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Universitätsstrasse 21-23, 33615 Bielefeld
(2) University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany

Machine Learning Reports
http://www.techfak.uni-bielefeld.de/∼fschleif/mlr/mlr.html



MIWOCI Workshop - 2016

Figure 1: MiWoCi 2016

Impressum
Publisher: University of Applied Sciences Mittweida

Technikumplatz 17,
09648 Mittweida, Germany

Editor: Prof. Dr. Thomas Villmann
Dr. Frank-Michael Schleif

Techical-Editor: Dr. Frank-Michael Schleif
Contact: fschleif@techfak.uni-bielefeld.de
URL: http://techfak.uni-bielefeld.de/∼ fschleif/mlr/mlr.html
ISSN: 1865-3960

2 Machine Learning Reports



Abstracts of the 8th Mittweida Workshop on

Computational Intelligence

- MiWoCI 2016 -

Frank-Michael Schleif and Thomas Villmann

Machine Learning Report 03/2016

MIWOCI Workshop - 2016

Machine Learning Reports 3



Preface

The 8th international Mittweida Workshop on Computational Intelligence (MiWoCI) gathering
together twenty scientists from di�erent universities including Bielefeld, Groningen, University
of Applied Sciences Mittweida, University of Applied Sciences Dresden, and research facilities
including Honda Research in O�enbach, Robert Bosch GmbH and IFF Fraunhofer in Magde-
burg. The workshop took place in Mittweida, Germany, from 6.7. - 8.7.2016 and continued
the tradition of scienti�c presentations, vivid discussions, and exchange of novel ideas at the
cutting edge of research connected to diverse topics in computer science, automotive industry,
and machine learning.

This report is a collection of abstracts and short contributions about the given presentations
and discussions, which cover theoretical aspects, applications, as well as strategic developments
in the �elds.
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Batch Neural Gas for Interval Data

Tina Geweniger

Computational Intelligence Group,
Univ. Applied Sciences Mittweida, DE

tgewenig@hs-mittweida.de

Abstract

For many real measurements taken by some technical device an
interval describing the accuracy of the measured values is provided.
Yet almost all clustering and classification methods just discard this
additional information and work with the measured values only. We
are going to investigate how well known machine learning methods
especially those from the field of prototype based clustering can be
modified to work with this kind of data. Some work has been done
before by de Carvalho for the Fuzzy c-Means. In the following a
variant of the Batch Neural Gas is provided. This modified version
works with interval data and results in a partitioning described by
interval data prototypes. Additionally to the derivation of the new
method some insights into interval arithmetic are provided.
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Feature Relevance Bounds for Linear
Classification

Christina Göpfert Lukas Pfannschmidt
Barbara Hammer

Linear classifiers are widely used in medical and biological applications.
The magnitudes of the weights in the normal vector are often used as an indi-
cator for the relevance of individual features for the classification task. This
principle can be misleading when features are high-dimensional or correlated.
For example, correlated or even identical features share their weights, giving
the impression that they are all equally unimportant, even though each sin-
gle feature may be critical to the classification. We propose a formalization
of this problem as maximal and minimal feature relevance bounds for linear
classification and show how to efficiently calculate the bounds using linear
programs. We illustrate the results using several toy datasets.
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Is Deep Learning really worth it? – Comparing an

NMF-GLVQ-based approach with Deep Learning

Sven Hellbach, Frank Bahrmann, Hans-Joachim Böhme

Semi-automatic semantic labelling of occupancy grid maps has numerous
applications for assistance robotics. The Artificial Intelligence Lab at HTW
Dresden has already proposed a method for representing local as well as global
environment captured by 2D range scans using non-negative matrix factorisation
(NMF). Unlike other approaches, no predefined features or geometric primitives,
but, in contrast, extracted environment specific basis primitives from occupancy
grid maps were used [4, 3].

The NMF also computes a description about where on the map these features
need to be applied. This description is used after certain pre-processing steps
as an input for generalised learning vector quantisation (GLVQ) to achieve the
classification or labelling of the grid cells. For the supervised training of the
GLVQ the assigned label is propagated to all grid cells of a semantic unit using
a simple, yet effective segmentation algorithm. [2, 1]

For the implementation a sparse, transformation invariant version of NMF is
used [5], which can be written as a convolution. As it has also been argumented
in [6] similar ideas can be applied for deep learning, which makes both methods
directly comparable.

