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Keynote talk: Towards end-to-end learning and

optimization

Frank Hutter, University of Freiburg, Germany

Abstract:

Deep learning has recently helped AI systems to achieve human-level perfor-
mance in several domains, including speech recognition, object classification,
and playing several types of games. The major benefit of deep learning is that it
enables end-to-end learning of representations of the data on several levels of ab-
straction. However, the overall network architecture and the learning algorithms’
sensitive hyperparameters still need to be set manually by human experts. In this
talk, I will discuss extensions of Bayesian optimization for handling this problem
effectively, thereby paving the way to fully automated end-to-end learning. I will
focus on speeding up Bayesian optimization by reasoning over data subsets and
initial learning curves, sometimes resulting in 100-fold speedups in finding good
hyperparameter settings. I will also show competition-winning practical systems
for automated machine learning (AutoML) and briefly show related applications
to the end-to-end optimization of algorithms for solving hard combinatorial prob-
lems.
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Keynote talk: Hierarchical Sensing

Thomas Martinetz, University of Lübeck, Germany

Abstract:

Natural signals like images often have an inherently sparse structure. Compres-

sive Sensing exploits this structure and is able to measure such signals with only

a very few measurements. However, it requires to solve a complex optimization

problem. In this talk I present a measurement scheme which is adaptive and

hierarchical. This scheme obtains the signal coefficients directly with exactly

the same number of measurements as Compressive Sensing, but without having

to solve an optimization problem. It comes out that it starts to sample images

coarsely and then goes deeper into those regions which carry information.
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Restricted Tangent Metrics for Robust Learning
Vector Quantization of Data with Local Drifts

T. Villmann1 and S. Saralajew2

1 Computational Intelligence Group, Univ. Applied Sciences Mittweida, DE

2 Dr. Ing. h.c. F. Porsche AG Weissach, Germany

Abstract. In this contribution we consider restricted tangent metrics
for local approximations of prototype manifolds to deal with variations
and transformations in data like drifts or rotations as frequently observed
also in transfer learning. .

Learning Vector Quantization (LVQ,[1]) for classification learning is based on
the idea of class distribution representing prototypes. These prototypes usually
are seen as vectors in a vector space with a given dissimilarity measure, fre-
quently the Euclidean distance. Advanced variants of LVQ like generalized LVQ
(GLVQ,[2]) or robust soft LVQ (RSLVQ,[3]) use a stochastic gradient scheme to
optimize a cost function reflecting the classification error. Thereby, the differen-
tiability of the dissimilarity measure is a necessary assumption. In general, these
prototype-based classifiers are known to be noise tolerant.

Difficulties arise if systematic variations like drifts, shifts or rotations occur
[4]. An attempt to overcome those problems is the application of data dissimi-
larities being invariant regarding specific transformation [5]. One of the most
popular metrics is the tangent metric [6].

Recently, the GLVQ concept was extended to deal with variations and trans-
formations in the data. According to this approach the prototypes are now refe-
rences for affine sub-spaces of the data space [7,8]. More precisely, the prototypes
constitute affine approximations of a continuous prototype manifold, which mo-
del the manifold [9]. This approximation is obtained by a Taylor expansion of
the manifold model whereby the respective dissimilarity measure is the previ-
ously mentioned tangent metric. Particularly, the so-called one-sided tangent
metric proposed in [10] remains differentiable and, therefore, is well suited for
the application in gradient based learning schemes.

Yet, the Taylor approximation considered so far is taken as a global approx-
imation, which violates the mathematical assumption of local validity of Taylor
expansions. Therefore, we now restrict the affine subspaces to be only local pa-
tches valid only in local regions, i.e. we consider a local representation of data
variability. The resulting adaptive restricted tangent metric leads to a minimiza-
tion problem, which can be solved analytically [11]. Further, this local tangent
metric is still differentiable such that it can be immediately plugged into gradient
based models like GLVQ or RSLVQ.
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During the workshop we will demonstrate the working principles of the met-
hod and illustrate them for two toy examples. Further, the close relation of this
approach to transfer learning strategies for GLVQ will be explained. Finally, open
questions like numerical stability, robustness and complexity are addressed.
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Condition Invariant Visual Localization Using
Slow Feature Analysis

M. Haris1, B. Metka1, M. Franzius2, and U. Bauer-Wersing1

1 Frankfurt University of Applied Sciences, Frankfurt, Germany
2 Honda Research Institute Europe GmbH, Offenbach, Germany

Abstract. In outdoor scenarios varying environmental conditions like
seasonal, weather and lighting effects have a strong impact on the ap-
pearance which often prevents successful localization. A spatial represen-
tation of the environment can be learned by applying unsupervised Slow
Feature Analysis (SFA) directly to images captured by a mobile robot.
However, effects that change on a slower or equal timescale than the
robot’s position during learning will be encoded in the resulting repre-
sentations and thus affect spatial coding. In this work we use recordings
from a simulator along the same trajectory, each in a different condition,
which allows to change the perceived image statistics for improved con-
dition invariance. Experiments demonstrate an improvement of spatial
coding even for few training sets.

Despite the impressive advancements in visual localization and mapping [1]
methods, outdoor long-term localization in changing environments is still a chal-
lenging problem that is approached using condition invariant image descriptors
or learning-based appearance change prediction [2]. In this work, we approach
long-term robustness using the unsupervised learning capabilities of SFA [3]
which extracts slowly varying or invariant features from quickly varying input
signals. Applied to a temporal sequence of images it encodes high level infor-
mation, like the position of objects, which is embedded in the image data and
changes slowly compared to the raw pixel values. A hierarchical SFA-model
trained with views from a virtual rat can mimic place or head direction cells [4],
which represent spatial information in the brain of rodents, depending on the
movement statistics during training. To learn orientation invariant representa-
tions of the position the model was extended using an omnidirectional mirror to
increase the amount of perceived rotational movement [5]. In [6], loop closures in
the trajectory are used to re-insert images in the training sequence to learn an
invariance w.r.t. slowly varying environmental changes during training. Here, we
extend this approach to long-term recordings from the same trajectory. Using
a simulator, we can easily determine position correspondences between differ-
ent recordings to create a training sequence where we add images from past
conditions for the successive places along the trajectory.

Experiments are conducted in a simulated outdoor environment covering an
area of 15× 15 meter. We capture 10 image sets along the same trajectory, each
consisting of 279 panoramic images of size 600×60 pixels. For every set, a change
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(a) (b) (c)

Fig. 1: (a) The same place in different conditions. (b) Results for an increasing
no. of training sets. (c) Estimated trajectory using 9 training sets.

of the environmental condition is simulated by a random variation of lighting
parameters (see Fig.1a). The parameters include energy, the y-coordinate of light
source and the intensity of the red channel. Based on position correspondences,
we reorder the training sequence such that the environmental condition varies
faster than the position of the robot. The model is trained with an increasing
number of up to 9 data sets and the performance is tested on the successive set
by computing a regression function from the SFA-outputs to ground truth posi-
tions (x, y). We repeated the same procedure with 10 random permutations of
the image sets. The mean localization performance of the experiments is given
in Fig.1b. Using the representations learned in a single condition has a pro-
hibitively large error in different conditions but it decreases quickly for more
data sets and amounts to a mean Euclidean distance of 0.35 meter using 9 sets.
The ground truth trajectory and an estimated trajectory is shown in Fig.1c.
We have shown that an agent can autonomously learn an increasingly invari-
ant representation of the environment. To test it in a real world scenario, we
are currently recording data. Further, we plan to combine it with the simulated
rotation in order to provide orientation invariance as well. It would be interest-
ing to investigate if the learned condition invariant features of the lower layers
generalize to a completely different environment.
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Unsupervised Transfer Learning for Time Series
via Self-Predictive Modelling - First Results

Witali Aswolinskiy and Barbara Hammer

Bielefeld University, Germany

Abstract. Real-world machine learning applications must be able to
adapt to systematic changes in the data, e.g. sensor shift or a new subject
or sensor displacement. This can be seen as a form of transfer learning,
where the goal is to reuse the old (source) model by adapting the new
(target) data. This is a challenging task, if no labels for the target data
are available. Here, we propose to use the structure of the source and
target data to find a transformation from the source to target space in
an unsupervised manner. Our preliminary experiments on multivariate
time series data show the feasibility of the approach, but also its limits.

Keywords: domain adaptation, transductive transfer lerning, time se-
ries classification, predictive modelling, echo state networks

1 Introduction

In data-driven machine learning a model is trained on the available training data
and applied to new data. A good model must be able to extract the required
information from the new data, even when systematic changes in the data dis-
tribution occur. For example, if the data contains information from sensors, a
sensor might be replaced with a different calibrated one or the position of the
sensors might change.

Problems of this type can be addressed by transfer learning, which considers
transferring knowledge from a source domain and a source learning task to a
learning task in the target domain [10]. Transfer learning has been successfully
applied in diverse scenarios including robotics [2], computer vision [12] and lan-
guage translation [5]. Here, we consider transductive transfer learning or domain
adaptation, where the source and target domains are different, but the source
and target tasks are the same [1, 9]. We assume a difference in the data distri-
bution in the domains and that a linear transformation from source to target
space is possible.

An expensive solution to this problem would be to collect a new dataset in the
target space with supervised information and to train a new model. Since data
labeling is often done manually by experts, this might be time consuming and
impractical. A more efficient solution proposed in [8] is to gather only few labels
and to find a linear transformation from the target space to the source space, so
that classification error of the original source model on the transformed target
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data is minimal. Still, this solution requires sufficient supervised information to
find the transformation. Here, we attempt to use only the temporal structure of
the source and target data to find such a transformation.

More precisely, we propose to build a self-predictive reservoir model to cap-
ture the spatio-temporal relationships in the source data. We then use this model
as a surrogate for the actual learning task to find a transformation from target
to source space. In the following, we will formalize this methodology and present
examples, where it enables a transfer without any given labeling. We will also
showcase an example, where a transfer failed due to a limited correlation of the
temporal dynamics and the supervised transfer learning task.

2 Unsupervised Transfer Learning via Self-Predictive
Modeling

2.1 A hypothetical example

To illustrate the idea, let us consider a simple, hypothetical classification exam-
ple, as visualized on the left side of Fig. 1. The filled circles represent the source
data with known class labels. The empty circles represent the target data with
unknown class labels. If we assume, that the target data is a linear transforma-
tion of the source data, we can transform the target data back to the source
space aligning their triangle-structure by a simple translation as visualized by
the arrow.

1/31	

Class	1	
Class	2	

Class	3	

4/31	

Class	1	 Class	2	

Class	4	Class	3	

?	

Fig. 1: Hypothetical classification examples. The filled circles represent the la-
beled source data and the empty circles the unlabeled target data. In the case
on the left, a translation will map the target data onto the source data. In the
case on the right, there are several possible rotations to do so.

