply reduces the influence of noise arising in unexplored areas of
the environment. Otherwise unknown areas would have to be modeled by the representation.

3.1 Training Phase

Given a binary occupancy grid map the training phase aims at gaining a set of basis primitives.
The map is represented by the first column of matrix V and hence directly taken as input for the
NMF approach. The standard NMF approach enriched by translation invariance and a sparsity
constraint is applied on V as mentioned in Section 2.

Workshop New Challenges in Neural Computation 2012

98 Machine Learning Reports

3.2 Application Phase

(a) Graph on global map (b) Submap

Fig. 1. Graph construction. The global map is partionioned into submaps. A graph connecting the submaps
is constructed (Figure 1(a)). The red nodes of the graph denote the submaps which is exemplarily shown
in Figure 1(b).

Similiar to previous SLAM approaches, as for instance [11, 12], we make use of a graph based
representation. This step is not essential for NMF based localization and mapping, however, pro-
vides an initial model for further investigations. The global occupancy grid map is firstly partio-
nioned into submaps. A graph m connecting all submaps is built ensuring the global consistency
of the map as illustrated by Figure 1(a). Each submap mi contains a sparse representation of
the local distribution of NMF features. In particular, the activities of basis primitives within the
submaps are encoded. The sizes of the submaps depend on their local feature diversities. Regions
consisting of repetitive structures are stored more compactly summarizing the local features in one
submap. For instance, environments like long corridors only consisting of line primitives can be
described by a minimum number of NMF features which is exemplarily demonstrated by Figure
3.

Having completed a graphical model of the map, a particle filter1 is used in order to perform
global localization. The robot’s state Xt = (xt, yt, φt)T containing the 2D location (xt, yt) and
orientation φt is predicted according to our motion model given odometry readings at timestep t.
The NMF features zt observed at timestep t are associated with those stored for each submap mi

using the observation model. More specifically, the observation likelihood p(zt|mi, Xt) is estimated.
The observation model raises the problem of transition from the sparse NMF-based representation
to a local encoding. To be more precisely, the submap mi has to describe the basis primitives
efficiently.

The NMF based localization involves a number of spatial uncertainties that have to be incor-
porated. For instance, the local feature distributions change when submaps are perceived from
different viewpoints. Robust position estimates require a certain level of rotation and viewpoint
invariance of the NMF features. As mentioned in Section 2, a rotation invariance within NMF is
generally possible, however requires additional computations. Hence we directly utilize the orien-
tation space covered by the particles’ states. In particular, the orientation φ

(i)
t of the particle i

is used to rotate the local map captured by the robot. This enables global alignment of the local
map used for localization with reference to the previously built map. The reconstruction accuracy
serves as a measure of quality and thus poses the basis to estimate the weight wi of particle i with
wi ∝ p(zt|m,X(i)

t).

4 Future Work

The proposed approach is part of on-going research on non-negative matrix factorization with
application to mobile robot localization and mapping. Based on current implementations we pre-
1 A detailed introduction to particle filters with application to mobile robot localization is given by [10].

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 99

sented first experimental results obtained from multiple real-world datasets. These motivate fur-
ther investigation promising substantial contributions to robust and efficient localization while
significantly reducing the storage sizes of maps by exploiting semantic environment structures. In
addition to that, in-depth research on estimating optimal numbers of basis primitives is intended.
Currently these are determined a-priori depending on the environment stucture. Similarly to the
approach presented in [13] we are investigating incremental learning of basis primitives.

A Experimental results

The training phase of the NMF given binary grid maps is carried out according to Section 3.1.
The following figures exemplarily show priliminary results of the presented approach. The results
contain the initial occupancy grid maps, the input binary grid maps and the NMF reconstructions
which are followed by the basis primitives and activations of latter. The colors of the reconstructed
maps are set according to an HSV color map with blue being the maximum and red the minimum
values. Zero elements are plotted white emphasizing NMFs sparsity. The results of Figure 2 are
obtained using datasets collected within the museum Technical Exhibitions in Dresden. Figures
3 and 4 show results achieved by applying the presented approach to datasets made publicly
available through the Radish repository [14].