The commencing research work aims at gathering advantages and disadvan-
tages of both methods. With the application in mind, aspects like classification
accuracy, number of necessary training data, and run time need to be evaluated.
One of the major drawbacks with NMF for example, is the necessity to predefine
the number of basis primitives to avoid redundant coding. How severe is this
effect in deep learning? How well can both methods be used with the practical
application? How interpretable and accessible are intermediate results?

References
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None Negative Sparse Coding

for Analysis of Motion Data

Babak Hosseini Barbara Hammer
∗†

One of the current challenges in the area of machine learning and data
analysis is to construct automate semantic search algorithms in motion data
bases, specially where the data is not manually labeled. We hypothesize that
semantics is mirrored by recurring signals, which are present in semantically
similar motion data. In that scope, we investigate in how far natural priors
such as sparsity allow an automatic extraction of semantically meaningful
entities based on the given data alone.

To that aim, We propose an approach for decomposition of motion data
into a sparse linear combination of base functions which enable e�cient data
processing. We combine two prominent frameworks: dynamic time warping
(DTW), which o�ers particularly successful pairwise motion data compari-
son, and sparse coding (SC), which enables an automatic decomposition of
vectorial data into a sparse linear combination of base vectors. We further-
more enhance SC via e�cient kernelization which extends its application
domain to general similarity data such as o�ered by DTW. In addition, we
restrict the framework to provide non-negative linear representations of sig-
nals and base vectors in order to guarantee a meaningful dictionary as the
outcome. We also implement the proposed method in a classi�cation frame-
work and evaluate its performance on various motion capture benchmark
data sets to illustrate its e�ectiveness in semantic analysis of motion data.

∗This research was supported by the Cluster of Excellence Cognitive Interaction Tech-
nology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German Re-
search Foundation (DFG).
†Babak Hosseini (bhosseini@techfak.uni-bielefeld.de) and Barbara Hammer are with

the Theoretical Computer Science group of CITEC Bielefeld, Germany.
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New insights into the Generalized Learning
Vector Quantization cost function

– Non-linear shifting of the decision
boundery –

M. Kaden2, D. Nebel2, M. Biehl1, and T. Villmann2

1 Johann Bernoulli Institute for Mathematics and Computer Science
Intelligent Systems Group, Groningen, The Netherlands

2 Computational Intelligence Group, Univ. Applied Sciences Mittweida, DE

Abstract

One classifier brings out one point in the false-positive rate vs
true-positive rate diagram. To generate a ROC-curve either a lot of
classifier are needed or a parameter can be introduced to change the
decision border.

The Generalized Learning Vector Quantization (GLVQ) cost func-
tion for a given data set v ∈ V ⊆ Rn with a the class labels c(v) ∈
C ⊂ N and a to adapted prototype set w ∈ W ⊆ Rn with the class
information y(w) ∈ C ⊂ N is defined as

E(V,W ) =
∑

v∈V
f (µW (v))

whereby f is a monotone increasing function and

µW (v) =
d(v,w+)− d(v,w−)

d(v,w+) + d(v,w−)

is called classifier function. The term d(v,w+) describes the dissimi-
larity between a data point v and the closest prototype w+ belonging
to the same class. On the other hand, d(v,w−) is the dissimilarity of
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a data point v and the next prototype belonging to any other class,
i. e. c(v) 6= y(w).

The classifier function µW (v) ∈ [−1, 1] is negative, iff the data
point is correct classified, i. e. the nearest prototype, also called win-
ning prototype ws(v), has the same label like the data point. Thus,
data points with µW (v) = 0 lying on the decision border. If we want
to change the decision border by parameter we can easily define

µW (v)−Θ = 0

with Θ ∈ [−1, 1].
In the presentation we show that the introduction of this parameter

leads to a non-linear changing of the decision border. To obtain a
linear change, only d(v,w+) − d(v,w−) − Θ can be analyzed. Yet,
this term is not cost function adequate. We discuss this aspects and
demonstrate the results on a two-dimensional data set.

