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Abstract

We consider in this article median variants of the learning vector quantization clas-

si�er for classi�cation of dissimilarity data. particularly we are interested in opti-

mization of advanced classi�cation quality measures like sensitivity, speci�city or the

Fβ-measure. These measures are frequently more appropriate than simple accuracy, in

particular, if the training data are imbalanced for the investigated data classes. We

present the mathematical theory for this approach based on a generalized Expectation-

Maximization-scheme.

1 Introduction and Notations

In this section we brie�y motivate the new median variants of learning vector quantization

approach and clarify notations and abbreviations.

1.1 Introduction

Learning vector quantization (LVQ) as introduced by Teuvo Kohonen is a popular ap-

proach for classi�cation of vector data [15, 16, 17]. The basic idea of this approach is to

represent the data classes by prototype vectors. Many variants of the basic Hebbian learning

scheme were developed since the initial work by Kohonen. An actual overview can be found

in [14]. Yet, the main learning task, the optimization of the classi�cation accuracy, as well

as the di�erentiable dissimilarity measure in data space for comparison of prototypes and

data were kept all the time.



Recently, the focus was shifted to more advanced classi�cation goals like optimization of

sensitivity, speci�city or the Fβ-measure developed by C.J. van Rijsbergen [24], which

are based on the evaluation of the confusion matrix. These statistical quality measures are

more adequate for class-imbalanced training data [13]. Sensitivity and speci�city are closely

related to the Receiver-Operating-Characteristics (ROC), which is an important tool for

performance comparison of binary classi�ers [5]. LVQ-like optimization of the area under

the ROC-curve (AUROC) was proposed in [1, 2]. But still, the di�erentiable dissimilarity

measure is necessary to derive the gradient based learning rules for the prototypes.

Thus, the topic of LVQ-extension for classi�cation of dissimilarity or relational data

emerged, as such variants are already known for unsupervised vector quantization [3, 7,

11, 10]. For relational approaches the prototypes are assumed as linear combination of the

data. For general dissimilarity data prototypes are restricted to be data samples. The

latter strategy is known as median-learning. First attempts for relational and median LVQ-

variants optimizing the classi�cation accuracy were provided in [8, 23, 22]. In the present

publication, we extend these ideas to the previously mentioned statistical measures derived

from the confusion matrix as well as to the ROC-analysis.

1.2 Notations and Abbreviations

In the following we clarify notation and abbreviations. We suppose data objects X =

{xi}i=1,...,N and M prototypes θk ∈ Θ, i.e. the cardinality of Θ is M . We assume a binary

classi�cation problem with the classes C = {⊕,	}. Let c(·) be the formal class label func-
tion, which assigns to each data object the class label yi = c (xi). Analogously, cj = c (θj)

returns the prede�ned class label of the prototype. Further, M+ denotes the number of

prototypes assigned to the class ⊕. We introduce prototype dependent Kronecker-symbol

abbreviations like

δ+k =





1 if ck = ⊕
0 if ck = 	

and

δ−k =





1 if ck = 	
0 if ck = ⊕

as short-hand notations. Analogously, we de�ne

δ+ (xi) =





1 if yi = ⊕
0 if yi = 	

and

δ− (xi) =





1 if yi = 	
0 if yi = ⊕

as data dependent Kronecker-symbols. Furthermore, we de�ne the set



X = {(xi, xj)|yi = ⊕ ∧ yj = 	} (1)

of all ordered pairs of data objects generated from X. The cardinality of a set S is denoted

by |S|.

2 The Mathematical Theory of the Generalized Expec-

tation Maximization Approach

In this section we develop the general mathematical theory for maximization of a cost func-

tion K(X) in the form

K(X) =
∑

i

g(xi,Θ) (2)

with positive, bounded real functions g(xi,Θ). It is based on the idea of the usual

expectation-maximization (EM) strategy but adapted to the speci�c conditions. Later in

this article it will be shown that median LVQ-variants for optimization of statistical measures

and AUROC can be treated exactly in this manner.