The example on the right visualizes a case, where the structure of the data
does not provide sufficient information to transform the target data back so

Workshop New Challenges in Neural Computation 2017
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that the classes can be correctly estimated. Because of the quadratic structure,
four different rotations are possible, but only one of them will map the classes
correctly.

As these examples show, in order to find the correct transformation from
the target space back to the source space, the data must have a very distinctive
structure and the classes must also have structurally distinctive properties. Next,
we present a general framework for domain adaption using the structure of the
data.

2.2 Unsupervised transfer of structured data via self-predictive
models

In Fig. 2 we sketch a framework for unsupervised transfer via structural self-
prediction. Additionally to the supervised learner (regressor, classifier, etc.), we
train a self-predictive model on the source data using its structure to define a
training goal, e.g. to predict the next steps in time series or nearby pixels in
images. No external information is used to train the predictive model. Then, we
try to find a transformation from the target to the source space, so that the
error of the predictive model applied to the transformed target data is minimal.
A small error of a precise predictive model should indicate a good mapping.
After finding such a mapping, we can transfer the target data into the source
space and apply the source-trained learner to it.

7/31	

Source	Data	

Learner	

Target	Data	

Self-Predic9ve	
Model	

train	

transform	

apply	

Op9mize	Q	to		
minimize	predic9on	error	

Target	Data‘	apply	

train	
Source	Space	

Target	Space	

Q	

Fig. 2: Framework for unsupervised transfer via self-predictive modeling. The
transformation Q is learned by minimizing the prediction error of the self-
predictive source model on the transformed target data.

This approach is based on the assumption that the structure is distinctive
enough to train a precise, self-predictive model and to find the correct transfor-
mation from target to source space. The more structural information is contained
in the data, the more accurate will be the transformation. We will focus there-
fore on time series data, where a very prominent structuring element is available,
namely the temporal progression of the observations. In the next section, we in-
stantiate our framework for linear domain adaptation of time series.
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2.3 Unsupervised transfer of time series via self-predictive reservoir
networks

Given time series uS and uT from source space S and target space T , respec-
tively, we want to find a linear transformation Q : T → S such that the temporal
dynamics of the transformed target data match those of the source domain. The
approach is visualized in Fig. 3 and has two phases: learning a self-predictive
model on the source time series and learning the linear transformation from
source to target space.

Learning the self-predictive model For the self-predictive modeling of
the time series we use Echo State Networks (ESN, [4]). An ESN consists of
a reservoir of recurrently connected neurons and a linear readout (cf. Fig. 3).
The reservoir provides a non-linear fading memory of the inputs u ∈ RI . The
reservoir states x ∈ RN and the readouts y ∈ RO are updated according to

x(k) = (1− λ)x(k−1) + λf(W recx(k−1) + W inu(k)) (1)

y(k) = W outx(k), (2)

where N is the number of neurons, λ the leak rate, f the activation function,
e.g. tanh, Wrec ∈ RNxN the recurrent weight matrix, Win ∈ RNxI the weight
matrix from the inputs to the reservoir neurons and W out ∈ ROxN the weight
matrix from the reservoir neurons to the readouts. Win and Wrec are initial-
ized randomly, scaled and remain fixed. Wrec is scaled to fulfill the Echo State
Property (ESP, [4]), which is typically achieved by scaling the spectral radius
of Wrec to be smaller than one. The readout weights Wout are learned with
ridge regression: (W out)T = (XTX + αI)−1XTT , where X are the row-wise
collected neuron activations, T the corresponding target values and α is the
regularization strength.

We train the ESN for one-step-ahead-prediction: to predict the next input
value u(t+ 1) from the current reservoir activation x(t). Thus, for a source time
series of length L, X = (x(1); . . . ;x(L − 1)) and T = (uS(2); . . . ;uS(L)). The
resulting model P estimates the next signal value: P (uS(t)) = ûS(t+ 1).

Learning the linear transfer function Having determined the one-step-
ahead-prediction dynamics P for the source domain, we now learn the linear
transfer function Q(uT ) = QuT = u′S on the target data, such that the source
dynamics apply: P (QuT (k))Q−1 ≈ uT (k + 1). For this purpose, we evolve the
linear transformation matrix Q with the CMA-ES [3] optimization technique by
minimizing the mean squared error:

Q = arg min
Q

(‖P (QuT (k))Q−1 − uT (k+1)‖2) (3)

An alternative formulation avoiding matrix inversion is to minimize
‖P (QuT (k))− uT (k+1)Q‖2. However, this has the degenerate solution Q=0.
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8/31	

Wrec	

Win	 Wout	 ûS‘(t+1)	

Predic5ve	ESN	trained	on	the	source	data	

uT(t)	

Q	

uT	(t+1)	

uS‘(t)	

Error	

Target	Space	

Source		
Space	

Q-1	

ûT	(t+1)	

Source		
Space	

Target	Space	

Fig. 3: Approach for unsupervised transfer of the target data through the linear
transformation Q by using a self-predictive ESN trained on the source data.

After learning the linear transformation Q, we can map the target time series
into the source space and apply the task-specific learner trained in the source
space.

3 Experiments

For our experiments, we use ESNs not only for the self-predictive model, but
also for the actual learning task. Since any other learning method suitable for
time series would work as well, we omit the description of the learner training.

3.1 Sine wave regression

As first example we consider a synthetic, two-dimensional dataset consisting of
two sine waves u1 = sin(0.1x), u2 = sin(0.25x) with the learning target y =
u1(t−2)+u2(t+2). Fig.4 shows the original data on the left and the same data
after a random linear transformation on the right (regression goal y remains the
same).

For both the learner and the self-predictive model, a reservoir with 50 neurons
was used. Fig.5 shows the prediction error and the transfer error (the regression
error of the learner on the transformed target data) during evolution of the
transformation matrix. After approximately 80 iterations of CMA-ES, the target
data is successfully mapped back into the source space.

3.2 Time series classification - success

Here, we apply the approach to time series classification of multivariate time
series. The character trajectories dataset [11] obtained from [6] contains pen
tip trajectories (x,y,force) with lengths from 109 to 205 recorded during writing

Workshop New Challenges in Neural Computation 2017
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Fig. 4: Synthetic sine regression dataset with source data on the left and target
data on the right.
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Fig. 5: Progress during optimization of the transformation matrix. Shown is the
prediction and the regression error on the target data after transformation.

of twenty characters by a single subject. 300 sequences are used for training
(source data) and 500 for testing (target data). Again, we simulate a systematic
change in the data by transforming the test sequences through multiplication
with a random matrix. We then try to discover the transformation back into
the source space using a self-predictive ESN with 300 neurons trained on the
original training sequences.

Fig. 6 (top) shows the evolution of the prediction and test classification error
(’Transfer Error’). Initially, the classifier has a high error rate of about 90%.
After 140 iterations, both the prediction and classification error are low.

3.3 Time series classification - failure

The uWave [7] dataset contains three-dimensional (x,y,z) sequences of length 315
containing eight different gestures recorded from eight subjects. 200 sequences
were used for training and 500 for testing. Fig.6 (bottom) shows the evolution of
the prediction and target classification error. Here, the transformation reduces
the prediction error, but increases the classification error - the approach did not
work for this dataset.
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Fig. 6: Evolution of the optimization of the transformation matrix for classifica-
tion of the character trajectories (top) and uWave dataset (bottom). Shown is
the prediction and the classification error on the target test data after transfor-
mation.

The hypothetical example in 2.1 showed that a transformation from the tar-
get to source space, which aligns the data distributions in the respective spaces,
may still be wrong semantically. The failed transfer of the uWave target data
may be an example of this problem. Despite a very small prediction error, the
classification results were wrong. We hypothesize that the dynamical invariant
in the time series is not relevant for the classification in this case, hence a trans-
formation based on the preservation of the temporal dynamics cannot be used
as a surrogate for the learner.

Two other possible reasons for a failed unsupervised transfer are:

– Inaccurate predictive model. If the predictive model has a high prediction
error on the source data (due to noisy data, badly chosen basis functions,
etc.), there will be many transformations resulting in similar prediction errors
on the transformed target data. Such an inexact mapping might lead to
misclassifications by the learner.

– Local error minima in the transformation space. Let us again consider the
triangle-data in the hypothetical example visualized in Fig. 1. The linear
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transformation from the the target to the source space is a simple translation.
However, a translation together with half a rotation would result in only a
slightly higher prediction, but a complete classification failure. Intermediate
rotation angles might lead to better classification, but would have higher
prediction errors. Thus, finding a global optimum might be more important
here than in other applications.

4 Conclusion

In this paper, we presented an unsupervised transfer learning approach for time
series. As proof of concept we evaluated the approach on one synthetic and
two real-world datasets. The positive result on the synthetic and one of the
real-world datasets confirm the applicability of the approach to some data sets.
Further work is required to determine the conditions for a successful transfer
and to evaluate it on real-world use cases.
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Differential Privacy for Learning Vector
Quantization

J. Brinkrolf, K. Berger, and B. Hammer

University of Bielefeld - CITEC centre of excellence, Germany
{jbrinkro | bhammer}@techfak.uni-bielefeld.de

Abstract. Digital information is collected daily in growing volumes.
Mutual benefits drive the demand for the exchange and publication of
data among parties. However, it is often unclear how to handle these
data properly in the case that the data contains sensitive information.
Simple anonymization of the data, for example, does not ensure privacy
since the information can easily be linked to information which is freely
available on the web and which might reveal the true identity of the
involved persons [12]. Differential privacy has become a powerful princi-
ple for privacy-preserving data analysis tasks in the last few years, since
it entails a formal privacy guarantee for such settings. This is obtained
by a separation of the utility of the database and the risk of an indi-
vidual to lose her privacy. In this contribution, we briefly review the
approach of statistical disclosure control which is offered by differential
privacy. We introduce the Laplace mechanism and a stochastic gradi-
ent descent methodology which guarantee differential privacy [1]. Then,
we show how these paradigms can be incorporated into a popular ma-
chine learning algorithm, namely prototype-based classification trained
by learning vector quantization (LVQ). We demonstrate the results of
privacy preserving LVQ based on a popular benchmark example.

Keywords: privacy preserving data analysis, differential privacy, learning vec-
tor quantization

1 Introduction

The necessity to preserve a person’s privacy in data bases and according re-
quirements for the privacy and security of this technology has been debated
since more than twenty years [4]. While encryption can secure data bases when-
ever private information is revealed to only the user herself, the setting becomes
more problematic whenever important information of the data base is offered to
the public. This is the case if summary information or trends which have been
inferred from the data base are offered to the public, and it constitutes a key
challenge if personal data are used to train a machine learning model, which
is later rolled out to the public. While summary statistics or machine learning
models deliver accumulated information and general models, it cannot be ruled
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out a priori that private information can be inferred from those, provided the
model is coupled with according auxiliary data.