Further, we argued about simplification of the original cost func-
tion and the behavoir concerning unique solution and boundedness.
This impact is shown on a simple 1D data set example.
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Choosing the Best Algorithm for an
Incremental On-line Learning Task

Viktor Losing Barbara Hammer Heiko Wersing ∗

Recently, incremental and on-line learning gained more attention espe-
cially in the context of big data and learning from data streams, conflicting
with the traditional assumption of complete data availability. Even though
a variety of different methods are available, it often remains unclear which
of them is suitable for a specific task and how they perform in comparison
to each other.

We analyze the key properties of seven incremental methods represent-
ing different algorithm classes. Our extensive evaluation on data sets with
different characteristics gives an overview of the performance with respect
to accuracy as well as model complexity, facilitating the choice of the best
method for a given application.

∗Viktor Losing (vlosing@techfak.uni-bielefeld.de) does his PhD within a cooperation
between CoreLab, Bielefeld and Honda Reasearch Institute EU, Offenbach. Barbara Ham-
mer holds a professorship for Theoretical Computer Science at the CITEC in Bielefeld.
Heiko Wersing is chief scientist at the Honda Reasearch Institute EU in Offenbach.
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Metric Learning and its Caused Pitfall in

Certainty Estimation

Lydia Fischer

Abstract

Certainty estimation is an upcoming topic in machine learning, usable
in various topics: e. g. in rejection strategies, incremental online learning
approaches, or in classifier selection mechanisms of ensembles. One cate-
gory of certainty measures is based on distances, e. g. distance to the clos-
est decision border. I will point out the difficulty of comparing distance-
based certainty estimations of different classifiers with metric adaptation
which is especially important for classifier selection mechanisms of ensem-
bles. At an exemplary architecture with two classifiers, I will show the
caused pitfall by metric learning, and how to deal with it. The full infor-
mation can be obtained from:
Fischer et al.: Online Metric Learning for an Adaptation to Confidence
Drift. In IJCNN, accepted, 2016.
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The sugar dataset - A multimodal hyperspectral

dataset for classification and research

Friedrich Melchert1,2, Andrea Matros3, Michael Biehl1, and Udo
Seiffert2

1 University of Groningen, Johann Bernoulli Institute for Mathematics and

Computer Science, Groningen, The Netherlands
2 Fraunhofer Institute for Factory Operation and Automation IFF,

Magdeburg, Germany
3 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),

Gatersleben, Germany

We present a multi modal hyperspectral dataset (available online at [5])
that cannot only be used to evaluate and compare classification performance,
but also enables research on new topics.

In the development of algorithms for hyperspectral data classification several
benchmark datasets became common, e.g. the Tecator dataset [7] and the Wine
dataset [6], to name two examples. These datasets are mainly used as bench-
mark problems for different algorithms and classification systems as in [1, 4],
although they just compile a set of labeled spectra. In opposite to these well
established datasets the Sugar dataset offers multiple sets of spectra for each
of the available classes. Using a variety of different sensors and hyperspectral
cameras the spectral information within the dataset is given over different wave-
length ranges. An overview over the sensors and their corresponding wavelength
ranges is given in Table 1.

As a training set we selected nine sugar and sugar related compounds with
common optical appearance, which are not to be distinguishable by conven-
tional optical imaging. We included were three monomeric sugars (D-galactose,
D-glucose, and D-fructose), two sugar alcohols (D-sorbitol and D-mannitol), as
well as four sugar esters (S170, S770, S1570, and P1570). Monomeric sugars
containing six carbon atoms are also referred to as hexoses, having the chemical
formula C6H12O6. Hexoses occur in many stereoisomers and are classified into
aldohexoses, having an aldehyde at position 1 (e.g. D-galactose and D-glucose),
and ketohexoses having a ketone at position 2 (e.g. D-fructose). Sugar alcohols
are typically derived from sugars by a reduction reaction, changing the aldehyde
group to a hydroxyl group. We selected two hexose-derived sugar alcohols with
the molecular formula C6H14O6. Sugar esters, also called sucrose fatty acid

MIWOCI Workshop - 2016

Machine Learning Reports 15



Table 1: Key properties of the different sensors used to record the sugar dataset.