Because the logarithm function is monotonically increasing the location of maximum for

K(X) is the same as for

K̄(X) = ln

(∑

i

g(xi,Θ)

)
(3)

such that one can try to maximize the logarithmic cost function (LCF) K̄(X) instead of

K(X). Using the general functions g(xi,Θ) we can formulate a formal probability

p(xi) =
g(xi,Θ)∑
i g(xi,Θ)

for a data object xi. Furthermore, we assume arbitrary real numbers γi ful�lling the restric-

tions

γi ≥ 0
N∑

i=1

γi = 1

which can be also interpreted as formal probability values. Thus we can de�ne a formal

Kullback-Leibler-divergence (KLD)

K(γ||p) =
∑

i

γi ln

(
γi

p(xi)

)
(4)

being always non-negative and

K(γ||p) = 0 ⇔ γi = p(xi), ∀i



is valid [18]. Further, we de�ne the loss term

L(γ,Θ) =
∑

i

γi ln

(
g(xi,Θ)

γi

)
(5)

which allows a decomposition

K̄(X) = L(γ,Θ) +K(γ||p) (6)

of the LCF according to the following calculations:

K̄(X) = L(γ,Θ) +K(γ||p)

=
∑

i

γi ln

(
g(xi,Θ)

γi

)
+
∑

i

γi ln

(
γi

p(xi)

)

=
∑

i

γi ln

(
g(xi,Θ)

γi

)
−
∑

i

γi ln

(
p(xi)

γi

)

=
∑

i

γi ln

(
g(xi,Θ)

γi

)
−
∑

i

γi ln

(
g(xi,Θ)

(
∑

k g(xk, θ)) γi

)

=
∑

i

γi ln

(
g(xi,Θ)

γi

)
−
∑

i

γi ln

(
g(xi,Θ)

γi

)
−
∑

i

γi ln

(
1

(
∑

k g(xk, θ))

)

=
∑

i

γi ln

(∑

k

g(xk, θ)

)

=

(∑

i

γi

)

︸ ︷︷ ︸
=1

ln

(∑

k

g(xk, θ)

)

= ln

(∑

k

g(xk, θ)

)

= K̄(X)

At this point we recognize the fact that L(γ,Θ) is a lower bound for the LCF K̄(X) due

to the non-negativeness of the KLD K(γ||p). Using this property we obtain the following

maximizing strategy for the LCF K̄(X):

1. Expectation-step (E-step): set

γi := p(xi)

⇒
K(γ||p) = 0

⇒
K̄(X) = L(γ,Θ)

Note that the cost function value K̄(X) does not change in this E-step, because K̄(X)

is independent from the parameters γi.



2. generalized Maximization-step (gM-step): take the parameters γi as �xed and

�nd new prototypes Θnew, such that:

L(γ,Θnew) ≥ L(γ,Θold)

3. Convergence criterion: if Θnew = Θold stop. Else goto 1.

We remark that the new prototypes Θnew maybe found by any search procedure. Thus it is

not required to apply a gradient learning scheme. If we apply a sophisticated discrete search,

with prototypes restricted to be selected from the data objects, a median-like optimization

scheme is obtained. Further, because the new prototypes Θnew have not to be maximizing the

function L, it is not a precise maximization step and, therefore, we denote it as a generalized

M-step (gM-step) and the overall procedure a generalized EM-optimization (gEM).

3 LVQ-Classi�er Functions and Confusion Matrix En-

tries

In the following we will consider statistical classi�er functions based on the the confusion

matrix as depicted in Tab.3.

true

⊕ 	

predicted
⊕ TP FP Ñ+

	 FN TN Ñ−

N+ N− N

Table 1: Confusion matrix

Thereby, the goal is to express the entries of the confusion matrix in terms of LVQ-

classi�er functions based on prototypes, which than can be used later for design of more

complex statistical measures to be optimized by a LVQ approach. Here, the concrete choice

of the classi�er function depends on the considered LVQ-variant.

3.1 Classi�er Functions of LVQ-Variants

As mentioned above, the concept of LVQ was introduced by Teuvo Kohonen in the late

eighties of the last century. The original variants LVQ1 . . . LVQ3 collected and described

in [17] have in common that they heuristically optimize the crisp misclassi�cation rate.

However, the learning schemes are not mathematically exact optimization strategies. Several

attempts were made to over come this disadvantage. The Generalized LVQ (GLVQ, [27])

approximates the classi�cation error by a smoothed version to obtain a gradient descent

learning scheme. Probabilistic LVQ-classi�er schemes are the Robust Soft LVQ (RSLVQ,



[30]) and the Soft Nearest Prototype Classi�er (SNPC, [29]) keeping the idea of prototypes

but relaxing the restriction of crisp classi�cation.