In this context, the notion of differential privacy (DP) has been proposed as
a formalism which provably limits the possibility to retrieve private information
from published models [7]. Basically, DP formalizes the intuition that the amount
of individual information which can be retrieved from such models is strictly lim-
ited per query. This way, it can formally guarantee essential properties such as
immunity of the formalism to auxiliary information and privacy of individual in-
formation as well as specific groups. Additionally, it possesses convenient math-
ematical properties such as understandable behavior under composition of DP
mechanisms and closure under post-processing; as a consequence, DP algorithms
can be designed based on essential building blocks, and complex programs can
be designed this way. Quite a few general formalisms of DP have been proposed,
including, e.g., differential privacy for general purpose optimization mechanisms
such as genetic algorithms or gradient descent [5,11,15,1]. In this contribution,
we will rely on a DP formalism which robustifies gradient descent.

Learning vector quantization (LVQ) constitutes a very popular and intuitive
machine learning technology, which represents data in terms of prototypical rep-
resentatives. This enables its intuitive interpretation as well as its integration
into life-long learning scenarios [3]. Its model form, however, carries a high risk
of revealing sensitive information since prototypes display typical feature values
which directly stem from training data. Since LVQ constitutes a very popular
model in the context of highly sensitive domains such as biomedical applica-
tions [2], there is a strong need of differential privacy in this domain.

In this contribution, we propose an adaptation of LVQ to a provably private
version based on the notion of differential privacy. For this purpose, we rely on
a popular variant of LVQ which phrases learning as cost optimization [13]. This
enables us to combine the method with a differentially private stochastic gradient
descent [1]. We demonstrate the efficiency and effectiveness of the method in
experiments.

2 Background

In the following, we briefly introduce generalized learning vector quantization
(GLVQ) as one popular and intuitive class of machine learning models for clas-
sification [13]. Since it constitutes a prototype based classification mechanism
which is based on prototypical representatives within the vector space of input
signals, it runs the risk of revealing sensitive information about data which have
been used for training. Hence we aim for a variant which guarantees differential
privacy (DP), as we will introduce later. For this purpose, we shortly recapitulate
the notion of differential privacy as well as a few popular DP strategies.

2.1 GLVQ

We are interested in classification scenarios in Rd with k classes which are enu-
merated as {1, . . . , k}. Prototype-based classifiers are defined as follows: a set
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W of w prototypes with (wj , c(wj)) ∈ Rd × {1, . . . , k}, j ∈ {1, . . . , w} is
specified which enables a good classification and representation of the data and
its underlying classes. A new data point x is classified by the winner takes all
scheme:

x 7→ c(x) := c(wl) with l = argmin
wj∈W

d(wj , x),

where d is a distance measure, e.g., the standard Euclidean distance.
Here, we will focus on the generalized LVQ by Sato and Yamada [13] which

is derived from an explicit cost function. The LVQ rule is phrased as cost mini-
mization with the cost function

E =
∑
i

Φ

(
d+(xi)− d−(xi)

d+(xi) + d−(xi)

)
.

The function Φ is a monotonic increasing one, e.g., the logistic function. d+(xi)
is the distance of xi to the closest prototype of the correct class and d−(xi) is the
closest distance of xi to another prototype of a different class than xi. Standard
GLVQ uses the squared Euclidean metric d(wj ,x) = (x−wj)

T
(x−wj).

2.2 Differential Privacy

Differential privacy [7,6,8] constitutes a strong standard for privacy guarantees
for algorithms on aggregate databases. Informally, it requires that the output of
a data analysis mechanism remains approximately the same if any data point
in the input database is added or removed. This guarantees that a single en-
try cannot substantially affect the revealed outcome, hence it is impossible to
retrieve sensitive individual information from the latter. Now, we define differ-
ential privacy first and introduce specific differential private mechanisms later.

Definition 1 (Differential Privacy [7]). Assume ε, δ > 0 are given. We are
interested in the privacy of an operation A such as a machine learning algorithm,
which maps a given set of training data D to a model or summary statistics re-
vealed to the user. These outcomes might be subject to manipulation or attacks,
which are unknown. To take this into account, the space of possible models is
modeled as a probability space where measurable events can take place. A ran-
domized function A gives (ε, δ)-differential privacy iff for all pairs of adjacent
datasets D and D′, and all events S

P[A(D) ∈ S] ≤ eε · P[A(D′) ∈ S] + δ.

Here P refers to the probability induced by the algorithm A. Thereby, two datasets
D and D′ are adjacent if and only if D can be obtained from D′ by the deletion
of one training example (or vice versa).

This notion of differential privacy ensures the privacy of any single data point
which can be used for training, because adding or removing any single data point
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results in eε-multiplicative-bounded changes in the probability distribution of the
output of the algorithm only.

Differential privacy is compositional in the sense that combining m multiple
mechanisms A that satisfy differential privacy for ε1, . . . , εm results in a mecha-
nism that satisfies ε-differential privacy for ε =

∑
i εi. We will call ε the privacy

loss of the algorithm.

2.3 Differentially Private Mechanisms

There are several approaches which satisfy ε-differential privacy, including the
Laplace Mechanism [7]. The latter deals with algorithms or functions f : D 7→ Rk

from the domain of all datasets to vectorial outputs. It adds symmetric and
scaled noise to each dimension of the output. The magnitude of the required
noise depends on the so-called sensitivity of f . The latter refers to the maximum
difference of the outputs of two adjacent datasets. Formal, the sensitivity of f is
defined as

∆f = max
adjD,D′

∥ f(D)− f(D′) ∥1

measured in the L1 norm. Given a function f the Laplace mechanism is defined
as

Af (D) = f(D) + (Y1, . . . , Yk)
T

for a given database D, where Yi are i.i.d. random variables drawn from the

Laplace distribution Lap
(

∆f
ε

)
. The latter is defined by the probability den-

sity function P[Lap(β) = x] = 1
2β e

−|x|/β . It can be shown that the resulting

mechanism Af is (ε, 0)-differential private. The Laplace mechanism constitutes
a very convenient way to turn a given database query into a differentially pri-
vate one. However, it has only limited applicability if f is given by a learning
algorithm, since the sensitivity of the latter might be complicated to bound.
Therefore, more direct methods which directly rely on typical machine learning
mechanisms have been proposed. A very popular one adds differential privacy
to gradient techniques.

2.4 Differential Private Scaled Gradient Descent

GLVQ, as introduced above, is often trained by means of a gradient descent
mechanism. Hence, we can make use of the DP mechanism as introduced by
Abadi et al. [1]. Essentially, the mechanism proposes a variant which makes the
operations as common for a scaled gradient method private. In the following, we
just give an outline of the algorithm as proposed by Abadi et al. and we refer to
the original paper for more details and proofs.

Assume an objective function L(θ) with parameters θ is given which is op-
timized to reveal the model parameters θ. The idea of the proposed formalism
is to compute the gradient ∇θL(θ, xi) of the loss function for each data point
which is taken from a random subset with size L of the training set. Then, the
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gradients are clipped whenever its L2 is greater than a threshold C. The results
are averaged, and noise is added such that this noise guarantees privacy pro-
tection. Finally, a noisy gradient descent according to these directions is taken.
Algorithm 1 provides an outline of this mechanism.

Algorithm 1 Differential private SGD (Outline) [1]

Inputs: examples {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi).

Parameters: learning rate ηt, noise scale σ, batch size L, gradient norm bound C,
number of epochs T .
for t ∈ {1, . . . , T} do

Take Lt random samples with sampling probability L/N
Compute gradient
For each i ∈ Lt, compute gt(xi)← ∇θtL(θt, xi)
Clip gradient

gt(xi)← gt(xi)/max
(
1, ∥gt(xi∥2

C

)
Add noise

ĝt ← 1
L

(∑
i

gt(xi) +N (0, σ2C2I)

)
Descent
θt+1 ← θt − ηtĝt

Output: θT

This algorithm reflects popular mini-batch optimization techniques as are
popular for the optimization of non-convex cost functions in machine learn-
ing. Unlike the pure version, added noise guarantees the algorithms’ differential
privacy. It has been shown by Abadi et al. that the resulting algorithm is (ε, δ)-
differential private for any δ > 0, provided σ ∈ Ω(q

√
T log(1/δ))/ε and q = L/N

is the sampling probability for one data point in the batch.

3 Differential Private GLVQ

In the following we describe how this training scheme can be used to optimize
the cost function of the GLVQ model. The result will be a differentially private
LVQ. Note, that we need to guarantee the differential privacy of all operations,
including the prototype initialization and gradient update.

Initialization: For simplicity, we assume that we use one prototype per class
(more general schemes are possible, e.g., relying on a differentially private version
of neural gas, but would require more work). In standard GLVQ, we initialize
each prototype by the class means. These can be calculated based on the sum of
all data points of each class and the number of class members. These operations
can be enhanced to DP versions based on the Laplace mechnaism as follows: In
standard GLVQ, prototypes are initialized as wj = 1

Nj

∑
i:c(xi)=j

xi for all classes.
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The cardinalities of the classes are given by the function f : D 7→ Nk, f(D) =
(N1, N2, . . . , Nk). This function has a sensitivity ∆f = 1 because adding or
removing one data point in the dataset changes only the output of one Ni by
one. In the literature, these functions are also known as a histogram queries [8].

The sums of all points in each class is given by the function g : D 7→ Rk·d,

g(D) =

( ∑
i:c(xi)=1

xi, . . . ,
∑

i:c(xi)=k

xi

)
. Without loss of generality, we assume that

the data points are normalized so that D ⊂ [−1, 1]d. Then the sensitivity of the
function is ∆g = d. One adjacent dataset can change the output at least by one
in each dimension in the L1 norm because the classes are disjoint sets.

For a given privacy loss ε1 we obtain all Ni and all sums with the Laplace
Mechanism in a differentially private way. If we use the noise scales βf = 2

ε1
for

the function f and βg = 2d
ε1

for g we achieve a ε1-differential private mechanism
altogether due to standard arguments for composition.

Gradient descent: For the gradient descent we rely on the algorithm as described
above in chapter 2.4. Let L be the batch size, C the gradient norm bound,
q = L/N , E the number of epochs and T = E

q the runs of the Algorithm 1.

For a given ε2 and δ we can calculate the noise scale by σ =
q
√

T log(1/δ)

ε2
[1].

Hence, the total privacy loss of the whole training is ε = ε1 + ε2. We obtain an
(ε, δ)-differential private algorithm.

4 Results

We test our approach with the real world MNIST dataset of handwritten dig-
its [10]. For the benchmark test, we do a 5-fold cross validation and use 50 epochs
for the SGD. The total privacy loss is split into ε1 = 0.2ε for the initialization
step and ε2 = 0.8ε for the gradient descent. The other parameters for the algo-
rithm are δ = 10−5, q = 0.01 and C = 0.4. We compare our approach with the
non-private version of GLVQ. There, the optimum is found by the BFGS algo-
rithm, a quasi-Newton method for solving nonlinear optimization problems [9].
It represents the minimum error which we can reach based on GLVQ.