References

1. Wulf, O., Arras, K.O., Christensen, H.I., Wagner, B.: 2D mapping of cluttered indoor environments
by means of 3D perception. In: Proc. IEEE International Conference on Robotics and Automation
(ICRA’04), New Orleans, USA (2004)

2. Tipaldi, G., Arras, K.: Flirt - interest regions for 2d range data. In: Robotics and Automation (ICRA),
2010 IEEE International Conference on. (2010) 3616 –3622

3. Bosse, M., Zlot, R.: Map matching and data association for large-scale two-dimensional laser scan-
based slam. I. J. Robotic Res. 27(6) (2008) 667–691

4. Schröter, C., Böhme, H.J., Gross, H.M.: Memory-efficient gridmaps in rao-blackwellized particle filters
for slam using sonar range sensors. In: EMCR. (2007)

5. Schröter, C., Gross, H.M.: A sensor-independent approach to rbpf slam - map match slam applied to
visual mapping. In: IROS. (2008) 2078–2083

6. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Advances in Neural Infor-
mation Processing 13 (2001) 556–562

7. Eggert, J., Wersing, H., Körner, E.: Transformation-invariant representation and NMF. In: IJCNN.
(2004) 2535 – 2539

8. Eggert, J., Körner, E.: Sparse Coding and NMF. In: IJCNN. (2004) 2529 – 2533
9. Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 12(6)

(June 1989) 46–57
10. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. Intelligent robotics and autonomous agents.

MIT Press (2005)
11. Blanco, J.L., Fernandez-Madrigal, J.A., Gonzalez, J.: A new approach for large-scale localization and

mapping: Hybrid metric-topological slam. In: Robotics and Automation, 2007 IEEE International
Conference on. (2007) 2061 –2067

12. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for
graph optimization. In: ICRA, Shanghai (2011)

13. Rebhan, S., Sharif, W., Eggert, J.: Incremental learning in the non-negative matrix factorization. In:
Advances in Neuro-Information Processing. Volume 5507. (2009) 960–969

14. Howard, A., Roy, N.: The robotics data set repository (radish) (2003)

Workshop New Challenges in Neural Computation 2012

100 Machine Learning Reports

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Experiments within the Technical Exhibitions Dresden. Figure (a) shows the initial occupancy
grid map, (b) the binary grid map, (c) the NMF reconstruction, (d) - (f) the basis primitives and (g) - (i)
their activities.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 101

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Long corridor experiment based on a segment extracted from the MIT Killian Court dataset.
Figure (a) shows the initial occupancy grid map, (b) the binary grid map, (c) the NMF reconstruction,
(d) - (f) the basis primitives and (g) - (i) their activities.

Workshop New Challenges in Neural Computation 2012

102 Machine Learning Reports

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Fig. 4. Results obtained using the Intel Research Labs dataset. Figure (a) shows the initial occupancy
grid map, (b) the binary grid map, (c) the NMF reconstruction, (g) - (i) the basis primitives and (d) - (f)
their activities.

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 103

Learning of Invariant Object Recognition in a
Hierarchical Network

Markus Lessmann and Rolf P. Würtz

Institut für Neuroinformatik, Ruhr-Universität, Bochum, Germany
{markus.lessmann,rolf.wuertz}@ini.rub.de

Abstract. In this paper we propose an object recognition system imple-
menting three basic principles: forming of temporal groups of features,
learning in a hierarchical structure and using feedback for predicting
future input. It gives very good results on public available datasets. Pre-
condition for successful learning is that training images are presented to
the system in an appropriate order such that images of the same object
under similar viewing conditions follow each other. The system has mod-
erate memory demands and a very big fraction of computing resources
(during recognition) is spent on nearest neighbor search in a codebook
of visual features, which can be sped up using locality sensitive hashing
methods [1].