Interestingly, RSLVQ and GLVQ, are based on so-called classi�er function, which we will

use later to determine the values of the confusion matrix entries. Therfore, we consider them

more detailed in the following.

3.1.1 Robust Soft LVQ Classi�er Function

A probabilistic LVQ-classi�er based on a likelihood ratio cost function is the Robust Soft

LVQ (RSLVQ) [30]. In particular, RSLVQ represents data in terms of a mixture model with

the prototypes Θ = {θ1, . . . , θM} taking as model parameters. For this purpose, a RSLVQ-

classi�er function µRSLV Q(κ|xi) is considered describing that a data object xi is assigned to

class κ ∈ C.
Supposing a binary RSLVQ classi�er, the probability that an arbitrary data point is

assigned to the class ⊕ by RSLVQ is given by

p(⊕|xi,Θ) =

∑
j δ

+
j p(xi|θj)∑

k p(xi|θk)
as conditional mixture model, where the conditional probabilities

p(xi|θj) = exp

(
−
(
d(xi, θj)

σj

)2
)

(7)

are Gaussians with width's σj > 0. Here, d(xi, θj) is a dissimilarity measure between data

objects and prototypes. Then

µRSLV Q(⊕|xi) = p(⊕|xi,Θ) (8)

is determined. Analogously, the probability that an arbitrary data point is assigned to the

class 	 is given by

p(	|xi,Θ) =

∑
j δ
−
j p(xi|θj)∑

k p(xi|θk)
as conditional mixture model and

µRSLV Q(	|xi) = p(	|xi,Θ) . (9)

Note at this point that if prototypes are restricted to be data objects, i.e Θ ⊆ X, only the

dissimilarities between the data objects are required to calculate both probabilities p(⊕|xi,Θ)

and p(	|xi,Θ).

To keep the model simple, we assume σ = σj for all j = 1 . . .M in the following. Now

we make the important observation that in the limit σ → 0 the conditional probability

p(⊕|xi,Θ) becomes crisp, i.e. we have

p(⊕|xi,Θ) −→
σ→0





1 if yi = ⊕
0 else



and, therefore, p(⊕|xi,Θ) is an indicator function for the class ⊕ in this limit. Analogously,

we have

p(	|xi,Θ) −→
σ→0





1 if yi = 	
0 else

for the the conditional probability p(	|xi,Θ).

Hence, both quantities µRSLV Q(⊕|xi) and µRSLV Q(	|xi) can be used to count approxi-

mately the correctly classi�ed data objects xi.

3.1.2 Generalized LVQ Classi�er Function

The objective of the GLVQ is to optimize the hypothesis margin [4, 9, 28]. It is based on

the classi�er function µGLV Q(κ|xi) determining whether a data object xi is assigned to the

class κ ∈ C. For a binary classi�er it is de�ned as

µGLV Q(⊕|xi) = f

(
d−i − d+i
d+i + d−i

)

and

µGLV Q(	|xi) = f

(
d+i − d−i
d+i + d−i

)

where

d+i = min
θk:ck=⊕

d(xi, θk)

and

d−i = min
θk:ck=	

d(xi, θk)

with d(xi, θk) again being a dissimilarity measure. The function f is assumed to be mono-

tonically increasing [27]. Thus, d+i is the dissimilarity of the given data object xi to the

best matching prototype responsible for class ⊕ and d−i is the equivalent value for the class

	. Thus, the classi�er function µGLV Q(κ|xi) is positive, if the object class yi matches the

considered class κ, i.e. yi = κ.

In the case that f (z) is the Heaviside function H (z), the classi�er function µGLV Q(κ|xi)
detects all correctly classi�ed data objects xi. Note that the Heaviside function can be

approximated by sigmoid function

sgd(z) =
1

1 + exp(− z
σ
)

in the limit 0 ≤ σ ↘ 0. Hence, the classi�er function µGLV Q(κ|xi) can be used to count

correctly classi�ed data objects in this approximation.



3.2 Approximation of the Confusion Matrix Entries Using the Clas-

si�er Functions

As we have seen in the previous subsections, both classi�er functions µRSLV Q(κ|xi) and

µGLV Q(κ|xi) can be used to detect correctly classi�ed data objects xi. To unify these ap-

proaches, we simply use the notation µ(κ|xi) in the following considerations.