In addition to the algorithm as introduced above, we test the algorithm
PrivGen [15]. The latter is a general-purpose differentially private model fitting
framework which is based on genetic algorithms. For a given dataset D and
a fitting-score function f(D, θ) that measures how well the parameter θ fits
the dataset D, the PrivGen algorithm initializes a candidate set of possible
parameters θ and iteratively refines them by mimicking the process of natural
evolution. The best candidate is chosen by the exponential mechanism [11] and
a new population is generated by mutation. We define the fitness function as
the objective of the GLVQ problem, we use the same initialization as for our
approach, and we use the default parameter according to the paper [15].

In Fig. 1 the GLVQ costs and the error rate of the test sets are plotted against
the privacy loss for our approach, (non-private) BFGS optimization of GLVQ,
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and PrivGen. For a privacy loss greater than 0.75 the error of our approach is
as small as the one of classical GLVQ. PrivGen requires a privacy loss of 2.5 for
a test error less than 20%.
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Fig. 1: GLVQ costs and test errors for our approach, for the non-private GLVQ
version with BFGS optimization and for the different private fitting framework
PrivGen on the MNIST dataset.

Fig. 2 depicts the impact of the norm bound C and the number of epochs E
on the classification errors of the test sets. It also shows the test errors if we do
not initialize the prototype before the differential private SGD as described in
section 3 but use random points for each class as initialization.

In the left plot of Fig. 2 one can see that for very small C the test error rates
rises. This is because an extremal clipping can cause the fact that the direction
is completely different from the true gradient. On the other hand, a bigger value
requires more noise. Analog results are obtained if the number of epochs is varied.
Also here, a sweet spot can be observed for an increased number of epochs. It is
clearly demonstrated that an appropriate initialization is important for a good
solution.

5 Conclusions

We have introduced an approach to obtain a differential private version of GLVQ.
We changed the initialization step and used a differential private SGD for op-
timization. In the results, we showed that for the real-world dataset MNIST a
privacy loss ε > 0.75 suffices to achieve a differential private model that is as
good as the non-private version with BFGS optimization. The method is robust
to the choice of its hyperparameters.

This promising result opens the way towards a GLVQ variant which can
publicly be released, e.g., in the medical domain albeit it has been trained based
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Fig. 2: Test errors for varied clipping bounds C and numbers of epochs E. The
solid line is for our approach and the dashed one shows the error rates when
no initialization is used and the prototype are just some random points. The
parameters are: ε = 1, δ = 10−5, ε1 = 0.2ε, E = 50, C = 0.4.

on sensitive data. So far, we have presented a differentail private version of
standard GLVQ. It has been shown in practice that metric learning constitutes
an essential step in metric-based models to achieve state of the art results, and
methods such as generalized matrix LVQ are very popular demonstrations of
this fact [14]. It is a matter of future work to extend the proposed DP formalism
to these variants.
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RoNiSCo: Robotic Night Shift Companion

Falko Lischke?, Frank Bahrmann, Sven Hellbach, and Hans-Joachim Böhme
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Abstract. This publication presents a comprehensive solution for an
autonomous mobile robot platform that help caretakers in a stationary
retirement home during the night shift. Consolidating algorithms and
approaches from almost all research fields of robotics made it possible to
create a complex system able to navigate freely in a learned environment,
to recognize incidents like elderly getting lost and to contact a caretaker
via a smartphone or computer application if that incident has to be
reported.

1 Introduction & Related Work

We live in a modern world full of technology. In our daily life, technology reminds
us of meetings and birthdays. Mobile devices plan the shortest path to a desired
location while we walk, cycle or drive around. However, in several fields of work
this modern comfortable support does not exist yet. This work investigates how
it is possible to increase the quality of life in such a case: stationary retirement
homes. Attention is not only paid to working fields of the medical staff but the
elderly people as well.

In this publication a control architecture for a mobile robot platform (Scitos
G5 by MetraLabs GmbH, Fig. 1a) is introduced. This robot is capable to patrol
an indoor stationary retirement home environment looking for elderly people
who lost their way. If such an incident happens, the staff is informed via an
application on a mobile device. The availability of modern navigation algorithms
in both mapping [15, 6, 2] as well as reactive motion planning [4, 10] enables the
design of complex and sophisticated systems. The patrol service was requested
multiple times in our talks with caregivers in 2 different facilities as well as
listed in studies provided by [9]. Additionally, in a Japanese facility a robot was
successfully deployed to patrol through rooms and monitor patients [16]. In the
field of ambient assisted living, Cesta et al. in [5] developed a system which
companionizes elderlies in their own homes. The robot in this work can switch
between the role of active interactor via a PDA (PersonalD igitalAssistant) and
a silent observer. This enables the robot to manage appointments, to remind
of the regular intake of medication or classify possible emergencies to call for
help. Mobiserv [12] and CompanionAble [8] are other projects where robotic
systems assist elderlies in their own homes but they do not offer a night shift
function. Besides the intake of medication the field tests in [7, 11] showed the
high acceptance and necessity of introducing mobile robotics into health care.

On the basis of the mentioned prior research, this publication presents a solu-
tion for a night shift patrol robot. Starting with an introduction of the setting of

? This work was supported in part by SAB grant number 100231931.
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Fig. 1. a) A MetraLabs Scitos G5 robot
equipped with forward and backward
LaserRangeFinders and 2D and 3D cam-
era sensors. b) Floor plan of the sta-
tionary retirement home learned by the
robot - map size approx. 100x60 m (Leg-
end: 1 - stairway/elevator, 2 - dining
hall/community hall, 3 - examples of
doorways to living quarters, 4 - ready
room).

the environment in Section 2 and requirements in Section 3, the implementation
of the control architecture is described in Section 4 with details for the robot’s
part in Section 4.1 and for client’s part in Section 4.2. In Section 5 we report
first test results. Section 6 presents a conclusion and outlook for further work.

2 Setting

The retirement home in which the proposed system is deployed consists of multi-
ple 4 floor buildings. The floor plan of one building is shown in Fig. 1b. This map
has been learned using robot’s laser sensors. Adjustments can be made adaptively
by use of fuzzy-based methods [1]. Due to the shortage of professional caretak-
ers, there is only one staff member responsible for two floors. Consequently, the
caretaker would need some time to notice if anything undesirable would have
happened. Even if there were caretakers on all floors, the way the building was
constructed would hinder the personnel to monitor the complete floor. In Fig. 1b
all bulges (tagged with 3) are examples of doorways to the living quarters of the
residents. The bottom right part as well as the dining hall (tagged with 2) pose
a high risk. Both are blocked from the immediate view regardless of whether the
staff enters the floor or is already in the ready room (labeled with 4).

The choice of a robot platform instead of a passive camera monitoring system
is two-folded: Primarily, it arose from the human robot interaction possibilities.
If an emergency occurs, the robot is able to distract the resident until help arrives
as well as to support the nursing personnel with equipment in case of a first aid
situation. The second reason is regulations that forbid to lock the building’s
entrance doors from the inside (e.g. in case of a fire emergency). Most residents
of a stationary retirement home suffer from dementia. One of the symptoms
is a distracted daily routine, which for instance can lead to the desire to go
shopping in the middle of the night. Due to the fact, that doors are only able to
be opened from the inside, in several occasions residents locked themselves out.
A robot platform can bind those people by simply talking to them.

3 Requirements

As described in the previous section, the main purpose of the proposed system
is to provide information to the care personnel about residents wandering the
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hallways. This information is gathered and processed by a mobile robot platform.
Using a robot makes it necessary to provide even more information about the
robot itself, e.g. battery status, its current location, and its current task. To
provide this information, the caregivers, who have to be available everywhere in
the building, need to be equipped with an adequate mobile device. We decided
to implement the system on a smartphone because we assume the personnel is
already acquainted to its usage, it is easy to replace and due to its compactness.

Having a mobile robot allows for additional use cases like calling the robot
to the caretaker’s own position (e.g. to fetch a first aid kit) or to send the robot
to a specific spot where something might have happened. For this, the caretaker
needs to have the possibility to control the robot’s position.

However, sending the robot on more complex missions (e. g. defining the
waypoints for the patrol) might be a challenging task when performed on the
screen of a smartphone. Hence, in an addition to the smartphone, we decided to
integrate a base station with a fixed position in form of a laptop. So the mobile
device is for fast and easy access, while the laptop is for configuration.

Allowing the communication between the devices makes a wireless network
setup inevitable. A disadvantage of a wireless network is that clients can lose
their network connection if the signal strength is too low. In such a case (or if
the battery of the mobile device drained unnoticed), it is necessary to inform
caretakers about the disconnected device. Furthermore, the network connection
needs to be protected against illegitimate access. This guarantees both the pro-
tection of the collected data and the access limitation over the robot’s control
functionality.

Finally, following the principle of data reduction and data economy, only
relevant data should be provided by the robot to improve application handling
and clarity of displayed information, as well as to lower the risk of data abuse. It is
useful to adapt displayed data automatically depending on the robot’s situation
to give caregivers as few information as necessary, which allows a fast evaluation
of the situation around the robot in case of an emergency. Additionally, resulting
from the usage of different sensors, e.g. cameras, which the robot needs to analyze
its environment, data protection issues are of high concern.

4 Realization

In the following, we introduce a control system to support staff of stationary
retirement homes. Since the system is equipped with different sensors like cam-
eras, it is necessary to consider surveillance issues. We follow data privacy laws
to increase acceptance of the robot platform. The system does not have the pur-
pose to observe caregivers nor residents. The control system is designed such
that it does not inflict the feeling of imprisonment or observation to the elderly
people. The mobile robot and other used devices shall be unobtrusive parts of
night shifts.

Figure 2 displays a network architecture in our scenario. Network connections
are realized using WiFi connections. A router and several repeaters are placed
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Fig. 2. Exemplary overview of the network architecture and end devices. A router
spans a wireless network, which needs to be amplified by repeaters. The robot as a
server as well as the clients, e.g. base station and mobile device, connect to the same
network.

on the floor to span a wireless network. Our robot connects to the network and
serves as application server. Stationary client devices like a laptop are called base
stations. We use one base station placed in caregiver’s ready room. If caregivers
leave the room where a base station is placed they can use mobile client devices.
In the network there is one robot and as many clients as necessary.

Communication between server and clients is protected by an SSH (Secure
SH ell) connection. The SSH server is running on the robot. All other client
devices act as SSH clients. The user gives the login credentials to the client
application, which tries to establish a SSH connection. After a successful login,
an SSH tunnel is used for data exchange, thereby protecting the transmitted
data from man in the middle attacks.

An overview of data exchange between server application and client appli-
cation is displayed in Fig. 3. More details of both robot and client part are
specified in subsequent Sections 4.1 and 4.2 respectively. At first the client ap-
plication logs in to the server application with name and IP address. After that
the client receives the current floor plan as image file. Depending on a so called
incident status there exist different data messages. An incident status represents
the robot’s state and the environment’s state. There are three different incident
statuses:

– Green: Neither robot problems nor detected people.
– Yellow: Robot problem, colliding with an obstacle or investigating an un-

certain person hypothesis. Section 4.1 contains a description what the term
“person hypothesis” means.