Sensor name Manufacturer wavelength range sampling points
[nm]

EOS 70D Canon1 RGB 3
Fieldspec ASD2 350 - 2500 2151
VNIR-1600 NEO3 400 - 1000 160
VNIR-1800 NEO3 400 - 1000 186
Nuance EX Nuance 520 - 880 37
SWIR-320m-e NEO3 1000 - 2500 256
SWIR-384 NEO3 1000 - 2500 288
1 http://www.canon.com 2 http://www.asdi.com 3 http://www.neo.no

esters, are nonionic surfactants consisting of sucrose as hydrophilic group and
fatty acid as lipophilic group. Sugar esters can vary in the nature of the at-
tached fatty acid, such as palmitate (P1570) or stearate (S170, S770, S1570) as
well as in the number of attached fatty acids (called mono-, di-, tri-, tetraester).
In our case, compounds with variation of both parameters have been chosen:
S-170 (sucrose stearate, ratio 1% monoester, 99% di-, tri-, and polyester), S-770
(sucrose stearate, ratio 40% monoester, 60% di-, tri-, and polyester), S-1570 (su-
crose stearate, ratio 70% monoester, 30% di-, tri-, and polyester), and P-1570
(sucrose palmitate, ratio 70% monoester, 30% di-, tri-, and polyester). Accord-
ing to the high variation in stereochemistry and composition we expected a
high degree of diversity in our data set. All compounds appear as white pow-
der, whereas D-fructose looked more crystalline. Spectral profiles were acquired
using a variety of different sensors and hyperspectral cameras (Table 1). Given
the nine different compounds it is possible to define five classification problems.
The mapping of the compounds to the different classification problems is given
in Table 2.

Besides the use as a benchmark dataset, the unique structure of the Sugar
dataset offers the opportunity to encourage research on further topics. Three of
the possible research questions are briefly discussed in the following

Dimensionality reduction The data within this dataset is compiled from
high dimensional feature vectors. Various machine learning algorithms suffer
from the presence of high dimensional inputs, which imply a high number of
adaptive parameters, leading to convergence problems, overfitting effects and
suboptimal results [2].

Taking into account the functional characteristics of spectral data, the high
number of input dimensions is not justifiable. For functional data, such as the
hyperspectral data in this dataset, a high correlation of neighbored features
is expected. Thus the dataset can serve as a basis for the development and
evaluation of dimension reduction algorithms. The varying number of input
dimensions (37− 2151, cf. Table 1) within the dataset facilitates a solid bench-
marking of the performance and scaling of novel approaches.
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Table 2: Definition of the different classification problems. The numbers in the
table represent the class index of the substance with regard to the classification
problem. Empty cells indicate, that this substance is not used within the con-
crete classification problem (row). Borders are used to illustrate the pooling of
multiple substances to a single class.
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Sensor invariant classification models In the design of classification mod-
els the structural properties of the input data plays a major role. In most cases a
change of the input data properties is simply not possible. Furthermore trained
classification models often implicitly incorporate sensor specific properties dur-
ing optimization. So the change of measurement equipment can lead to a loss in
classification performance. Since the training of classification models is usually
time consuming the generation of a new classifier after a hardware change is
costly.

For the composition of this dataset the spectral information of certain sub-
stances were recorded using multiple different sensors. Given the overlapping
wavelength ranges (again cf. Table 1) the dataset contains data, that represents
the same spectral information recorded with different sensors. This data can
be used for the development and validation of algorithms, which are capable of
handling different input formats such as variable sized feature vectors and slight
shifts in the positions of the spectral sampling points, as well as sensor specific
patterns and fragments within the data.

High dimensional data exploration For the generation of industrial classi-
fication systems based on spectral information the selection of a suitable sensor
system is one of the key issues. In most of the cases the wavelengths which are
relevant for the classification task are not known in advance, so the selection
of a sensor system usually follows an educated guess or is guided by financial
issues.

Having wide and limited wavelength range sensor data within the presented
dataset, the question of proper sensors selection may be tackled in a more sys-
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tematic way. Using the provided data it is possible to develop relevance learning
schemes, which quantify the importance of wavelengths. Relevances emerging
from the classification of wide spectral bandwidth data (which may have a low
number of samples) can be used for a proper sensor selection, on which classifi-
cation models may be tuned afterwards.

Apart from the sensor selection the dataset provides also opportunities for
the challenging visualization of high dimensional data, which is a key issue for
data exploration [3].