With the introduced classi�er functions µ(⊕|xi) and µ(	|xi) we are now able to calculate

all entries of the confusion matrix from Tab.3. In particular, we obtain

TP =
∑

i

δ+ (xi) · µ(⊕|xi)

FP =
∑

i

δ− (xi) · µ(⊕|xi)

FN =
∑

i

δ+ (xi) · µ(	|xi)

TN =
∑

i

δ− (xi) · µ(	|xi)

as LVQ-based quantities. Again, we emphasize at this point that only dissimilarities between

the data objects and the prototypes are required for the calculation of these quantities.

However, this approach is similar to the approach as presented for vector data and prototypes

in [13].

4 Median-LVQ-variants for Optimization of Statistical

Measures based on the Confusion Matrix

In this chapter we will describe several statistical quality measures for classi�cation in the

form of (2), which allows to apply the gEM-optimization scheme provided in Sec.2. For this

purpose, we will use the approximation of the entries of the confusion matrix introduced in

Sec.3.2

4.1 Simple Classi�cation Quality Measures

In this sub-chapter we consider simple quality measure, which are directly derived from the

confusion matrix. We will write them in the form of (2) and specify the respective choice of

g(xi,Θ).

Sensitivity ρ or true positive rate (TPR) The sensitivity ρ, some times also called

recall, is given by

ρ =
TP

TP + FN
(10)

=
1

N+

∑

i

g(xi,Θ)



with g(xi,Θ) = δ+ (xi) · µ(⊕|xi).

� range of values

0 ≤ TPR ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The sensitivity ρ has to be maximized. The resulting functions g(xi,Θ) are posi-

tive.

� For numerical reasons it is be better to maximize

�
1

N+

∑

i

(g(xi,Θ) + 1) =
1

N+

∑

i

ḡ(xi,Θ)

instead of the term 1
N+

∑
i g(xi,Θ) to avoid numerical instabilities due to the

evaluation of the logarithm in (3).

Speci�city ς or true negative rate (TNR) The speci�city ς writes as

ς =
TN

FP + TN
(11)

=
1

N−

∑

i

g(xi,Θ)

with g(xi,Θ) = δ− (xi) · µ(−|xi).

� range of values

0 ≤ ς ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value ς has to be maximized. The resulting functions g(xi,Θ) are

positive.

� For numerical reasons it is be better to maximize

1

N−

∑

i

(g(xi,Θ) + 1) =
1

N−

∑

i

ḡ(xi,Θ)

instead of
∑

i g(xi,Θ) to avoid numerical instabilities due to the evaluation of the

logarithm in (3).



Precision π or positive predictive value (PPV) The precision π is given as

π =
TP

TP + FP
(12)

=
∑

i

g(xi,Θ)

with

g(xi,Θ) =
δ+ (xi) · µ(⊕|xi)∑

j δ
+ (xj) · µ(⊕|xj) +

∑
j δ
− (xj) · µ(⊕|xj)

� range of values

0 ≤ π ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value π has to be maximized. The resulting functions g(xi,Θ) are

positive.

� For numerical reasons it is be better to maximize

∑

i

(g(xi,Θ) + 1) =
∑

i

ḡ(xi,Θ)

instead of
∑

i g(xi,Θ) to avoid numerical instabilities due to the evaluation of the

logarithm in (3).

Negative prediction value ν (NPV) The negative prediction value ν is de�ned as

ν =
TN

TN + FN
(13)

=
∑

i

g(xi,Θ)

with

g(xi,Θ) =
δ− (xi) · µ(	|xi)∑

j δ
− (xj) · µ(	|xj) +

∑
i δ

+ (xj) · µ(	|xj)

� range of values

0 ≤ ν ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value ν has to be maximized. The resulting functions g(xi,Θ) are

positive.



� For numerical reasons it is be better to maximize

∑

i

(g(xi,Θ) + 1) =
∑

i

ḡ(xi,Θ)

instead of
∑

i g(xi,Θ) to avoid numerical instabilities due to the evaluation of the

logarithm in (3).

Fall-out or false positive rate (FPR) The false positive rate (FPR) is given as

ϕ =
FP

FP + TN
(14)

= 1− µ
=

1

N−

∑

i

g(xi,Θ)

with g(xi,Θ) = δ− (xi) · µ(⊕|xi).

