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Abstract

The analysis of large datasets is often based on domain specific dissimilarity mea-
sures. Such measures can be found for example in the life-sciences but also in fields
like web mining or social networks. These measures can generate similarities or dis-
similarities and may be metric or non-metric, often without an explicite vector space.
Metric similarity data are easily processed by kernel methods, whereas for dissimilarity
data only few specific methods are available or costly transformations are needed to
obtain a valid kernel matrix. If the data additionally are non-euclidean further correc-
tions are needed and it is argued that transformations to a kernel space, are not only
costly but further can lead to information loss. We consider the linear processing of
metric similarity and dissimilarity data and show procedures to do data analysis with
linear costs for both types of data.
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1 Introduction

In many application areas such as bioinformatics, technical systems, or the web, elec-
tronic data sets are increasing rapidly with respect to size and complexity and domain
specific (dis-)similarity measures, replacing or complementing Euclidean measures are
more and more common. Machine learning has revolutionized the possibility to deal
with large electronic data sets in these areas by offering powerful tools to automatically
extract a regularity from given data. Popular approaches provide diverse techniques
for data structuring and data inspection. Visualization, clustering, or classification still
constitute one of the most common tasks in this context [1, 4, 20, 9].

Many classical machine learning techniques, have been proposed for Euclidean
vectorial data. Modern data are often associated to dedicated structures which make
a representation in terms of Euclidean vectors difficult: biological sequence data, text
files, XML data, trees, graphs, or time series, for example [15, 7]. These data are
inherently compositional and a feature representation leads to information loss. As an
alternative, a dedicated dissimilarity measure such as pairwise alignment, or kernels
for structures can be used as the interface to the data In such cases, machine learning
techniques which can deal with pairwise similarities or dissimilarities have to be used
[12].

Also kernel methods like the Support Vector Machine (SVM) (see e.g.[19]) can be
used for dissimilarity data, but complex preprocessing steps are necessary as dis-
cussed in the following. In fact, as discussed in the work of Pekalska[13], dissimilarity
data can encode information in the euclidean and non-euclidean space and transfor-
mations to obtain a valid kernel may be inappropriate[14]. Native methods for the
analysis of dissimilarity data have been proposed in [13, 24, 6] with quadratic to linear
memory and runtime complexity, the later employing approximation techniques dis-
cussed in the following. To obtain effective scaling these methods employ the Nystöm
approximation, as discussed in the following and are based on prototypes. Prototypes
are typical representants in the dataspace of the underlying problem, either in vector
form or implicite by linear combination of known points. Prominent methods of this
type are e.g. k-means, with cluster centers as prototypes or learning vector quantizers,
where characteristic points of a class are determined as prototypes used to model the
underlying classification problem see e.g. [18]. Prototype methods share some nice
properties. They provide sparse models, show good interpretability and can be easily
extended to new requirements [17]. However they are often determined by non-convex,
iterative optimization methods.

Here we will show how metric dissimilarities can be effectively processed by stan-
dard kernel methods with linear costs, also in the transformation step, which, to the
authors best knowledge has not been reported before. The paper is organized as fol-
lows. First we give a short review about transformation methods between similarity
and dissimilarity data and discuss the influence of non-euclidean measures. Subse-
quently, we recall the derivation of the low rank Nyström approximation for similarities
and transfer this principle to dissimilarities. Then we link both strategies effectively to
use kernel methods for the analysis of metric dissimilarity data and show the effective-
ness by different experiments. The paper is closed by a discussion about the results
and a short outlook regarding non-metric cases.
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2 Transformation techniques for dissimilarity data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N . We as-
sume, there exists a dissimilarity measure such that D ∈ RN×N is a dissimilarity matrix
measuring the pairwise dissimilarities Dij = d(vi,vj) between all pairs (vi,vj) ∈ V.
Any reasonable (possibly non-metric) distance measure is sufficient. We assume zero
diagonal d(vi,vi) = 0 for all i and symmetry d(vi,vj) = d(vj,vi) for all i, j.