1 Introduction

Visual processing is probably the most examined brain function in all fields of
neuroscience. A huge amount of diverse and partly contradicting data about it
has been gathered by myriads of studies in all fields of neuroscience. Since induc-
tive reasoning alone is insufficient for getting a full understanding one has to look
for general concepts that allow deductive conclusions. The lack of such theoreti-
cal concepts was criticized by Jeff Hawkins in his 2004 book “On Intelligence” [2]
where he filled this gap by introducing a “Memory Prediction Framework”. This
collects a lot of known ideas about neural information processing in a coherent
framework and has led to a software system named Hierarchical Temporal Mem-
ory (HTM), which implements most of the main concepts [3]. Three main ideas
can be found in the HTM:

1. Learning of temporal sequences for creating invariance to transformations
contained in the training data.

2. Learning in a hierarchical structure such that lower level knowledge can be
reused in higher level contexts and thereby makes memory usage efficient.

3. Prediction of future signals for disambiguation of noisy input by usage of
feedback.

In this article we will present a novel system which is able to do invariant
object recognition implementing these basic ideas. The layout of the article is the
following: in the next chapter we present our system in detail. Chapter 3 describes

Workshop New Challenges in Neural Computation 2012

104 Machine Learning Reports

Fig. 1. Visualization of the network architecture. Connections of nodes represent pos-
sible synaptic connections between all neurons in one node and all in the other.

how learning works in the network. Results of experiments are presented in
chapter 4. Chapter 5 closes the article with a conclusion and an outlook on
future work.

2 Our System

Our system is an artificial neural network built up of neurons with associated
activity values. Neurons have feedforward and feedback connections of differing
strengths that are determined using a mostly unsupervised learning algorithm.
Figure 1 shows the general structure of the network. It consists of 3 levels of
node positions. Each position contains one node for neurons representing spatial
patterns (spatial neurons) and one for neurons representing temporal groups
(temporal neurons). A neuron can be seen as a hypothesis about which spatial
or temporal pattern is observed at the current node position and time step. Each
node is implemented as a hash map and stores for each active neuron its index
and its activity. On the lowest level a spatial pattern is just a visual feature (a
parquet graph [1]). On a higher level a spatial pattern is built up from temporal
groups at the nodes that converge onto the current one (represented by their
indices). A temporal group is a group of spatial patterns that appeared often at
the same position close in time during learning. The temporal groups in the top
level node represent the different object categories that have been learned.

The system learns from image sequences showing objects undergoing trans-
formations in viewing conditions. It first builds a database (codebook) of features

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 105

that are typical for these objects using vector quantization. Then it learns groups
of features that occur at the same position when the objects transform. Groups
at adjacent positions constitute the spatial patterns which are the input to the
next level of the network. Again, a codebook is learned by vector quantization
and then temporal groups are formed and the process is repeated until the top
level of the hierarchy. This means the system has to be trained level by level.

3 Inference and Learning

The following chapter explains how the system does inference and how it is
trained for doing this. Both steps are not independent since during training
inference needs to be done on the already trained levels of the network.

3.1 Inference

Inference is done by computing activities of all neurons in our model for a given
input image and then reading out the index of the most active temporal neuron at
the top level. This neuron identifies the recognized object category. Calculation
of activities is done from bottom to top level for one node position after another.
When learning is finished this can also be done in parallel for node positions on
the same level. Activities are calculated and stored in a temporary memory. If
their calculation is completed they are transfered to a bigger container storing
activities of the last T time steps, where they are used for learning and for
feedback calculation.