� range of values

0 ≤ FPR ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value FPR has to be minimized. To get a maximization problem

and to ensure the positivity of the functions g(xi,Θ) as well a numerical stable

cost we maximize

1

N−

∑

i

(2− g(xi,Θ)) =
1

N−

∑

i

ḡ(xi,Θ)

instead of the minimization of 1
N−

∑
i g(xi,Θ)

False discovery rate (FDR) The false discovery rate is de�ned as

FDR =
FP

FP + TP

=
∑

i

g(xi,Θ)

with

g(xi,Θ) =
δ− (xi) · µ(⊕|xi)∑

j δ
− (xj) · µ(⊕|xj) +

∑
j δ

+ (xj) · µ(⊕|xj)

� range of values

0 ≤ FDR ≤ 1

0 ≤ g(xi,Θ) ≤ 1



� maximization/positivity/numerical remarks

� The statistical value FDR has to be minimized.

� To get a maximization problem and to ensure the positivity of the functions

g(xi,Θ) as well a numerical stabel cost we maximize

∑

i

(2− g(xi,Θ)) =
∑

i

ḡ(xi,Θ)

instead of the minimization of
∑

i g(xi,Θ)

Miss Rate or False Negative Rate (FNR) The false negative rate is given by

FNR =
FN

FN + TP

=
FN

N+

=
1

N+

∑

i

g(xi,Θ)

with g(xi,Θ) = δ+ (xi) · µ(	|xi)

� range of values

0 ≤ FNR ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value FNR has to be minimized.

� To get a maximization problem and to ensure the positivity of the functions g(xi,Θ)

as well a numerical stable cost we maximize

1

N+

∑

i

(2− g(xi,Θ)) =
1

N+

∑

i

ḡ(xi,Θ)

instead of the minimization of 1
N+

∑
i g(xi,Θ).

4.2 Fβ-measure

The Fβ-measure developed by C.J. van Rijsbergen [24] is an advanced quality measure.

It combines precision π from (12) and recall (sensitivity) from (10) into a single quantity

Fβ =
(1 + β2)πρ

β2π + ρ
(15)



depending on the balancing parameter β. Frequently, this balancing parameter is chosen as

β = 2 yielding the measure to be the ratio of the arithmetic and the geometric mean between

both quantities precision and recall. Using the quantities from the confusion matrix, we can

rewrite (15) as

Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP

=
∑

i

g(xi,Θ)

with

g(xi,Θ) =
δ+ (xi) · (1 + β2)µ(+|xi)∑

j ((1 + β2) δ+ (xj) · µ(⊕|xj) + β2δ+ (xj) · µ(	|xj) + δ− (xj) · µ(⊕|xj))

� range of values

0 ≤ Fβ ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value Fβ has to be maximized. The resulting functions g(xi,Θ)

are positive.

� For numerical reasons it could be better to maximize

∑

i

(g(xi,Θ) + 1) =
∑

i

ḡ(xi,Θ)

instead of
∑

i g(xi,Θ) to avoid numerical problems.

4.3 Jaccard Index

A widely used measure is the Jaccard-index

J =
TP

FP + TP + FN

as explained in [12, 6]. It is related to the Tanimoto distances [25]. Again, we rewrite this

index J in the form

J =
∑

i

g(xi,Θ)

with

g(xi,Θ) =
δ+ (xi) · µ(⊕|xi)∑

j (δ− (xj) · µ(⊕|xj) + δ+ (xj) · µ(⊕|xj) + δ+ (xj) · µ(	|xj))



� range of values

0 ≤ J ≤ 1

0 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical value J has to be maximized. The resulting functions g(xi,Θ) are

positive. For numerical stability reasons it is better to maximize

∑

i

(g(xi,Θ) + 1) =
∑

i

ḡ(xi,Θ)

instead of
∑

i g(xi,Θ)

.