2.1 Analyzing dissimilarities by means of similarities for small N

For every dissimilarity matrix D, an associated similarity matrix S is induced by a pro-
cess referred to as double centering with costs of O(N2):

S = −JDJ/2

J = (I− 11>/N)

with identity matrix I and vector of ones 1. D is Euclidean if and only if S is posi-
tive semidefinite (psd). This means, we do not observe negative eigenvalues in the
eigenspectrum of the matrix S associated to D.

Many classification techniques have been proposed to deal with such psd kernel
matrices S implicitly such as the support vector machine (SVM). In this case, pre-
processing is required to guarantee psd. In [2] different strategies were analyzed to
obtained valid kernel matrized for a given similarity matrix S, most popular are:

• clipping

• flipping

• shift correction

• vector-representation

The underlying idea is to change the eigenvalue decomposition of the similarity
matrix S such that negative eigenvalues are avoided.

Assuming we have a symmetric similarity matrix S, it has an eigenvalue decom-
position S = UΛU>, with orthonormal matrix U and diagonal matrix Λ collecting the
eigenvalues. In general, p eigenvectors of S have positive eigenvalues and q have
negative eigenvalues, (p, q,N − p− q) is referred to as the signature.

The clip-operation sets all negative eigenvalues to zero, the flip-operation takes the
absolute values, the shift-operation increases all eigenvalues by the absolute value of
the minimal eigenvalue.

The corrected matrix S∗ is obtained as S∗ = UΛ∗U>, with Λ∗ as the modified
eigenvalue matrix using one of the above operations. The obtained matrix S∗ can now
be considered as a valid kernel matrix K.

As an alternative, data points can be treated as vectors which coefficients or vari-
ables are given by the pairwise (dis-)similarity. These vectors can be processed using
standard kernels. However, this view is changing the original data representation and
leads to a finite data space, limited by the number of samples.

Machine Learning Reports 3



Data analysis of (non-)metric (dis-)similarities at linear costs

Figure 1: Schema to illustrate the relation between similarities and dissimilarities.

Interestingly, some operations such as shift do not affect the location of global op-
tima of important cost functions such as the quantization error [11], albeit the transfor-
mation can severely affect the performance of optimization algorithms [8]. The analysis
in [14] indicates that for non-Euclidean dissimilarities corrections like above should be
avoided.

A schematic view of the relations between S and D and its transformations is shown
in Figure 1.

2.2 Analyzing dissimilarities by dedicated methods for small N

Alternatively, techniques have been introduced which directly deal with possibly non-
psd dissimilarities. Given a symmetric dissimilarity with zero diagonal, an embedding of
data in a pseudo-Euclidean vector space determined by the eigenvector decomposition
of S is always possible. A symmetric bilinear form in this space is given by 〈x,y〉p,q =
x>Ip,qy where Ip,q is a diagonal matrix with p entries 1 and q entries −1. Taking the
eigenvectors of S together with the square root of the absolute value of the eigenvalues,
we obtain vectors vi in pseudo-Euclidean space such that Dij = 〈vi − vj,vi − vj〉p,q
holds for every pair of data points. If the number of data is not limited, a generalization
of this concept to Krein spaces with according decomposition is possible [13].

Vector operations can be directly transferred to pseudo-Euclidean space, i.e. we can
deal with prototypes as linear combinations of data in this space. Hence we can use
prototype-based learning explicitly in pseudo-Euclidean space since it relies on vec-
tor operations only. One problem of this explicit transfer is given by the computational
complexity of the embedding which is O(N3), and, further, the fact that out-of-sample
extensions to new data points characterized by pairwise dissimilarities are not immedi-
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ate. Because of this fact, we are interested in efficient techniques which implicitly refer
to this embedding only or can be effectively employ the above mentioned techniques
for metric spaces.