Computing spatial feedforward input: First the spatial pattern at the
current node position is extracted. This may either be a parquet graph on the
corresponding image position for the lowest level or a concatenation of the indices
of the most active temporal groups at adjacent node positions on the previous
level. During learning the nearest neighbor in the codebook of the current level
is determined. If the similarity to it is below a threshold S the pattern is added
to the codebook. A neuron with the index of the new pattern is created and
gets an activity value of 1. If the similarity to the nearest neighbor is above the
threshold its corresponding neuron gets activated with the similarity as activity.
How similarities of spatial patterns are defined is explained later. When learning
on the actual level is completed no new patterns are added to the codebook and
activities on higher levels can be calculated more neuron-like. Since all temporal
groups have similarities to each other, a lower level temporal group can acti-
vate each possible spatial pattern of the current level using its similarity to the
temporal group at its relative position in that pattern. Therefore, the activity
of the temporal group is multiplied with this similarity divided by the number
of temporal groups within a spatial pattern and this is added to the activity of
the neuron representing that spatial pattern. This has the effect that a spatial
pattern can be activated even if only one of its parts is observed (caused by, e.g.,
occlusion).

Workshop New Challenges in Neural Computation 2012

106 Machine Learning Reports

Inhibiting spatial neurons: After calculation of the feedforward input the
amount of active neurons at the node position is reduced by setting the activity
of all but the K most active neurons to zero and deleting them from the hash
map. During learning K is 1, during recall it can also be higher. This step can
be seen as application of inhibition between neurons at the same node position.
Without it all neurons would be kept active, the network would run into a kind
of overexcitation and the first most active neuron at the top level would remain
the winner for all following images.

Computing spatial feedback input: The next step is to add feedback
input to the remaining active neurons coming from temporal groups which have
been active on the previous images.

Application of the activation function: The neuron activities are now
processed by the activation function. The hyperbolic tangent was used for all
experiments. The activation function prevents activity values from growing to
infinity, which could happen because of feedback connections. It also provides
one of the two nonlinearities in the system enabling it to robust classification
(the other one being the inhibition of neurons).

Transfer into permanent memory: Then activities are written into the
permanent memory of the last T images. This is done in a special way. If currently
the same neurons are active as in the memory for time step 0 only their activities
are updated. If a neuron has become inactive or a new one was activated all stored
activities of the last time steps are shifted by one position (and the activity at
time step T − 1 is deleted) and current activity is copied to position 0. This has
the effect that not only one neuron occupies all stored positions and is the only
one giving feedback. Also the system is prevented from only recording transitions
of one neuron to itself while learning temporal groups. During learning activity
in the permanent memory is deleted when a new object category is presented.
This prevents the system from learning temporal transitions between different
categories.

Computations for temporal neurons: Now the same kind of calculations
are done for neurons representing temporal groups. At first temporal neurons
collect their feedforward input, then inhibition is applied and feedback is given
to remaining temporal neurons. At last the activation function is used again and
activities are moved to the permanent memory.

No inference possible: If learning data was too sparse or too few hypothe-
ses are kept it may happen that no active temporal group can activate a spatial
pattern on the next level because there doesn’t exist any connection. Then no
decision can be made about the category of the object on the current image.
This problem diminishes with more learning data and more active hypotheses
(higher K) during testing.

3.2 Learning

Learning on one level is done in two steps: first a codebook of input patterns is
learned using vector quantization, then temporal groups are established. This is
done on all positions of the network, but globally with only one codebook and

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 107

one container for the groups per level. For establishing temporal groups training
images are browsed after codebook learning and it is counted and stored in
a global matrix M how often spatial patterns follow each other at the same
node position within a certain time frame of T images. After normalization
these counts can be seen as temporal similarities of spatial patterns. Now M is
clustered using spectral clustering. On the lower levels groups of maximum size
GS are formed, on the top level M is clustered in as many groups as there are
categories in the training set. This is one of three supervised steps in learning.
Another one is the deletion of the permanent memory between training images of
different object categories. Of course there has to be a last supervised processing
step, in which each temporal neuron at the top level is assigned the name or the
number of the category that it indicates.

After clustering for each spatial pattern the sum of similarities to all spatial
patterns in a cluster is computed (see figure 2 b)). This is a kind of membership
measure, which is of course biggest for the cluster the pattern was put into. This
gives potential connection weights from spatial neurons to temporal groups at
the same level. The G strongest of these weights are used and normalized with
the sum of all employed weights.