– Red: Verified person hypothesis.

Incident green and yellow implement the same functionality. The server pe-
riodically sends a data message containing battery charge, position and incident
status. Both statuses differ in the message’s incident status part, which is either
green or yellow. The client’s acknowledge message is named heartbeat, which
signals if the client is still connected. If the server misses multiple heartbeats
of a registered client it sends a message containing name and IP address of the
disconnected client to all other clients. This information is important to inform
caretakers about undesirable disconnected clients.
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Fig. 3. Main groups of exchanged data
between server and a single client. Besides
the standard login and logout procedure,
we need different categories of incidents to
inform the personnel and the possibility
to send control commands to the robot.

Incident red interrupts the periodical sending of status messages. The server
also sends a status message containing battery charge, position and red incident
status. In addition the server transmits a camera image stream. This image
stream is provided by an omnidirectional RGB camera on the head of our mobile
robot platform. A confirmation message to the server ends image streaming.
This message is caused by the caregiver if she/he confirms the red incident on
the device. Subsequently, the robot will continue its behavior in its previous
incident state.

A mentioned requirement is the control of the robot’s target positions by
caretakers. The personnel is able to set a new target position for the robot using
the client application. This new target position is transmitted to the server. If it
is a valid target position the client will receive a confirmation message and the
robot navigates to the given location.

Before a client logs out and closes its SSH session it sends a log-out message
to the server application. This removes the client’s IP address from its list of
connected clients.

4.1 Robot Part

In the proposed scenario the robot consists on several subsystems (e.g. navigation
and people detection). Depending on the robot’s state, those subsystems are
switched into different modes. For example, the navigation module can only be
turned on or off. If it is turned on, the module generates movement commands
based on a reactive local navigation algorithm [4]. The robot therefore tries to
reach the predefined waypoints. If the module is turned off, the robot simply
stops. The people detection module has 3 states: on, off, and hypothesis only. If
the people detection module is switched on, the robot stores all uninvestigated
person hypotheses in a temporary data structure. In the single hypothesis only
mode, the robot focuses all sensors on the active hypothesis to investigate the
actual incident.
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Fig. 4. Overview of the robot’s states and the transitions between them. Ellipsoid
nodes are states the robot can be in, the attached rhomboids denote statuses of the
used subsystems. Transitions labeled with client are activated by a mobile device. The
circular status (incident) nodes are colored consistently to represent the systems status
until stated otherwise.

Figure 4 shows the implemented state machine. The robot starts after its
initialization process in the Start node. Switching to this node can be achieved
by a client’s call at any given point except if a red incident occurred. In the
start state, the robot simply waits for the command to begin patrolling. It can
be used by the staff to disable the robot while they are working in the robot’s
vicinity. If a client starts the robot’s mission, it will switch in the patrol mode and
drive from waypoint to waypoint, scanning the map for possible persons. The
underlying scanning algorithm is based on background subtraction of the current
laser range finder data with a previously learned map. Due to the relatively
simple representation of the world, ambiguous sensor readings are very likely. The
robot collects those locations like stated earlier and switches to the Investigator
mode. Now, the closest hypothesis found acts as a new temporary waypoint,
causing the robot to drive to that location. This provides the possibility to use
sensors with limited range capabilities like RGB (face detection [17]) or depth
cameras and increases the density with which the laser range finder is able to scan
the environment. Adaptive methods for each sensor can increase the individual
recognition accuracy of people. All that information is combined using a sensor
fusion approach proposed in [3, 14]. This fusion approach merges all sensor cues
(each represented by a Gaussian distribution) to a resulting single Gaussian
distribution. From that final distribution, the confidence value is calculated,
which is utilized to decide whether a person hypothesis is accurate. This value
is highly dependent on the amount and kind of sensors used. For the proposed
case with laser range finder and RGB-D cameras the confidence threshold was
determined empirically. Further studies have to be applied to investigate robust
values. Instead of setting a threshold based on investigations, adaptive methods
can also be used to adjust it. If the robot arrives at the closest point near the
active location and the confidence value is below a threshold (mainly caused by
tables, chairs or wall structures), the location is permanently stored as ambiguous
- the robot learns to avoid false alarms. Afterwards, the mission is continued
either with the next possible location or with the most recent waypoint. However,
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if the confidence value is greater than the defined threshold, an alert is triggered,
which sends a message with alarm to the clients. This certain people hypothesis
causes a red incident. The robot now waits for the clients to confirm that alarm
while sending an image stream to the personnel, allowing them to correctly assess
the situation. During that time, additional Human-Robot-Interaction modules
could be used to calm down or distract the lost resident until a caretaker arrives.
As soon as the incident is resolved, the robot continues its mission.

4.2 Client Part

Different devices can be used as clients to show information provided by the
robot. We use smartphones as mobile clients and regular laptops as base sta-
tions. With regard to a smooth introduction of the system, the KISS principle
(“Keep it simple and stupid”) was chosen to design graphical user interfaces.
Intuitive application handling like a possibility to set a new target position and
information understanding like incident reports should reach the KISS principle.

An important aspect to guarantee usability is to limit the amount of possible
user interaction to the necessary minimum. Hence, we avoid confusion during
handling by implementing shallow menu structures which ensures reachability
with only a few interactions. There are clearly named buttons and option menu
entries to control the application. Every display shows only few but relevant
information. Besides textual information such as battery charge and state mes-
sage, there is a map image displaying the robot’s position. Figure 5a and 5b show
status display and control display for status incident green. Sending the robot to
a new target position, e.g. ready room, can be done with only one button and a
command confirmation. Robot movement is always observable on the map where
an icon marks the robot. The icon color depends on the robot’s state.

We use a traffic light principle for the robot state. In addition to three textual
state description possibilities there are three colors. Every icon color is associated
with an incident status. A green icon implies that there is no considerable situ-
ation to report. If there is a less prioritized incident, e.g. assumption of a person
under uncertainty, a yellow icon will be used. Figure 5c shows status screen with
changed state message for incident yellow. Person incidents get highest ranking
and show a red icon. Such incidents are certain people detections or detections
of fallen people.

As it is important to inform caretakers immediately about red incidents there
are additional security arrangements. Base stations as well as smartphone clients
receive a camera stream of the current scene around the robot and a location
description. A red incident message is showed in Fig. 5d. Mobile devices use
additional functions like acoustic alert and vibration to indicate a red incident.
Caretakers have to confirm the incident red message for each client.

We prevent undesirable use and setting changes of the smartphones using
the following arrangements.

– It is conceivable that a user turns off WiFi to disconnect from the robot and
doesn’t receive incident messages. If WiFi is turned off the application will
switch it on and reconnect to network.
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a) b) c) d)

Fig. 5. a) A status display for incident green shows battery charge, textual position
description and status. b) A control display shows floor plan and an incident state
dependent icon marks the robot position. Beneath the map is a textual position de-
scription. Caretakers can set a new target position on the map and send the robot
using the button. The smartphone’s menu button allows the return to status display.
c) Status display shows status message for incident state yellow. In this case there is
an uncertain people hypothesis. d) Incident display showing robot location and camera
stream. The detected person is centered in the image. Alert sound and vibration of
mobile devices stops if the red button is pressed.

– Our application returns to the screen if it has been switched to background.
– We disable muting the smartphone. A red status incident sets the volume to

a configured value and plays a message sound.
Another arrangement for all clients is an application execution after boot up

of the device. Staff members do not need to take care of starting the application,
thus the risk of inaccurate device usage is minimized.

5 Preliminary Test Results

Prior to the tests in the night shift, during daytime, the robot acted as card player
and infotainment system to give the elderlies the chance to become accustomed
to the robot’s presence. After that, we executed tests with a limited number of
caretakers and elderly people during night shifts. The circumstance, that only
a limited number of test persons were available is mitigated by Nielsen and
Landauer’s proposal [13], that only a few test persons are sufficient to get a first
estimation of a system’s usability.

Successive interviews with involved residents and caretakers showed an ap-
preciation of the robot. Caretakers approved the robot because they had time
to do important work instead of patroling on the floors themselves. Residents
enjoyed the presence of the patroling robot and its appearance. The robot was
a diversion in their routine and a eye-catcher in the retirement home. Despite
the limited number of test persons, our test results are a first baseline to as-
sume a high acceptance of our patrol system. Suggestions coming from the care
personnel overlap with our already planned extensions (confer Section 6).

Caretakers performed their work while the robot patrolled the floor. Through-
out the duration of the tests, the amount of hypotheses that had to be investi-
gated diminished as expected. This means that the system learned false-positive
hypotheses correctly during the test phase, resulting in fewer mistaken red inci-
dents over time. Wandering residents were recognized correctly.
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6 Conclusion and Outlook

This publication presents a system to support caretakers in stationary retirement
home during night shift. A mobile robot can patrol on the corridors instead of a
caretaker. If an incident occurs all connected client devices will receive a message
containing incident detail so they can react. While the robot fulfills the patrol
task, caretakers have time to do other tasks.

Further work will extend the current system with person-oriented behavior
and security features. This will improve security for residents as well as support
for caretakers. An important step is to perform more user studies to consider user
requests. Results will show user acceptance, weak points during work, impact on
the caretakers time management and number of incidents during night shift.

Different adaptive approaches can be used to reduce the number of false red
incidents. Based on a distinction between personnel and residents, the system
can learn which residents are allowed by staff to leave their room at night to
fetch water, for example. Due to this adaptive behaviour, only those who are
not allowed to be on the corridor will be reported over time.

Currently, we use a straight forward way to detect persons in the robot
surroundings. This is far from reliable. However it serves for proof of concept.
To make our approach more robust it is also possible to distinguish people from
movable objects standing on the floor using results of background subtraction.
Differences between the current map and the stored map can be used to classify it
as a movable object or person. Object representations can be learned adaptively.

Reactions of the current system are limited to sending a message to all clients
if the robot detects a red status incident. This applies for people detection during
patrol on corridors too. Stationary retirement home’s residents mainly suffer
from various forms of dementia. They tend to forget where they are and possibly
leave the retirement home until a caretaker is on location. At present the robot
is unable to prevent residents from leaving. A simple possibility to do that is to
try a conversation. Small-talk is meant to stop the wandering elderly and gain
time for arrival of a caretaker. An initial dialogue system can be trained for
communication with residents suffer from dementia. The longer the wandering
resident is prevented from continuing to walk, the better the dialogue system is.
Personal information of the resident allows a more personalized dialogue, which
should bind the resident longer and give the staff more time to arrive.