A further strategy is to employ so called relational or proximity learning methods
as discussed in [24] for unsupervised data and in [6] for supervised prototype learning
methods. The underlying models consist of prototypes, which are implicitely defined
as a weighted linear combination of training points:

wj =
∑
i

αjivi with
∑
i

αji = 1 . (1)

But this explicite representation is not necessary because the algorithms are solely
based on a specific form of distance calculations using only the matrix D, the potentially
unknown vector space V is not needed. The basic idea is an implicite computation of
distances d(·, ·) during the model calculation based on the dissimilarity matrix D using
weights α:

d(vi,wj) = [D · αj]i −
1

2
· α>j Dαj (2)

The prototypes identified therein, build the main parameters of the corresponding mod-
els, details can be found in the aforementioned papers. As shown e.g. in [8] the men-
tioned methods do not rely on a metric dissimilarity matrix D, but it is sufficient to have
a symmetric D in a pseudo-euclidean space, with constant self-dissimilarities.

The methods discussed before as suitable for data analysis based on similarity or
dissimilarity data where the number of samples N is rather small, e.g. scales by some
thousand samples. For larger N novel methods have been proposed quite recently,
e.g. based on core-set techniques which can easily deal with multiple million points at
very low costs, but this is only valid for metric similarity data.

In the following we discuss techniques to deal with larger sample sets for, potentially
non-metric similarity and especially dissimilarity data. Especially we show how stan-
dard kernel methods can be used, assuming that for non-metric data, the necessary
transformations have no severe negative influence on the data accuracy. Basically also
core-set techniques become accessible for large potentially non-metric (dis-)similarity
data in this way, but at the cost of multiple additional intermediate steps.

3 Nyström approximation

Standard kernel and prototype methods for dissimilarity data depend on the similarity
matrix S or dissimilarity matrix D, respectively. For kernel methods and more recently
for prototype based learning the usage of the Nystöm approximation is a well known
technique to obtain effective learning algorithms [21, 6, 6].

3.1 Nyström approximation for similarity data

Nyström approximation technique has been proposed in the context of kernel meth-
ods in [21]. Here, we give a short review of this technique. One well known way to
approximate a N × N Gram matrix, is to use a low-rank approximation. This can be
done by computing the eigendecomposition of the kernel K = UΛU>, where U is
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a matrix, whose columns are orthonormal eigenvectors, and Λ is a diagonal matrix
consisting of eigenvalues Λ11 ≥ Λ22 ≥ ... ≥ 0, and keeping only the m eigenspaces
which correspond to the m largest eigenvalues of the matrix. The approximation is
K ≈ UN,mΛm,mUm,N , where the indices refer to the size of the corresponding subma-
trix. The Nyström method approximates a kernel in a similar way, without computing
the eigendecomposition of the whole matrix, which otherwise is an O(N3) operation.

By the Mercer theorem kernels k(x,y) can be expanded by orthonormal eigenfunc-
tions ψi and non negative eigenvalues λi in the form

k(x,y) =
∞∑
i=1

λiψi(x)ψi(y).

The eigenfunctions and eigenvalues of a kernel are defined as the solution of the inte-
gral equation ∫

k(y,x)ψi(x)p(x)dx = λiψi(y),

where p(x) is the probability density of x. This integral can be approximated based on
the Nyström technique by sampling xk i.i.d. according to p(x):

1

m

m∑
k=1

k(y,xk)ψi(x
k) ≈ λiψi(y).

Using this approximation and the matrix eigenproblem equation

K(m)U(m) = U(m)Λ(m)

of the corresponding m ×m Gram sub-matrix K(m) we can derive the approximations
for the eigenfunctions and eigenvalues of the kernel k

λi ≈
λ
(m)
i

m
, ψi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (3)

where u
(m)
i is the ith column of U(m). Thus, we can approximate ψi at an arbitrary point

y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))>.