For doing vector quantization on higher spatial patterns similarities between
them are defined as average similarities of their components (which are temporal
groups). Thus a similarity measure for temporal groups must be devised. This
can be reached using the temporal similarities stored in matrix M . If one con-
siders each similarity as an edge between two patterns and looks at two distinct
clusters A and B there are 3 different sets of edges: edges within set A, edges
within set B and edges that connect patterns of A with elements of B. This can
be seen in figure 2 a). The sum of edge weights in the last set is the so called
cut between A and B (cut(A,B), the sum of the weights of all purple edges in
figure 2 a)). The sum of edge weights in A (respectively B) is called Vr(A) (resp.
Vr(B)) because it is the volume of A restricted to the set. In figure 2 a) these
are the sums of the weights of all blue respective all red edges. The cut is now
divided by the sum of the restricted volumes of A and B and itself:

sim(A,B) =
cut(A,B)

cut(A,B) + Vr(A) + Vr(B)
(1)

This means that the similarity between sets A and B is divided by the similarities
within the complete set of patterns. Using this measure spatial patterns on higher
levels can be compared by taking the average similarity of temporal groups at
corresponding positions. Thus codebooks on these levels can be learned using
the same quantization threshold S as on the lowest level.

4 Experiments

The system was tested on the ETH80 [4] (in the “cropped close perimg” version),
which contains images of 80 different objects belonging to 8 different categories
(apple, car, cow, cup, dog, horse, pear, tomato), and the COIL100 [5], which

Workshop New Challenges in Neural Computation 2012

108 Machine Learning Reports

Fig. 2. a) Illustration of two clusters. Line widths indicate similarities of elements.
Blue edges connect elements in A, red one elements in B and purple ones elements in
A with elements in B. b) Scheme of three clusters. A membership value is computed
for the central vertex using the drawn edges. Weights of all edges with the same color
are added and divided by the sum of all edges irrespective of color.

consists of images of 100 different objects, each being its own category. In both
databases a black background was used instead of additional segmentation in-
formation. All tests used a one-fold cross validation scheme: the number of views
per object was split into two groups, the first set of views of every object was
used for training, the rest for testing.

All images have a size of 128×128 pixels. A 3-level network was used as shown
in figure 1 with 9×9 nodes on the lowest level, placed with a spacing of 14 pixels
and an offset of 7 on the input images, 3×3 on the intermediate level and a single
node on the top level. Since the network learns temporal sequences/groups the
training images have to be in a meaningful order. Therefore views were sorted
according to their great-circle distance on the viewing hemisphere. This can be
computed using the two or one viewing angles given in the filename of each
image. For fifty-fifty-partitioning every other view of the order was taken for
training and the rest for testing, for other split-ups only every third or fourth
and so forth.

The system has several parameters whose influence on recognition perfor-
mance was tested in the following experiments. First the relevant parameters
are listed again for a better overview:

K: number of neurons kept for computing the input to the next level/sublevel
G: number of temporal groups that are activated by a spatial neuron
T : number of past images whose activities are kept in memory
S: threshold used for vector quantization
GS: determines how big a temporal group can be at most

Several tests were conducted to find an appropriate set of parameter values
for the ETH80, resulting in the following values: S = 0.92, T = 13, K = 10,
G =∞ (all possible connections are used) and GS = 50. These gave a recognition

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 109

Table 1. Tests for generalization over viewing angle. Given are the percentage of
images of each data set the system is asked to use for training, the number of images
that are actually used and the actual percentage of training images (which differs from
the requested one because a fixed number of view points is used per object) and the
recognition rate reached on the remaining images. On the left results for ETH80 on
basic category level (apple, car, cow and so forth) and on the right results for COIL100
on name level.