Wandering is a potential risk for elderly people. In addition to a small-talk
function to stop them, we plan to extend the module for people detection. This
extension includes fall prevention and fall detection. Both are important func-
tions in an environment where the fall risk is increased. In the case of recognizing
a fallen person the robot informs caretakers by sending a state red incident mes-
sage to all client devices. Additionally, the robot has the ability to speak with
the fallen person to inform her or him that help will arrive shortly. A dialogue
system as well as fall prevention and fall detection require components of soft
computing to achieve adaptive behavior.

All mentioned additions promise to increase support potential for a time-
consuming task during night shift for staff and additional security for residents.
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The suggested night shift system will serve as a test bed for multiple methods
in the context of adaptive dialogue strategies, adaptive strategies for estimation
of interest for communication with the robot, fall prevention and fall detection,
robot navigation, robot motion planning, mapping, people detection and recog-
nition.
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Abstract. In this paper we investigate the effects of domain awareness
when using a pre-trained covolutional neural network (CNN). Usually,
the only adaptation when using such a CNN for the same task is to nor-
malize the input data by an individual RGB mean from own data. We
show that it plays a major role whether the test domain was included
during training and if training was aware of domains. For this we investi-
gate generalization over few cameras in a road detection task as a domain
transfer scenario. We train CNNs for all combinations of used cameras
and test each camera individually. We apply RGB mean subtraction in
three different cases of domain awareness during training and test. Our
results reveal a harmful effect if the test domain was included during the
network training, but not considered as an individual domain.

1 Introduction

In recent years deep neural networks showed impressive results on several large-
scale object recognition benchmarks [7, 13]. However, when such pre-trained net-
works are applied on images of a different benchmark the observed performance
can be substantially reduced. This problem is referred to as domain transfer. A
standard way to minimize the effects of domain transfer is to adapt some pa-
rameters of the pre-trained network to the target domain, e.g. usually the input
data is normalized using the RGB mean of the target domain.

Most domain transfer studies focus on the transfer from a single (or multi-
ple) source domain(s) to a single new target domain only [10, 16]. This is the
most difficult case which we will call the new -case of generalization. Often these
results are interpreted in relation to the simplest case, where source and target
domain are the same [14, 15]. We call this the same-case. Only rarely the case is
considered that the target domain was one of multiple source domains (e.g. [6]).
From our point of view this case needs to be considered more, since download-
able networks are usually trained on huge image collections from the internet
which potentially contain many different domains. So e.g. the test data might be
from a camera that was also used to acquire some images of the training data. In
our work we will focus on this part-case of generalization and show that domain
adaptation can be harmful if training was not aware of domains.

Usually the entire training set is treated as a single domain and the parame-
ters used to normalize the input are generated from the entire training set. Later,
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Fig. 1. Three different cases of domain awareness.

during test the parameters are re-estimated for the target domain. This is the
standard workflow for using a pre-trained network and we call this case of domain
awareness the test-aware case (see Fig. 1a). Since we saw a weak performance for
the test-aware case in the part-case of generalization, we concluded this might be
due to inconsistent normalization for the same domain during training and test.
To evaluate this further we additionally tested two consistent cases of domain
awareness. The never -aware case and the always-aware case. The never -aware
case (see Fig. 1b) is unaware of domains during both, training and test. Here,
the normalization parameters are also calculated over the entire training set but
later the same parameter set is used to normalize data of the test domain as well.
However, this way of handling domain transfer is not recommended since there
is no real adaptation to the test domain and a weak performance for the new -
case of generalization can be expected. The second consistent awareness case we
investigated is the always-aware case (see Fig. 1c). It is aware of domains while
training and test and computes during training the parameters individually for
each domain. However, considering all domains during training is usually not
feasible because there might be many which might also overlap.

In our work we extensively evaluate all generalization cases, the same-case
the part-case and the new -case with all three cases of domain awareness, the
test-aware case, the never -aware case and the always-aware case. For this we
have generated a controlled setting to focus on the effects of domain awareness:
1) We have chosen the task of segmenting an image into road-like-area and non-
road-like-area. Usually this is done with architectures that model large receptive
fields to take global image relations into account like in [3] and [1]. But we fo-
cus on classification of small image patches instead, which allows us the use of
a simple CNN architecture. This is sufficient for our goal to show the general
effects of domain awareness.
2) We have a controlled dataset where the domains are three cameras that
strongly differ in their sensitivity of color channels. Usually other datasets like
the frequently used Office dataset proposed in [12] are less controlled as they
are partly a result of a web search and might hide several unknown domains
inside. Hence, results on these datasets are caused by a mixture of effects, which
hinders a qualitative interpretation.
3) We use the the standard input normalization method of RGB mean subtrac-
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tion [7, 13], which is usually done before training a CNN to improve convergence
speed [9], as a simple unsupervised way of domain adaptation. This means we
interpret the ”Params.” from Fig. 1 as the RGB mean. In general, more sophis-
ticated approaches of domain adaptation range from nonlinear transformations
[8] to complex domain confusion losses within CNNs [16]. Nevertheless, there are
methods almost as simple as our method as e.g. batch normalization [4], which
was originally designed for improving convergence speed by normalizing mean
and standard deviation of the batch-wise output of several layers. In [10] they
showed that this technique can be successfully used for domain adaptation by
re-estimating the normalization parameters for the target data.

The remainder of the paper is structured as follows. In Sec. 2, we describe the
used image data and the neural network architecture of our experiments. The
results for the different cases of domain awareness will be extensively compared
for the different generalization cases in Sec. 3. Finally, we give a conclusion and
a short outlook on future work in Sec. 4.

2 Data & Methods

To test the generalization over the three used cameras, we train an individual
CNN for each single camera, for each possible pair, and for all cameras together.
Each of these seven networks is tested against each individual camera. This
means our tests include the three previously presented generalization cases, the
same-case, the part-case and the new -case. We repeat this extensive evaluation
for the different cases of domain awareness. Before comparing these results in
Sec. 3 we will give further details on the used data and methods in the following.

2.1 Data

For our experiments we distinguished between images of three RGB cameras,
each looking to the front of the ego car. Our first data set is the publicly avail-
able KITTI Road Benchmark [2]. The images from the other two datasets were
acquired in-house using a BlackMagic1 (BMAG) and an ELESYS2 camera. The
images of each camera stem from different recording sessions, containing dif-
ferent routes, illuminations and weather conditions. This increases the chance
that the prominent domains in our data are the different cameras and not some
hidden condition of the environment. This notion is confirmed in Table 1 when
looking at the channel-wise means over pixels of training patches, where we see
a strong difference of individual channels over cameras Each image comes with
a manual annotation of one or more road-like-area polygons. In general, image
patches whose center is in the road-like-area are used as positive examples and
all other patches as negative examples. We limit the extraction of patches with
a size of 37 × 37 pixels to a region that corresponds to a rectangular corridor
in the metric Bird’s-Eye-View3[11] space. With this we mainly ensure that the

1 http://www.blackmagicdesign.com/de/products/blackmagicpocketcinemacamera
2 Special in-house made, no external reference available
3 The mounting position and angles are known for each camera
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Table 1. Data statistics of the different cameras.

KITTI BMAG ELESYS

Red channel mean 96.5 115.3 83.3
Green channel mean 97.0 136.0 89.6
Blue channel mean 92.2 132.0 55.5

#Images 289 113 166
Training #Samples 2,312,000 5,085,000 2,822,000

Pos./neg. 1/1 1/1 1/1

#Images 290 111 166
Test #Samples 42,165,099 85,041,497 49,325,077

Pos./neg. ∼1/1 ∼2/1 ∼2/1

Fig. 2. Example image of BMAG camera. The colored area in the perspective view
(left) denotes pixels inside the metric Bird’s-Eye-View corridor (right).

negative patches focus on regions close to the road, while e.g. removing every-
thing above the horizon, like the sky. In Fig. 2 we show an image of the BMAG
camera where the region that corresponds to the Bird’s-Eye-View corridor in
our work is highlighted.

We split the available images for each camera into a training and a test
set of similar size and extract patches with a size corresponding to the input
dimension of our neural network. To speed up training we substantially reduced
the number of available patches by randomly choosing roughly 5% of them, and
we also balanced the number of positive and negative samples. During test we
classify all negative and positive patches inside the Bird’s-Eye-View corridor.
The numbers of used training and test patches are given in Table 1. It can be
seen that the number of training samples is imbalanced over different cameras.
However, we experimented with more complex balancing strategies but could
not find any substantial change in reported results.
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Fig. 3. CNN architecture. The dimension of each layer is shown in white color.

2.2 Network Architecture & Training

For our experiments we use RGB mean subtraction as a simple form of domain
adaptation. This method is relatively cheap, as it is a preprocessing step whose
few parameters can be estimated from a collection of images without any ground-
truth information. More specifically, we used a global channel-wise RGB mean,
i.e. we subtracted from each color channel a fixed value for normalization. This
corresponds to the notion that the domains that we like to generalize over are
defined by different sensitivities of the color channels among the cameras. We use
a CNN to predict for a patch of 37×37 pixels whether it belongs to road-like-area
or non-road-like-area. The architecture of the network is shown in Fig. 3 together
with some example patches. We implemented the CNN in Caffe [5] and optimized
it with Stochastic Gradient Descent using the cross-entropy classification loss.
We used a batch size of 50 and trained our architecture for 20 epochs. The
initial learning rate was set to 0.001 and constantly halved after ten percent of
the maximum iterations. Furthermore, we used a momentum parameter of 0.9,
a weight decay factor of 0.0005, and 50% dropout on the output of the first
fully-connected layer.

3 Results

During test we interpret the value of the road-like-area neuron in the final net-
work layer as a confidence score and measure performance using Average Preci-
sion (AP). However, the absolute performance is not in focus, but the change in
performance for the different generalization and domain awareness cases. Please
note that AP results for the KITTI Road Benchmark [2] are reported for the
Bird’s-Eye-View space, while we measure performance in image space.

The results of the test-aware case (see Fig. 1a) are presented in the cor-
responding column in Table 2, where the upper rows show the results for all
experiments and the three lower rows give the averaged results for the three
generalization cases. The performance is consistently high whenever the test
camera is the only training camera, i.e. in the same-case. In the part-case, the
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Table 2. Results of different cases of domain awareness for different combinations of
training and test cameras (AP in %). Blue represents the same-case, gray the part-case
and green the new -case. Numbers in gray indicate unchanged results in comparison to
previous cases of domain awareness. The averaged results are shown at the bottom.