For a given N × N Gram matrix K we randomly choose m rows and respective
columns. The corresponding indices are also called landmarks, and should be chosen
such that the data distribution is sufficiently covered. A specific analysis about selection
strategies was recently discussed in [22]. We denote these rows by Km,N . Using the
formulas (3) we obtain K̃ =

∑m
i=1 1/λ

(m)
i ·K>m,Nu

(m)
i (u

(m)
i )>Km,N , where λ

(m)
i and u

(m)
i

correspond to the m × m eigenproblem. Thus we get, K−1m,m denoting the Moore-
Penrose pseudoinverse, an approximation of K as

K̃ = K>m,NK−1m,mKm,N . (4)

This approximation is exact, if Km,m has the same rank as K.
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3.2 Nyström approximation for dissimilarity data

For dissimilarity data, a direct transfer is possible, see [5] for preliminary work on this
topic. According to the spectral theorem, a symmetric dissimilarity matrix D can be
diagonalized D = UΛU> with U being a unitary matrix whose column vectors are the
orthonormal eigenvectors of D and Λ a diagonal matrix with the eigenvalues of D,
which can be negative for non-Euclidean distances. Therefore the dissimilarity matrix
can be seen as an operator

d(x,y) =
N∑
i=1

λiψi(x)ψi(y)

where λi ∈ R correspond to the diagonal elements of Λ and ψi denote the eigenfunc-
tions. The only difference to an expansion of a kernel is that the eigenvalues can be
negative. All further mathematical manipulations can be applied in the same way and
we can write in an analogy to the equation 4

D̂ = DN,mD−1m,mD>N,m. (5)

It allows to approximate dissimilarities between a point wk represented by a coeffi-
cient vector αk and a data point xi in the way

d(xi,wk) ≈
[
D>m,N

(
D−1m,m (Dm,Nαk)

)]
i

(6)

−1

2
·
(
α>k D>m,N

)
·(

D−1m,m (Dm,Nαk)
)

with a linear submatrix of m rows and a low rank matrix Dm,m. Performing these matrix
multiplications from right to left, this computation is O(m2N) instead of O(N2), i.e. it is
linear in the number of data points N , assuming fixed approximation m. The amount m
of the landmark points can be differed during the training, whether one is satisfied with
the results or not.

A benefit of the Nyström technique is that it can be decided priorly which linear parts
of the dissimilarity matrix will be used in training. Therefore, it is sufficient to compute
only a linear part of the full dissimilarity matrix D to use these methods. A drawback
of the Nyström approximation is that a good approximation can only be achieved if the
rank of D is kept as much as possible, i.e. the chosen subset should be representative.
The specific selection of the m landmark points has been recently analyzed in [22]. It
was found that best results can be obtained by chosing the potential cluster centers
of the data distribution as landmarks, rather a random subset, to be able to keep m
smallest at lowest representation error. However the determination of these centers
can become complicated for large data sets, since it can be obviously not be based on
a Nyström approximated set. However the effect is not such severe as long as m is not
too small.

4 Transformations of (dis-)similarities with linear costs

For metric similarity data, kernel methods can be applied directly, or in case of large N ,
the Nyström appoximation can be used, as known already very well. We will discuss
non-metric data later and focus now on metric or almost metric dissimilarity data D.
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4.1 Transformation of dissimilarities to similarities

As pointed out before a dissimilarity matrix D can be effectively processed by prototype
learning techniques, again using Nyström approximation in case of large N . Having
however a huge set of effective, in parts convex kernel methods available for similarity
data, we are also interested to use kernel methods for dissimilarity data. This requests
for a transformation of the matrix D to S using double-centering as discussed above.
This transformation contains a summation over whole matrix and thus has quadratical
complexity, which would be prohibitive, if we were to use a linear time technique.