% requested # obtained % obtained RR # obtained % obtained RR

ETH80 COIL100

2.50 160 4.88 48.14 200 2.78 59.04

5.00 240 7.32 18.45 400 5.56 78.15

10.00 400 12.20 21.28 800 11.11 91.02

20.00 720 21.95 88.48 1500 20.83 97.72

30.00 1040 31.71 95.00 2200 30.56 99.12

40.00 1360 41.46 93.54 2900 40.28 99.67

50.00 1680 51.22 97.69 3600 50.00 99.92

60.00 2000 60.98 97.27 4300 59.72 99.86

70.00 2320 70.73 96.67 5100 70.83 99.95

80.00 2640 80.49 95.31 5800 80.56 100.00

90.00 2960 90.24 91.56 6500 90.28 99.43

rate of 97.69%. For COIL100 the parameters were kept except K, which was set
to 1, yielding a recognition rate of 99.92%.

The next test shows the generalization capabilities of the system for ETH80
and COIL100. The system was trained on (roughly) 10,20,30,40,50,60,70,80 and
90% of all images in the database and then recognition on the remaining images
was done using the two optimal parameter sets.

The table above shows in the first column the percentage of all images of each
database that the system was requested to use, in the second and fifth column
the actual number of used images of ETH80 respectively COIL100, in the third
and sixth the factual percentage of used images and in the fourth and last column
the recognition rate achieved on the remaining images. The results in table 1
demonstrate the very good generalization capabilities of the network. Even with
only 20% of the data recognition rates of almost 89% and 98% can be reached.
As next experiment we conducted the standard test with both databases with-
out feedback to demonstrate its beneficial impact and with feedback but using
nearest neighbor search in the higher level codebooks for activation of spatial
patterns instead of using the neural connections. The outcome for the ETH80
reveals the advantage of using both feedback and neural connections, since both
improve recognition performance considerably. With codebook the recognition
rate drops to 83.69% and without feedback to 83.62%. The possible positive
effects of feedback (resolution of ambiguities) have been described before, the
neural mechanism causes more spatial patterns to become active and offers the
system more valuable hypotheses to chose from. For COIL100 both effects are

Workshop New Challenges in Neural Computation 2012

110 Machine Learning Reports

Table 2. Tests for generalization over viewpoints on COIL100 on name level.

viewpoint difference proposed system Westphal Linde/Lindeberg

10◦ 99.92 99.68 100.00

20◦ 98.50 97.97 99.96

30◦ 96.15 92.93 99.88

40◦ 93.14 88.45 -

45◦ 91.02 - 99.37

50◦ 88.25 83.20 -

60◦ 84.42 76.61 97.99

70◦ 78.57 75.79 -

80◦ 78.15 72.39 -

90◦ 78.15 65.63 97.13

nearly negligible, recognition rates with codebook respectively without feedback
are over 99%. Since for COIL100 K is set to 1 feedback doesn’t have to disam-
biguate between several hypotheses. Using the codebook probably has a similar
effect as using neural connections with K = 1.

Table 2 subsumes results for the generalization test on the COIL100 of our
system and two others. For comparison we took the system of Westphal [6],
which uses the same features as ours, and the system from [7], which gave the best
results that we could find. It computes high dimensional histograms from images
and classifies them using an SVM. The results shown here have been obtained
using a SVM and 14-dimensional histograms. It has to be noted that results
of Westphal have been obtained using 5-fold cross validation and not 1-fold
cross validation as for both other systems. The first column shows the distance
in viewing angle of two consecutive images in training or test set. The second
through forth columns show the obtained recognition rates. The comparison
reveals that our system outperforms the approach of Westphal. Nevertheless it
cannot compete with the system of Linde and Lindeberg for very sparse training
sets. Whereas they reach recognition rates of over 97% for 90◦ distance between
training images our system drops to 78.15%. However, it needs to be considered
that they include color information, which is not used in our system.

At last leave-one-out cross-validation was performed on the “normal” ETH80
using S = 0.94 and K = 18, the remaining parameters remained unchanged.
Results are in table 3. The results from Leibe and Schiele [4] are the best ones
using texture features. What can be seen is that our system is the best in all
but one category and shows the best overall performance.