4.4 Averaged conditional classi�cation probability

The averaged conditional classi�cation probability (ACP ) is the weighted average

ACP = αρ+ βπ + γν + ης

with α + β + γ + η = 1

of recall, precision, negative prediction value ν, and speci�city ς with non-negative weights

α, β, γ, η ≥ 0 and the normalization condition α + β + γ + η = 1. We calculate

ACP =
∑

i

g(xi,Θ)

with

g(xi,Θ) = α
δ+ (xi) · µ(⊕|xi)

N+
+ β

δ+ (xi) · µ(⊕|xi)∑
i δ

+ (xj) · µ(⊕|xj) +
∑

i δ
− (xj) · µ(⊕|xj)

+γ
δ− (xi) · µ(	|xi)∑

i δ
− (xj) · µ(	|xj) +

∑
i δ

+ (xj) · µ(	|xj)
+ η

δ− (xi) · µ(	|xi)
N−

� range of values

0 ≤ ACP < N

0 ≤ g(xi,Θ) ≤ N

� maximization/positivity/numerical remarks

� The statistical value ACP has to be maximized. The resulting functions g(xi,Θ)

are positive.

� For numerical reasons it is better to maximize
∑

i ḡ(xi,Θ) =
∑

i (g(xi,Θ) + 1)



4.5 Matthews correlation coe�cient

Another popular measure is the Matthews correlation coe�cient

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(16)

which is equivalent to the χ2-statistics for a 2Ö2 contingency table [21]. In particular,

|MCC| =
√
χ2

N
(17)

is valid [21, 26]. We can write the MCC as

MCC =

∑
i δ

+ (xi) · µ(⊕|xi) ·
∑

j δ
− (xj) · µ(	|xj)−

∑
i δ
− (xi) · µ(⊕|xi) ·

∑
j δ

+ (xj) · µ(	|xj)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

=

∑
i,j (δ+ (xi) · δ− (xj) · µ(⊕|xi)µ(	|xj))−

∑
i,j (δ− (xi) · δ+ (xj) · µ(⊕|xi)µ(	|xj))√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

=
∑

i,j

g(xi, xj,Θ)

with

g(xi, xj,Θ) =
δ+ (xi) · δ− (xj) · µ(⊕|xi)µ(	|xj)− δ− (xi) · δ+ (xj) · µ(⊕|xi)µ(	|xj)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

� range of values

−1 ≤MCC ≤ 1

−1 ≤ g(xi,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The statistical valueMCC has to be maximized. The resulting functions g(xi,Θ)

are not positive.

� To ensure positivity and numerical stability it is recommended to maximize

∑

i,j

(g(xi, xj,Θ) + 2) =
∑

i

ḡ(xi,Θ)

instead of original MCC.

4.6 ROC Analysis (area under the curve)

The Receiver Operator Characteristic (ROC) is a graphical tool for comparison of classi�ers

with respect to their performance [5]. These performances are measured in terms of the

true positive rate (recall/sensitivity) ρ from (10) and the false positive rate ϕ from (14).



If a parametrized classi�er is considered, the resulting pairs of these values may be plotted

into two-dimensional diagram - the so-called ROC-curve. The area AROC under this ROC-

curve (AUROC) is a performance measure for this parametrized classi�er. The higher the

AUROC-value, the better the classi�er. Assuming a binary classi�er with with classi�er

function µ(κ|xi). Then the area AROC has a probabilistic interpretation:

AROC = P (µ(⊕|xi) > µ(⊕|xj)) (18)

for a randomly chosen ordered pair (xi, xj) ∈ X of the data set X as de�ned in (1) [5], which

yields due to the underlying rank statistics [20, 31]. If we de�ne for the prototype-based

classi�er the ordering function

O (xi, xj) = H (µ(⊕|xi)− µ(⊕|xj)) (19)

where H is the Heaviside function

H (x) =





0 if x ≤ 0

1 else
, (20)

th probability P in (18) can be estimated by:

P =
1

|X|
∑

(xi,xj)∈X
O (xi, xj)

as proposed in [1].

gEM for AUC-optimizing classi�er

A binary GLVQ-variant for data vectors xk ∈ X ⊂ Rn was recently published in [1, 2]. Here

we propose a respective median variant using a gEM-scheme, only assuming a prototype

based binary classi�er with classi�er function µ(κ|xi).
With the same arguments as in 2 we can maximize the following logarithmic probability

Plog = ln

(
1

|X|
∑

X

O (xi, xj))

)

taking the formal probabilities p ((xi, xj)) for P as

p ((xi, xj)) =
g ((xi, xj) ,Θ)∑
l,k g ((xl, xk) ,Θ)

with

g ((xi, xj) ,Θ) = O (xi, xj)

for the respective gEM scheme to maximize the estimated area AROC under the ROC-curve.