One way to achieve this transformation in linear time, is to use landmark multidi-
mensional scaling (LMDS) [3] which was shown to be a Nyström technique as well [16].
The idea is to sample small amount m of points, called landmarks, compute the corre-
sponding dissimilarity matrix, apply double centering on this matrix and finally project
the data to a low dimensional space using eigenvalue decomposition. The remaining
points can then be projected into the same space, taking into account the distances to
the landmarks, and applying triangulation. Having vectorial representation of the data,
it is then easy to retrieve the similarity matrix as a scalar product between the points.

Another possibility arises if we take into account our key observation1, that we
can combine both transformations, double centering and Nyström approximation, and
make use of the linearity of the both operations. Instead of applying double center-
ing, followed by the Nyström approximation we first approximate the matrix D and then
transform it by double centering, which yields the approximated similarity matrix Ŝ.

Both approaches have the costs of O(m2N) and produce the same results, up to
shift and rotation. This is because LMDS, in contrast to our approach, makes double
centering only on a small part of D, and thus is unable to detect the mean and the pri-
mary components of the whole data set. This can result in an unwanted impact, since
non mean centered similarities might lead to an inferior performance of the algorithms
and, thus, our approach should be used instead.

As mentioned before double centering of a matrix D is defined as:

S = −JDJ/2 (7)

where J = (I − 11>/N) with identity matrix I and vector of ones 1. S is Euclidean if
and only if D is positive semidefinite (psd).

Lets start with a dissimilarity matrix D where we apply double centering, subse-
quently we approximate the obtained S by integrating the Nyström approximation to
the matrix D.

S = −1

2
JDJ

= −1

2

((
I− 1

N
11>

)
D

(
I− 1

N
11>

))
= −1

2

(
IDI− 1

N
11>DI− ID

1

N
11> +

1

N
11>D

1

N
11>

)
= −1

2

(
D− 1

N
D11> − 1

N
11>D +

1

N2
11>D11>

)
1Taking the authors results about Nyström approximation for dissimilarity data into account.
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S
Ny
≈ Ŝ = −1

2

[
DN,m ·D−1m,m ·Dm,N −

1

N
DN,m · (D−1m,m · (Dm,N1))1> (8)

− 1

N
1((1>DN,m) ·D−1m,m) ·Dm,N +

1

N2
1((1>DN,m) ·D−1m,m · (Dm,N1))1>

]
This equation can be rewritten for each entry of the matrix Ŝ

Ŝij = −1

2

[
Di,m ·D−1m,m ·Dm,j −

1

N

∑
k

Dk,m ·D−1m,m ·Dm,j

− 1

N

∑
k

Di,m ·D−1m,m ·Dm,k +
1

N2

∑
kl

Dk,m ·D−1m,m ·Dm,l

]
,

as well as for the sub-matrices Ŝm,m and ŜN,m, in which we are interested for the Nys-
tröm approximation

Ŝm,m = −1

2

[
Dm,m −

1

N
1 ·
∑
k

Dk,m

− 1

N

∑
k

Dm,k · 1> +
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]

ŜN,m = −1

2

[
DN,m −

1

N
1 ·
∑
k

Dk,m

− 1

N

∑
k

DN,m ·D−1m,m ·Dm,k · 1> +
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]
.

It should be noted that Ŝ is only a valid kernel if D̂ is metric. The information loss
obtained by the approximation is 0 if m corresponds to the rank of S and increases for
smaller m.

4.2 Non-metric (dis-)similarities

In case of a non-metric D the transformation shown in equation 8 can still be used, but
the obtained matrix Ŝ is not a valid kernel. A strategy to obtain a valid kernel matrix
Ŝ is to apply an eigenvalue correction as discussed above. This however can be pro-
hibitive for large matrices, since to correct the whole eigenvalue spectrum, the whole
eigenvalue decomposition is needed, which has O(N3) complexity. The Nyström ap-
proximation can again decrease the needed computation dramatically. Since we now
can apply the approximation on an arbitrary symmetric matrix, we can make the correc-
tion afterwards. To correct an already approximated similarity matrix Ŝ it is sufficient to
correct the eigenvalues of Sm,m. Additionally to the Nyström approximation complexity
O(m2N), this results in an extra cost of O(m3), which can be seen as well as a part of
the matrix inversion, resulting altogether in O(m2N) complexity.