5 Conclusion and Future Work

We have presented a powerful object recognition system that generalizes very
well over different views of the same object and also (but not as good) over dif-
ferent identities of the same category on standard test data sets. A major goal of
future work is to let the system learn connection weights using a biologically more

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 111

Table 3. Leave-one-out-cross-validation on ETH80 on basic category level.

category prop. Sys. Westphal Leibe/Schiele

apple 94.15 91.22 80.24

car 99.76 80.98 77.56

cow 80.98 49.76 94.39

cup 100.00 98.05 77.80

dog 82.20 35.85 74.39

horse 80.98 57.80 70.98

pear 91.71 87.80 85.37

tomato 98.78 95.12 97.07

complete 91.07 74.56 82.23

plausible local learning rule. The integration of horizontal connections within a
layer is also a possible enhancement of the model which is tested currently.

Acknowledgments

The authors gratefully acknowledge funding from the DFG in the priority pro-
gram “Organic Computing” (WU 314/5-3) and from the land of Northrhine-
Westphalia in the project MoGES, which is co-financed by the EFRE program
from the European Commission .

References

1. Lessmann, M., Würtz, R.P.: Fast nearest neighbor search in pseudosemimetric
spaces. In: Proc. VISAPP. (2012) 667–674

2. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (October 2004)
3. George, D.: How the brain might work: a hierarchical and temporal model for

learning and recognition. PhD thesis, Stanford University (2008) AAI3313576.
4. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object

categorization. In: CVPR (2). (2003) 409–415
5. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100).

Technical report, Department of Computer Science, Columbia University (Feb 1996)
6. Westphal, G., Würtz, R.P.: Combining feature- and correspondence-based methods

for visual object recognition. Neural Computation 21(7) (2009) 1952–1989
7. Linde, O., Lindeberg, T.: Object recognition using composed receptive field his-

tograms of higher dimensionality. In: Proceedings of ICPR. ICPR ’04, Washington,
DC, USA, IEEE Computer Society (2004) 1–6

Workshop New Challenges in Neural Computation 2012

112 Machine Learning Reports

Experience in Training (Deep) Multi-Layer
Perceptrons to Classify Digits

Jens Hocke, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck

1 Introduction

Multi-Layer Perceptrons (MLPs) have been in use for decades. It seemed for
a long time, that MLPs have reached their limits, but recent advances caught
our attention. Ciresan et al. [1] show that by using a proper training set deep
MLPs can outperform all other state of the art machine learning algorithms on
the MNIST dataset for handwritten digits. However, a vast amount of training
samples is needed, which has to be generated artificially with special transfor-
mations. The drawback is that appropriate transformations might be known for
handwritten digits but not in general. Work by Hinton et al. and Bengio et al. [2,
3] suggest that unsupervised pre-training helps to find deep MLPs with better
generalization from the training set, and thus avoiding to generate extra training
data. We are interested in how the better generalization is archived and tested
therefore alternative similar architectures. Here we present some observations
we made in our first tests on the MNIST dataset. There is a lot of room for
improvements to reach the error rates of Ciresan’s approach.

2 Training of a Multi-Layer Perceptron

The standard approach to training a MLP is gradient descent on a cost func-
tion. To archive a faster convergence than with batch learning on a data set
like MNIST with many repeating patterns, usually stochastic gradient descent
is used. The most common cost functions are Mean Squared Error (MSE) and
Cross-Entropy (CE). For the results shown below we used CE because it con-
verged faster in our experiments. Applying it to a fully connected single layer
network of 10 output units (one for each class) we get a test error of about 8.08
percent. By adding a hidden layer with 1000 fully connected units the error rate
decreases to 1.72 percent.