� range of values

0 ≤ P ≤ 1

0 ≤ g ((xi, xj) ,Θ) ≤ 1

� maximization/positivity/numerical remarks

� The resulting functions g(xi,Θ) are positive.

� For numerical stability it is better to maximize

ln

(
1

|X|
∑

X

(g ((xi, xj) ,Θ) + 1)

)
= ln

(
1

|X|
∑

X

ḡ ((xi, xj) ,Θ)

)

instead of Plog

4.7 The speci�city related geometric mean (G-measure)

We de�ne two G-measures for a classi�er as the geometric mean of the speci�city ς from

(11) with the negative prediction value ν from (13)

Gν =
√
ςν

and the recall ρ from (10)

Gρ =
√
ςρ

respectively. These G-measures are mathematically interesting, because the square root

requires special treatment for an appropriate gEM-scheme decomposition in comparison

to the gEM-scheme decomposition developed for the logarithm function, involved in the

measure so far in the previous chapters.

For this purpose, we start with the Gρ-measure and obtain

Gρ =

√
TN

FP + TN

TP

TP + FN

=

√∑

i,j

gρ(xi, xj)

with the non-negative function

gρ(xi, xj) =
δ− (xi) · δ+ (xj) · µ(−|xi)µ(+|xj)

N+N−

inside the sum. Assuming arbitrary non-negative numbers γi,j ≥ 0 with the additional

restriction
∑

i,j γi,j = 1 and using the Jensen-inequality for concave functions [19], we get

Gρ =

√√√√
∑

i,j

γi,j

(
gρ(xi, xj)

γi,j

)

≥
∑

i,j

γi,j

√
g(xi, xj)

γi,j
(21)



We determine

Lρ(γ,Θ) =
∑

i,j

γi,j

√
gρ(xi, xj)

γi,j

and

Rρ(γ) = Gρ − Lρ(γ,Θ)

such that Lρ(γ,Θ) determines a lower bound for

Gρ = Lρ(γ,Θ) +Rρ(γ)

because Rρ(γ) ≥ 0 is valid due to the Jensen-inequality (21).

TheGν-measure can be decomposed analogously using the respective quantities gν(xi, xj),

Lν(γ,Θ), and Rν(γ).

gEM for G-measures

In the following we will not distinguish between Gν and Gρ, because they can be treated

equivalently. Thus, we generally suppose a decomposition

G = L(γ,Θ) +R(γ)

with an underlying non-negative function g(xi, xj). For the special choice of γi,j =
g(xi,xj)∑
k,l g(xk,xl)

the value of the lower bound L(γ,Θ) is equal to the costfunction value of G:

L(γ,Θ) =
∑

i,j

γi,j

√
g(xi, xj)

γi,j

=
∑

i,j

γi,j

√√√√ g(xi, xj)
g(xi,xj)∑
k,l g(xk,xl)

=
∑

i,j

γi,j

√∑

k,l

g(xk, xl)

=

(∑

i,j

γi,j

)

︸ ︷︷ ︸
=1

√∑

k,l

g(xk, xl)

=

√∑

k,l

g(xk, xl)

= G

From this it follows immediately that R(γ) = 0 is valid for this special choice of γi,j.

Utilization of these properties as before in chapter (2) results in a generalized maximizing

strategy:



1. Expectation-step (E-step): set

γi,j :=
g(xi, xj)∑
k,l g(xk, xl)

⇒
R(γ) = 0

⇒
G = L(γ,Θ)

The cost function value remains unchanged, because G does not depend on the pa-

rameters γi,j.

2. generalized Maximization-step (gM-step): �x the parameter γi,j and �nd new

prototypes Θnew, such that

L(γ,Θnew) ≥ L(γ,Θold)

is valid

3. if Θnew = Θold stop. Else goto 1.

Again we obtain a generalized EM-optimization scheme, because the new prototypes Θnew

have not to be maximizing the function L as required for a precise maximization.

5 Conclusion

In this contribution we provide the mathematical framework for prototype-based classi�ers

derived from GLVQ for general dissimilarity data of data objects. The classi�er cost functions

investigated here are several statistical classi�cation quality measures and the prototypes of

the classi�ers are required to be data exemplars. Thus, so-called median-variants are studied.

The statistical quality measures for classi�cation include accuracy, sensitivity, speci�city,

Fβ-measure, area under the ROC-curve and other. The respective underlying optimization

scheme is a generalized Expectation-Maximization-procedure.
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