Machine Learning Reports 9



Data analysis of (non-)metric (dis-)similarities at linear costs

We can write for the approximated matrix Ŝ its eigenvalue decomposition as

Ŝ = SN,mS−1m,mS>N,m = SN,mUΛ−1U>S>N,m,

where we can correct the eigenvalues Λ by some technique discussed in section 2.1
to Λ∗. The corrected approximated matrix Ŝ∗ is then simply

Ŝ∗ = SN,mU (Λ∗)−1 U>S>N,m. (9)

This approach can also be used to correct dissimilarity matrices D by first approx-
imating them, converting to similarities Ŝ using equation 8 and then correcting the
similarities. If it is desirable to work with the corrected dissimilarities, then we should
note, that it is possible to transform the similarity matrix S to a dissimilarity matrix D
using Equations from [13]

D2
ij = Sii + Sjj − 2Sij. (10)

This obviously applies as well to the approximated and corrected matrices Ŝ∗ and D̂∗.

D̂∗ = D∗N,m

(
D∗m,m

)−1
D∗>N,m. (11)

Usually the algorithms are learned on so called training set and we expect them to
perform well on the new unseen data, or the test set. In such cases we need to provide
an out of sample extensions, i.e. a way to compute the algorithm on the new data. This
might be a problem for the techniques dealing with (dis)similarities. If the matrices are
corrected, we need to correct the new (dis)similarities as well to get consistent results.
Fortunately, it is quite easy in the Nyström framework. By examining the equations 9
and 11 we see, that we simply need to extend the matrices DN,m or SN,m, respectively,
by uncorrected (dis)similarities between the new points and the landmarks to obtain
the full approximated and corrected (dis)similarity matrices, which then can be used by
the algorithms to compute the out of sample extension.

In [2] a similar approach is taken. First, the whole similarity matrix is corrected by
means of a projection matrix. Then this projection matrix is applied to the new data,
so that the corrected similarity between old and new data can be computed. This
technique is in fact the Nyström approximation, where the whole similarity matrix S
is treated as the approximation matrix Sm,m and the old together with the new data
build the matrix SN,m. Rewriting this in the Nyström framework makes it more cleaner,
without the need to compute the projection matrix and with an additional possibility to
compute the similarities between the new points.

As a last point it should be mentioned that corrections like flipping, clipping or oth-
ers are still under discussion and cases are reported were the transformations had
negative impact on the model performance [14]. Accordingly, it is still best to avoid
such transformations and focus either on the appropriate methods, less sensitive to
such effects, e.g. dissimilarity learners for dissimilarity data or to use (dis-)similarity
measures which imply a metric space. Additionally the selection of landmark points
can be complicated for more complex data sets and only random samples maybe not
sufficient to cover the whole data properties as discussed in [22]. Further for very large
data sets (e.g. some 100 million points or more) the Nyström approximation may still
be too costly and some other strategies have to be found.
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Figure 2: Schema to illustrate the relation between similarities and dissimilarities using
the Nyström approximation. The costs are now substantially smaller m� N .

5 Outlook and Conclusions

In this report we discussed the relation between similarity and dissimilarity data and ef-
fective ways to move between the different representations in a systematic way. Using
the Nyström approximation in the discussed way, effective and accurate transforma-
tions are possible, in contrast to former slightly linked work like L-MDS. Methods from
both domains, namely kernel approaches but also dissimilarity learners become acces-
sible for both types of data. The specific parametrization of the Nyström approximation
is already studied elsewhere [23, 10, 22] but there are still multiple open issues which
we will focus on in later work. Especially the, potentially negative, impact of the eigen-
value correction is still not sufficiently discuessed, although some initial steps in this
line are published in [14]
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