Used cameras Domain awareness
Training Test Test Never Always

KITTI KITTI 93.94 93.94 93.94

KITTI + BMAG KITTI 89.66 93.76 93.64
KITTI + ELESYS KITTI 90.12 94.04 93.93
KITTI + BMAG + ELESYS KITTI 88.03 93.72 93.82

BMAG KITTI 85.99 58.57 85.99
ELESYS KITTI 90.10 86.52 90.10
BMAG + ELESYS KITTI 78.55 59.99 90.04

BMAG BMAG 96.29 96.29 96.29

BMAG + KITTI BMAG 95.65 96.27 96.25
BMAG + ELESYS BMAG 93.12 96.31 96.24
BMAG + KITTI + ELESYS BMAG 94.80 96.21 96.28

KITTI BMAG 93.28 73.68 93.28
ELESYS BMAG 93.70 89.88 93.70
KITTI + ELESYS BMAG 80.65 80.08 93.46

ELESYS ELESYS 95.97 95.97 95.97

ELESYS + KITTI ELESYS 91.33 96.02 95.97
ELESYS + BMAG ELESYS 86.68 95.77 95.91
ELESYS + KITTI + BMAG ELESYS 80.25 95.80 95.88

KITTI ELESYS 86.67 77.12 86.67
BMAG ELESYS 84.11 74.35 84.11
KITTI + BMAG ELESYS 80.66 75.46 80.02

Same 95.40 95.40 95.40
Averages Part 89.96 95.32 95.32

New 85.97 75.07 88.60

performance drops to 89.96 AP on average, which is surprising, since the net-
work saw similar data already while training and is expected to generalize over
such data. A possible explanation for this effect is the inconsistent handling of
the same camera during training and test. During test the mean of the consid-
ered camera is used, while during training the mean over this camera and one
or two other cameras is computed. We think that the CNN learned to special-
ize too much on the combination of camera data and preprocessing and later is
basically surprised to see a familiar camera but with changed characteristics of
input channels. For the new -case we get the worst performance with 85.97 AP
on average, which could be expected, since the cameras differ besides the RGB
means also in factors like image noise or resolution.
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In the never-aware case (see Fig. 1b) the mean that was used while training
is also used for normalizing the test images. This strategy does not influence the
same-case. As expected, since there is no real domain adaptation, it strongly
affects the new-case where the average performance is only 75.07 AP. A visual
analysis revealed that for the new -case the predicted confidence for road-like-
area is either quite high or low over the test set. This is a potential indicator
that the different characteristics of the input channels of the new camera drive
the trained network outside its working range. Interestingly, which is one major
result of this work, we see a significant enhancement of performance for the part-
case. This shows that consistent treatment of domains while training and test is
for this case even better than domain adaptation.

In the always-aware case the data of each camera is normalized indepen-
dently during training and test (see Fig. 1c). With this we also avoid the incon-
sistency in the part-case, as now each camera uses its own mean during training
and test. Correspondingly, we see in Table 2 that the performance for this case
stays at the high level of the never -aware case. Furthermore, in the new -case
on KITTI we also see a strong improvement when trained on BMAG+ELESYS,
and also for BMAG when trained on KITTI+ELESYS. A reason for this can
be that the awareness of domains during training helps the classifier to focus
resources on a more general and consistent representation of road-like-area.

4 Conclusion

In this paper we investigated the effects of domain awareness in a controlled
setting that was based on a simple road segmentation task with a CNN and RGB
mean normalization as a simple domain adaptation method. We could reveal that
the standard workflow of re-estimating the normalization parameters for the test
domain can have a harmful effect if the test domain was already involved among
other domains during training. Here, the performance is significantly reduced if
a domain is not treated consistently during training and test. However, due to
insufficient knowledge about domains when using a pre-trained network it is often
not clear whether the test domain was involved and how it was treated if it was
one of several. To summarize, the major outcome of our work is that for practice
it is important to find out whether the training data of a pre-trained network
contained already the target domain, and if so, if the optimization process was
aware of different domains and then acting according to that. We think that our
rather controlled domain setting together with the simple adaptation strategy
strongly helped to discover some of the reported effects, but in general, we expect
that our results also hold for less controlled settings. To test this will be the
primary direction for future work.
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Abstract. Accurate localization of the ego vehicle is a key require-
ment for contemporary and feature advanced driver assistance systems
(ADAS). Map relative localization can be achieved by aligning monocular
front camera images to low precision map data. An initial approach uses
an iterative strategy to match histogram of oriented gradients (HoG)
features. We propose two new strategies for improving this approach:
First, we replace the original feature extraction step by HoG computa-
tion on a semantic segmentation of the camera image. Secondly, we train
an end-to-end convolutional neural network (CNN) to directly predict
the correct alignment. We evaluate the approach on a data set recorded
on rural roads in German cities on which both approaches significantly
improve alignment accuracy. Furthermore we show that an end-to-end
learning approach can successfully be used in this context allowing the
alignment to be performed in a single forward pass. In this context we
also present current challenges like obtaining accurate ground truth data.

1 Introduction

Future ADAS attempt to offer advanced functionality such as risk prediction
or lane level navigation. Therefore knowledge of the ego vehicles position and
orientation relative to the map is required. Standard absolute localization ap-
proaches relying on GNSS fail since they do not account for errors related to
the map i.e. an offset to real world coordinates. To circumvent this problem,
some approaches for map relative localization have been investigated, i.e. [1].
While offering highly accurate localization such strategies mostly require maps
build with expensive equipment. As an attractive alternative Cao et al. [2] show
that monocular camera images and low precision maps can be used for inexpen-
sive self-localization in the context of ADAS. This paper presents strategies for
improving this original approach.

2 Improvement Strategies

The algorithm from Cao et al. aims at correcting the coarse position estimation
provided by GNSS. To that end a perspective view of the map (a candidate
image) is created. To determine a position correction multiple candidate images
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(a) (b) (c) (d)

Fig. 1: Candidates for the camera image in (a) from the KITTI data set [4].

with different offsets from the GNSS position are generated (Figure 1). The
corrected position is the initial GNSS position plus the offset minimizing the
cosine distance between HoG features [3] extracted from both the candidate and
the camera image. We propose two improvements to the original approach which
we evaluate focusing on lateral translations. As a first strategy we want to reduce
the effects of dominant non-road edges in the camera image by partly replacing
the feature extraction step of the original algorithm. This is done by using a
pre-trained segmentation model presented in [5] to predict the road area in the
camera image before applying HoG. As a second approach we will eliminate the
iterative nature of the algorithm by directly learning the correct alignment. For
that we use a CNN that takes candidate and camera image as input. The output
is the lateral translation d that aligns candidate to camera image.

3 Experimental Setting and Results

We evaluate all three approaches on a data set of 540 positions from two KITTI
streams [4] split into 80% train and 20% test subsets and use the KITTI posi-
tioning data as ground truth. For each image in the training set 200 candidate
images are rendered with offsets dr ∈ [−2m, 2m]. The goal of the evaluation
is to predict these offsets. For both HoG based approaches we determine the
offset by optimizing across 31 lateral translations (dh ∈ [−3m, 3m]) around the
starting position. The CNN approach predicts the offset directly. We consider
the mean absolute (mae) and root mean squared error (rmse) in lateral transla-
tion with respect to ground truth. Figure 2 shows the predictions for all three
approaches on the test set. The HoG baseline algorithm results in an mae/rmse
of 0.79m/1.37m, the HoG approach with segmentation produces 0.33m/0.55m
and the CNN results in 0.2m/0.3m.

4 Conclusion and Outlook

The presented results demonstrate that both approaches significantly improve
alignment accuracy. The better performance of the CNN is likely due to the
fact that the data set has a low diversity of driving situations suggesting that
the model is over fitting to situations contained therein. More specifically this
means that the model is likely to perform worse on other data then the current
data set. However, this remains to be tested and the current results still provide
indications for the general feasibility of the approach. A challenge is that cur-
rent ground truth data is not always accurate which causes the model to learn
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Fig. 2: Performance of the three algorithms on the test set.

a visually imprecise alignment. In future work we will test the approach on a
data set containing more diverse driving situations. However, obtaining accurate
ground truth is a major challenge which might require manual generation. Fur-
thermore we will extend the evaluation beyond a single lateral degree of freedom
where we would like to evaluate the algorithm’s run time as well. In that case
we expect alignment to be dramatically slower for the HoG approaches needing
to optimize offsets in multiple dimensions i.e. longitudinal, lateral and altitude.
In contrast to that the CNN approach would still be able to predict the correct
offset in a single forward pass. This has been demonstrated in other domains
[6], but still remains to be proven here which is a challenging problem because
visual alignment might be ambiguous i.e. regarding longitudinal translation on
a straight road.
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Abstract. Robust classification of data by machine learning tools
should be able to deal with variations of objects like different repre-
sentations, data noise or drifts. In this paper we discuss the differential-
geometric concept of Grassmann manifolds for variation-tolerant classifi-
cation learning by means of learning vector quantization (LVQ). Particu-
larly, we review the mathematical foundations of Grassmann manifolds
and show how to apply them in the LVQ framework.

1 Introduction

Pattern recognition and classification learning frequently has to deal variations
of objects, which lead to respective alterations in the describing feature vector
x ∈ Rn. Examples are different illuminations or rotations in images or genome
variations for different species in genome data analysis. Otherwise, simple data
noise or data drift can also lead to sever variations in feature vectors. Those data
can be seen as sample vectors belonging to a data space describing the object
together with its variations.

Prototype based classification learning aims to distribute reference vectors
in the data space to detect the class distributions and to represent the data
according to the nearest prototype principle [1]. For this purpose, the most im-
portant ingredient is the choice of an appropriate dissimilarity measure to judge
the (dis-)similarities between data and prototypes [2]. This becomes essentially
crucial in the light of the above mentioned versatilities in data.

Several approaches exist to tackle these problems adequately. Frequently,
particular preprocessing tools are applied like filtering, data clustering, di-
mensionality reduction or compression to name just a few. For sequence data
y = {y1, . . . , yD+N} the time history can be used to identify the correct pattern
also in the presence of noise or other data distortions. For example, if it is assu-
med that a hidden (linear) dynamical system is generating the time series, the
Hankel matrix

H (y) =


y1 y2 y3 . . . yD
y2 y3 y4 . . . yD+1

y3 y4 y5 . . . yD+2

...
...

...
. . .

...
yN yN+1 yN+2 . . . yD+N

 (1)
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can be considered as an appropriate data feature, because the regarding linear
subspace H (H) spanned by this matrix shows several invariance properties for
time series analysis like drifts or shifts within the system [3]. One prominent
distance for Hankel matrices is the Frobenius-norm

‖H‖F =
√

trace (P) (2)

with the product P = H∗H. Yet, to keep the capacity of the underlying li-
near subspace H (H) regarding the previously mentioned affine transformations,
frequently dynamic subspace angles based dissimilarities are used for matrix
comparisons instead of the distance based on the Frobenius-norm [4].1

The geometric approach of tangential spaces assumes that all feature vectors
of the data regarding a certain object belong to a manifold. Instead of feature
vector comparisons one can investigate the similarities between those manifolds
by means of tangent metrics [5]. Yet, the determination of the tangent metric
requires the precise estimation of the tangent spaces of the data manifolds [6],
which is usually a non-trivial task [7].

A promising alternative to these approaches is provided by application of the
Grassmann manifold framework equipped with the respective Riemann geometry
[8]. Here, several data vectors describing the same object are firstly collected into
a single matrix. Each matrix constitutes a point in the manifold, which then can
be compared in terms of distances regarding the underlying Riemann geometry.