These questions may serve as a starting point for further research. Never-
theless this list is not complete (neither it is meant to be). The presented Sugar
dataset is unique in terms of its structure and extent, and hopefully serves as a
basis for future improvements in the classification of hyperspectral data, as well
as the outlined research topics.
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Transferring machine learning models within a

soft sensor system to achieve constant task

performance under changing sensor hardware

Patrick Menz1,2, Andreas Backhaus1, and Udo Seiffert1,2

1Biosystems Engineering, Fraunhofer Institute for Factory
Operation and Automation IFF, Sandtorstr. 22, 39106 Magdeburg,

Germany.
2Otto-von-Guericke Universität Magdeburg, Fakultät für Elektro-

und Informationstechnik, Germany.

1 Introduction

The combination of a hardware sensor system which generates high-dimensional
data points, for example a hyperspectral camera, and machine learned method
for data classification or prediction based on learning reference data is termed
“soft sensor approach” and is widely used in application fields like precision
farming or plant breeding. Soft sensors are calibrated from large datasets that
are often collected over multiple years and field seasons. Calibration and train-
ing is also a numerically demanding process requiring computational resources.
Therefore Obtaining datasets and providing processing power are associated
with considerable costs. In such a system, the sensor component is subject to
aging processes or needs to be replaced with a new sensor hardware or hardware
from a different manufacturer. Here arises the motivation that machine learning
models already carefully trained and validated are reused with changing sensor
hardware.

Every sensor hardware is unique, so every sensor has different sampling rates.
Because of this, it is nearly impossible for the model to accurately replicate
the results of the original trained sensor. So the soft sensor cannot handle
native data from different sensor hardware, because differences in the relevant
properties are so subtle that they lie within their variation range of the hardware
sensors. This work aims at creating a method to build a transfer function for
mapping a changed sensor to the existing machine learning model (see Figure
1).
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camera 1 camera 2 camera X

transfer
function
camera 1

transfer
function
camera 2

transfer
function
camera X

virt. camera /
machine learning model
from another camera /
latent space

nearly the same results
(e.g. same classification
rate with old model and
new hardware sensor)

Figure 1: The main idea and aim of this work

2 Previous results

For model training, two different datasets were measured with several hyper-
spectral camera systems, where one consists of three different coffee varieties
(Arabica, Robusta and Immature) and the other of nine different sugar vari-
eties, partially with nearly identical chemical structure. A machine learning
model was trained to classify the varieties within these datasets. As mentioned
in the introduction, the aim is to find a transfer-function to replicate the results
of the classifier accurately. A simple approach is the interpolation of the changed
sensor hardware’s output data to the model wavelength. Several interpolation
methods were used to create enough representing data. Methods coming with
MATLAB and are simple linear, next neighbour, nearest neighbour, previous
neighbour, piecewise cubic, and spline interpolation. To create multi-variety,
various training algorithms were used as can be seen in Figure 2. A drawback
of simple interpolation is a significant loss of classification performance.
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Figure 2: Coffee dataset correct classification rates of original data and trans-
ferred data over all interpolation methods with standard derivation. Different
machine learning algorithms: RBF40 Euclid is a radial basis function network
with 40 prototypes and a Euclidean metric, MLP50 is a multi-layer percep-
tron with 50 hidden layers, RBF50 Pearson same as before but with a Pearson
Correlation metric, RBF50 Cauchy is with a Cauchy-Schwarz metric.

A more promising idea is to derive a more accurate model by using another
calibration method. The standard method is a two-point calibration with white
reference and dark current. In [1] it is being proposed to use more calibration
standards (e.g. reflectance of 99%, 75%, 50%, 25% and 0%) to create a multi-
calibration model for mapping the true reflectance in a greater detail. The
machine learning algorithm chosen here exceed the classification performance
in comparison with early approaches. However, when compared to simple in-
terpolation, the model transformation did not show any improved results.
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3 Conclusion and Outlook