Already the above network with 1000 hidden units has many more weights
than training samples and reaches zero percent training error. It is an under-
determined system with many solutions having zero percent training error. By
adding another layer, the classifier becomes even more powerful and the solution
space for zero training error becomes even larger. There is no reason to expect a
better generalization. Our experiments confirm this. A network with two hidden
layers of 1000 and 500 units performs even worse on the test set (1.82 %). Ciresan
et al. [1] benefited from an increased number of layers, but they circumvented

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 113

the underdeterminacy by artificially creating a basically infinitely large training
set by applying elastic deformations to the original data. But to generate this
data it must be known which transformations are appropriate for the dataset.

Is it possible to make use of the additional power of the classifier without
generating extra data? Hinton and Bengio [2, 3] suggest the use of autoencoders.
These ensure that the information loss in every layer is minimal. After this kind
of unsupervised training the entire network is retrained in the usual way using
back-propagation. Interestingly, this yields better generalization than plain back-
propagation without pretraining. It is not clear what the autoencoder does. If
the hidden layer is smaller than the previous layer, an encoding similar to PCA is
found. But for a larger hidden layer, the problem is again underdetermined. The
simplest solution would be the identity (Direct connection of input and output).
However, in practice this is not the solution found. Bengio et al. hypothesize
this may be caused by a weight-decay they used preventing large weights, or
stochastic gradient descent finding an arbitrary solution. The weights found by
the autoencoder are usually only used as initialization, as the starting point
for the back propagation learning of large (deep) underdetermined networks. It
seems, that this choice of the starting point lets the network converge to a good
solution in the solution space. Erhan et al. [4] hypothesize that pretraining is a
regularizer with an infinite penalty on certain regions of the parameter space.
Would it not be better to use autoencoders explicitly as a regularization for the
network? This strategy can be motivated by the fact that the brain is not only
performing one specific classification task with its visual input, but many differ-
ent ones. Then for every task different features are used, thus almost all features
need to be encoded in the hidden layer, which is enforced by the autoencoder.
We have tested this approach, but did not archive a good generalization (1.82
%).

Bengio et al. use a layer-wise training for the autoencoder. Would it also
work to add iteratively one hidden layer and train only the newly added layer
and the output neurons to classify correctly? This approach should ensure that
all information needed for the classification is passed from the lower layers to the
output layer. However, our experiments show that this scenario does not lead to
better results. On the test set the performance is just as good as or even worse
than using only one hidden layer (1.73 %). By retraining the entire network using
the previously found weights as initialization leads to a slight improvement (1.70
%), but still worse than the autoencoder result. It is interesting to note that in
all cases the features of the first hidden layer resemble parts of digits, if the
networks are trained with noisy samples.

To summarize, so far the effect of pretraining deep MLPs with autoencoders
is not yet really understood, but also does not really lead to competitive results
on the MNIST dataset.

References

1. Ciresan, D., Meier, U., Gambardella, L., Schmidhuber, J.: Deep, big, simple neural
nets for handwritten digit recognition. Neural computation 22(12) (2010) 3207–3220

Workshop New Challenges in Neural Computation 2012

114 Machine Learning Reports

2. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786) (2006) 504–507

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. Advances in neural information processing systems 19 (2007) 153

4. Erhan, D., Manzagol, P., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pre-training. Artificial
Intelligence 5 (2009) 153–160

Workshop New Challenges in Neural Computation 2012

Machine Learning Reports 115

MACHINE LEARNING REPORTS

Report 03/2012

Impressum
Machine Learning Reports ISSN: 1865-3960
5 Publisher/Editors

Prof. Dr. rer. nat. Thomas Villmann
University of Applied Sciences Mittweida
Technikumplatz 17, 09648 Mittweida, Germany
• http://www.mni.hs-mittweida.de/

Dr. rer. nat. Frank-Michael Schleif
University of Bielefeld
Universitätsstrasse 21-23, 33615 Bielefeld, Germany
• http://www.cit-ec.de/tcs/about

5 Copyright & Licence
Copyright of the articles remains to the authors.

5 Acknowledgments
We would like to thank the reviewers for their time and patience.

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html