In this paper we explain how the latter Grassmann manifold approach can
be adopted for prototype based classification learning. Particularly, we consider
the family of learning vector quantization networks (LVQ), originally proposed
in [9]. Here we will focus on more modern variants like the generalized learning
vector quantization (GLVQ,[10]) with gradient descent learning as well as their
median and relational counterparts [11,12].

For this purpose, first we briefly review the GLVQ approaches. Thereafter, we
explain the concept of Grassmann manifolds and respective geometries for robust
data analysis. Particularly, we relate different metric concepts for Grassmann
manifolds to the GLVQ variants.

2 Generalized Learning Vector Quantization

We start briefly describing the generalized learning vector quantization approach
(GLVQ) as one of the most prominent, easy to interpret and robust classifiers.
We assume data classes 1, . . . , C and data x ∈ X ⊆ Rn. The aim of GLVQ is

1 Let BX and BY be orthonormal bases for the subspaces H (X) and H (Y) with the
cardinalities m (X) and m (Y), respectively. Then the subspace angels θ1, . . . , θm
with m = min (m (X) ,m (Y)) are recursively defined as

θl = max
xl∈BX

max
yl∈BY

arccos
(∣∣〈xl, yl〉E∣∣)

subject to the ortho-normalization restrictions 〈xj , xl〉E = δjl and 〈yj , yl〉E = δjl for
j = 1, . . . , l − 1.
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to distribute a set W = {w1, . . . ,wM} of prototype vectors such that we can
assign a class label c (x) to each data point x ∈ X. Thereby, each prototype
wj is equipped with a class labels c (wj) such that at least one prototype is
responsible for each class. Then the class assignment c (x) = c

(
ws(x)

)
for a data

sample x is realized by means of a winner-take-all competition (WTAC)

s (x) = argminj=1...M (d (x,wj)) (3)

where d is a given dissimilarity measure [2], frequently the squared Euclidean
metric. We denote ws(x) as the winner prototype of the competition. GLVQ
takes as cost function

EGLVQ (W ) =

N∑
k=1

ϕ (µ (xk,W )) (4)

to be minimized during learning of labeled training data. It approximates the
overall classification error [13]. Thereby, ϕ (z) is a monotonically increasing
function frequently chosen as the identity function id (z) = z or the sigmoid
function φ (z, θ) = 1

1+exp( zθ )
. The function

µ (x,W ) =
d (x,w+)− d (x,w−)

d (x,w+) + d (x,w−)
(5)

is the so-called classifier function. Here, w+ is the best matching prototype
regarding a training vector x with label c (x) with the same class label whereas
w− denotes the best matching prototype of all prototypes of the other classes.
Thus µ (x,W ) ∈ [−1, 1] takes negative values if x is correctly classified.

2.1 Stochastic Gradient Descent Learning in GLVQ

Learning in GLVQ often takes place as stochastic gradient descent learning
(SGDL) with respect to the prototype vectors for EGLVQ according to

∆w± ∝ −ξ
(
x,w±

)
· ∂µ

∂d± (x)

∂d± (x)

∂w±
(6)

requiring the differentiability of the dissimilarity measure d. The scaling factor

ξ
(
x,w±

)
=
∂E (xk)

∂ϕ
· ∂ϕ
∂µ

(7)

is obtained applying the chain rule for differentiation with the short hand nota-
tion d± (x) = d (x,w±).

2.2 Median and Relational GLVQ

Median and relational GLVQ only require a given dissimilarity matrix D con-
taining the dissimilarity values dij = d (xi,xj) between data. The matrix D is
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said to be Euclidean embeddable if there exist a mapping x̃ = ψ (x) such that
dij = dE (x̃i, x̃j) is valid, whereby dE (x̃i, x̃j) is the Euclidean distance between
x̃i and x̃j . A sufficient condition for the Euclidicity of D is that the corresponding
similarity matrix S is positive semi-definite [14].

Median-GLVQ optimizes the GLVQ cost function (4) by an Expectation-
Maximization approach [11]. Here the prototypes are restricted to be data ob-
jects. Yet, the optimization still works under weak assumptions regarding the
matrix D, particularly the Euclidicity may be violated. If the Euclidicity of D
is valid, Relational GLVQ can be applied. In this approach the prototypes are
assumed to be linear combination of the data, i.e. we have wl =

∑
j αljxj and

the prototype update is realized as SGDL with respect to the coefficients αlj

[12].

3 Grassmann Manifolds, Riemann Metrics and Related
Data Dissimilarities

The main assumption for the use of the Grassmann manifold concept is that
the variations of an object/class c are reflected in the feature vectors xj ∈ Rn

assigned to this class/object. Therefore, k randomly selected feature vectors all
belonging to a certain class are collected into a so-called k-frame constituting
a matrix X ∈ Rn×k with 0 < k ≤ n in general. However, in machine learning
usually k � n is chosen. The resulting matrix X generates a linear subspace
H (X) with dimensionality m ≤ k.

The Grassmann manifold Gnk equipped with the Riemann geometry is the
space of all k-dimensional linear subspaces (hyperplanes) H [8], i.e. a matrix
X determines via H (X) a certain point in the Grassmann manifold Gnk , see
Fig. (1). Now we are able to compare object representations X and Y by a
distance between their linear subspaces H (X) and H (Y) in the Grassmann ma-
nifold Gnk . For this purpose, several dissimilarity measures are known, most of
them based on subspace angles (SSA) θ1, . . . , θm between the subspaces with
m = min (rank (X) , rank (Y)) [15]. Most common dissimilarities are the geode-
sic distance along the geodesic path in the manifold (see Fig.(1))

dg (H (X) ,H (Y)) =

√√√√ k∑
j=1

θ2j (8)

and the chordal distance

dc (H (X) ,H (Y)) =

√√√√ k∑
j=1

sin2 (θj) (9)

as described [16]. Frequently, the simple approximation

dg (H (X) ,H (Y)) = θ1 (10)
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Fig. 1. Illustration of a Grassmann manifold Gnk . Several feature vectors of a
class/object are collected in matrices of size n× k (usually with k � n), each of them
generating linear subspaces H. Then, these matrices constitute points at the Grassmann
manifold. Distances between points are measured in terms of manifold distances. The
geodesic distance dg (H (X) ,H (Y)) from (8) is the path length along the geodesic path
within the manifold.
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is used instead of (8) or (9) due to the lower computational complexity [17].
However, as pointed out in [4], SSA dissimilarities demand a precise estimation of
the subspaces H (X) and H (Y) to avoid misleading results or, equivalently, they
assume representative matrices X and Y. Yet, this requirement is contradictory
to the assumption of noisy data. To overcome such problems, we can adopt
robust dissimilarity measures developed for Hankel matrix comparisons keeping
in mind that Hankel matrices represent linear dynamical systems by invariant
subspaces. One prominent SSA surrogate dissimilarity measure is

σF (X,Y) = 4−
∥∥∥X̂ + Ŷ

∥∥∥2
F

(11)

suggested in [18], with X̂ = XXT

‖XXT ‖F
and Y2 = YYT

‖YYT ‖F
. Clearly, σF (X,Y) is not

longer a mathematical distance [19], but it remains to be a semi-metric [14,2].

Yet, in [20,21] it is argued that the similarity measure sF (X,Y) =
∥∥∥X̂∗Ŷ∥∥∥2

F
is more robust than σF (X,Y). It fulfills the inequality 0 ≤ sF (X,Y) =∣∣∣〈X̂, Ŷ〉

F

∣∣∣ ≤ ∥∥∥X̂∥∥∥
F
·
∥∥∥Ŷ∥∥∥

F
according to the Cauchy-Schwarz-inequality where

〈A,B〉F =
∑

i

∑
j aijbij is the Frobenius inner product. Because both X̂ and Ŷ

are normalized matrices, we get sF (H1,H2) ≤ 1. Hence, the quantity

δF (X,Y) = 1−
∣∣∣〈X̂, Ŷ〉

F

∣∣∣ (12)

is a dissimilarity measure (semi-metric).
For the latter distance exists an isometrically embedding into the Euclidean

space [17]. The geodesic distance realizes a non-Euclidean embedding. Both me-
trics can be seen also as examples to compare sets of vectors stored in the
matrices X and Y, i.e. they are particular realizations of a Hausdorff-metric
[22].

4 Grassmann Manifold Dissimilarities for USE in GLVQ

For application of GLVQ to data classification by means of Grassmann manifolds,
the input data are collected in k-frames, i.e. matrices X ∈ Rn×k with 0 < k ≤ n.
The prototypes are also matrices Wj ∈ Rn×k as described before.

Doing so, all previously introduced dissimilarities (8) (12) can be used imme-
diately in the Median-GLVQ. Further, the semi-metric σF (X,Wj) is differentia-
ble with respect to the prototype matrix Wj . However, the resulting complicate
derivative expressions do not recommend an application in GLVQ due to the
probable numerical instabilities. Otherwise, the δF measure is generally not dif-
ferentiable because of the absolute value operator inside.

Although at first glance the SSA-based approaches seem to be inappropriate
for SGDL in GLVQ variants, there are interesting options: For the chordal metric
dc from (9) exists an isometrically embedding into the Euclidean space [17].
Hence, the relational GLVQ is applicable with the prototypes here are linear
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combinations of the k-frames, i.e. Wj =
∑

l αjlXl and SGDL is carried out with
respect to the linear coefficients αjl.

For the geodesic metric the things become more subtle but are still ma-
nageable. Particularly, the prototypes can be moved along the geodesic path as
suggested in [17] for unsupervised vector quantization learning by self-organizing
maps. Following this paper, the geodesic path G (τ) between H (X) for a given
k-frame X with rank k and H (W) for a prototype W with rank k in the Gras-
smann manifold Gnk is given as

G (τ,X,W) = X ·V · cos (Θ) t+ U sin (Θ) t (13)

with G (0,X,W) = X and G (1,X,W) = W are valid . Here, the quantities U,
Θ, and V are obtained from the singular value decomposition

UΣV =
(
I−X ·XT

)
W
(
XTW

)−1
(14)

together with Θ = tan (Σ). If XTW is not invertible, the pseudo-inverse can
be applied in (14) for approximation. Further, if the matrices X and W do not
have full rank k respective subspace representations for H (X) and H (W) have
to be applied [23]. The prototype movement in this variant takes place as

∆W ∝W + ξ
(
X,W±) ·G (ε,X,W) (15)

with ξ (X,W±) playing the same scaling factor role as ξ (x,w±) from (7) for
standard GLVQ.

5 Conclusion

Data representation in terms of data clouds in Grassmann manifolds is a geome-
tric approach to deal with noisy data. In this contribution we investigate, how
the concept of Grassmann manifolds can be incorporated into the framework of
learning vector quantization approaches for prototype based classification. Par-
ticularly, we discuss several distance and dissimilarity measures for Grassmann
manifolds in the light of a possible application for the prototype based classifier.
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