The high sensitivity of machine learning models to changing sensor hardware
is a more difficult issue. Interpolation, even with better calibration methods
applied, does not show any benefits in transferring machine learning models.
Future work concentrates on finding and correcting of nonlinearities, for example
with gamma correction known from the image processing area. Furthermore,
latent space modelling for spectral alignment (cf. [4]) is a promising method for
this issue. Also an improvement of the machine learning model can be done by
transfer learning (see [3]), in order to keep the knowledge of the already trained
model. In addition to the existing calibration methods, a calibration model
transfer based on alternating triliniear decomposition can be applied, explained
in [2].
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(Dis-)Similarities Measures vs Inner Products
– Pitfalls and Properties –

D. Nebel, M. Kaden, A. Bohnsack, and T. Villmann

Computational Intelligence Group,
University of Applied Sciences Mittweida, DE

Abstract

In machine learning the terms of (dis-)similarity measures (D/S)
and inner product (IP) were mixed in many articles. Yet, the proper-
ties of D/S and IP are diverse. In general, it is almost impossible to
interpret an IP as similarity and vise versa. We give a mathematical
characterization and classification of D/S based on structural prop-
erties. Moreover, we introduce a rank measures to compare different
D/S in prototype based learning. Further, the introduced rank mea-
sures can be used to show that the preparation of proximity data, e. g.
to make them Euclidean, leads to substantial changes of information.
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In practical applications of machine learning models, input data is sub-
ject to transformations, which result from sensor disturbances. For example,
machine learning models used for controlling bionic arm prostheses typi-
cally receive input from myoelectric sensors, which are disturbed by shifts in
electrode placement, sweat, posture changes and user fatigue. Under such
conditions, the models predictive performance is likely to break down as the
model does not fit the data anymore. We propose to alleviate such problems
by applying transfer learning, that is, to project the disturbed input data
into a space where the model fits again, such that the original performance
is regained.

We model the disturbing transformation as a linear transformation, and
learn its inverse directly using stochastic gradient descent on the G(M)LVQ
cost function, thereby identifying a data transformation that optimizes the
performance of a GMLVQ classifier. We demonstrate the effectiveness of the
approach on a practical example, namely the classification of motion intend
to control a bionic arm prosthesis after disturbance by electrode shift.

∗Funding by the DFG under grant numbers HA2719/6-2 and HA2719/7-1 and the
CITEC center of excellence (EXC 277) is gratefully acknowledged.
†Benjamin Paassen (bpaassen@techfak.uni-bielefeld.de), Alexander Schulz and Barbara

Hammer are with the Theoretical Computer Science group of CITEC Bielefeld, Germany.

MIWOCI Workshop - 2016

24 Machine Learning Reports



Secure Classification and Reject Options in LVQ

T. Villmann1,2∗, A. Bohnsack1,3, and M. Kaden1,2

1Computational Intelligence Group,

University of Applied Sciences Mittweida, Germany

2Inst. for Computational Intelligence and

Intelligent Data Analysis e.V. (CIID),

Mittweida, Germany

3Berufliches Schulzentrum Döbeln-Mittweida, Germany

Currently, the aspect of secure classification, i.e. the estimation of the evidence

of a classification decision for an unknown data object, is in the focus of ongoing

research. For support vector machines (SVM), the separation margin determines

the certainty of a classification decision, which is maximized during the model

learning [1]. For GLVQ [2], the hypothesis margin is optimized describing the

robustness of the GLVQ regarding model shifts [3]. Yet, these quantities cannot be

used to estimate the decision certainty for unknown data.

If classification is related to costs, classifier based on Bayes decisions regarding

optimum costs come into play, which allow efficient reject options to increase the

classification security [4]. Yet, the methods require the precise determination of the

class distributions, which might be difficult [5]. GLVQ provides a robust model ap-

proach to estimate class distributions and, hence, it may serve as an approximated

Bayes classifier with reject option in the working phase [6], whereas adaptive clas-

sification reject was considered in [7]. Cost based outlier detection are introduced

[8].

In this contribution, we provide an alternative outlier detection strategy for

GLVQ, which takes explicitly the hypothesis margin into account. According to

this idea, a prototype rejects a data vector because of uncertainty, if the distance to

the best matching prototype is greater than the hypothesis margin. We denote this

strategy as an exploration horizon based reject option (EHBRO). Particularly, we

show that the knowledge about this post-learning reject option can be integrated
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into GLVQ adaptation, During recall EHBRO can be used to indicate classification

decisions with high uncertainty or to reject those outliers.
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