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1 Fifth Mittweida Workshop on Computational Intelli-
gence

From 01. Juli to 03 Juli 2013, 26 scientists from the University of Bielefeld, HTW Dres-
den, Uni. of Groningen (NL), Univ. of Nijmegen (NL), Univ. of Marburg, Rutgers
University (USA), the Fraunhofer Inst. for Factory Operation and Automation (IFF),
the Fraunhofer-Institut far Intelligente Analyse- und Informationssysteme (lAlS), Bosch
Stuttgart, Life Science Inkubator Sachsen GmbH & Co.KG (Dresden) and the Uni-
versity of Applied Sciences Mittweida met in Mittweida, Germany, CWM-Chemnitz,
to continue the tradition of the Mittweida Workshops on Computational Intelligence -
MiWoCi’2013. The aim was to present their current research, discuss scientific ques-
tions, and exchange their ideas. The seminar centered around topics in machine learn-
ing, signal processing and data analysis, covering fundamental theoretical aspects as
well as recent applications, This volume contains a collection of extended abstracts.

Apart from the scientific merrits, this year’s seminar came up with a few highlights
demonstrating the excellent possibilities offered by the surroundings of Mittweida. Ad-
ventures were explored under intensive sunlight and very good weather conditions.
The participants climbed to the high forests of Mittweida (Kletterwald) and enjoyed the
exciting and fearing paths provided on the top of the trees. Multiple jump offs from
the Wahnsinn tour at a height of at least 20 meters were reported, but no participants
were harmed. During a wild water journey (Paddeltour) the outstanding fithess of the
researchers was demonstrated and some of them also demonstrated their braveness
by swimming in the rapids followed by a nice barbecue.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar and his PhD and Master students.

Mittweida, October, 2013
Frank-M. Schleif

"E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Theoretical Computer Science, Leipzig, Germany
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Discriminative Dimensionality Reduction for
Visualization of Classifiers

Alexander Schulz
CITEC centre of excellence
Bielefeld University
Gemany

Abstract

Nonlinear dimensionality reduction (DR) techniques offer the possibil-
ity to visually inspect a high-dimensional data set in two dimensions, and
such methods have recently been extended to also visualize class bound-
aries as induced by a trained classifier on the data. In this contribution,
we investigate the effect of two different ways to shape the involved di-
mensionality reduction technique in a discriminative way: discrimination
based on the data labels of the given data set, and discrimination based
on the labels as provided by the trained classifier. We demonstrate that
these two different techniques lead to semantically different visualizations
which allow us to further inspect the classification behavior. Both ap-
proaches can uniformly be based on the Fisher information matrix, which
is estimated in two different ways.
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Two or three thinks that we do not know about
Learning Vector Quantization
but we should consider

Barbara Hammer
CITEC centre of excellence
Bielefeld University
Gemany

October 16, 2013

1 Introduction

Since its invention by Kohonen [8], learning vector quantization (LVQ) enjoys
great popularity by practitioners for a number of reasons: the learning rule as
well as the classification model are very intuitive and fast, the resulting classifier
is interpretable since it represents the model in terms of typical prototypes which
can be treated in the same way as data, unlike SVM the model can easily deal
with an arbitrary number of classes, and the representation of data in terms
of prototypes lends itself to simple incremental learning strategies by treating
the prototypes as statistics for the already learned data. In addition, LVQ led
to successful applications in diverse areas ranging from telecommunications and
robotics up to the biomedical domain.

Despite this success, LVQ has long been thought of as a mere heuristic [2]
and mathematical guarantees concerning its convergence properties or its gen-
eralization ability have been investigated more than ten years after its invention
only [4, 1, 12]. Today, LVQ is usually no longer used in its basic form, rather
variants which can be derived from mathematical cost functions are used such
as generalized LVQ (GLVQ) [11], robust soft LVQ (RSLVQ) [14], or soft near-
est prototype classification [13]. Further, one of the success stories of LVQ is
linked to its combination with more powerful, possibly adaptive metrics instead
of the standard Euclidean one, including, for example, an adaptive weighted
diagonal form [6], an adaptive quadratic form [12], a general kernel [10, 5], a
functional metric [15], or extensions to discrete data structures by means of
relationalization [7].

In this contribution, we argue that there are still quite a few things unknown
for LVQ algorithms which frequently puzzle us in applications. Indeed, we argue
that we would design LVQ in a different way if the mathematical insight into
LVQ which we have today would have been known before its invention.
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2 What do we know about LVQ?

A LVQ classifier is characterized by a number of prototypes w; € R", i =

., k, which are equipped with labels ¢(w;) € {1,...,C}, provided a classifi-
cation into C classes is considered. Classification of a data point x € R™ takes
place by a winner takes all scheme: @ is mapped to the label ¢(x) = ¢(w;) of
the prototype w; which is closest to  as measured in some distance measure.
Here, for simplicity, we restrict to the standard Euclidean metric and we do not
consider adaptive metrics or more general forms.

Given a training data set x;, 7 = 1,...,m, together with labels y; €
{1,...,C}, the goal of training is to determine prototype locations such that
the resulting classifier achieves a good classification accuracy, i.e. y; = c(x;)
for as many j as possible. This problem being NP hard, approximations are
necessary. GLVQ addresses the following cost function

_ d*(xi) —d”(x:)
e-3 0 () "

where d*(x;) refers to the squared Euclidean distance of a; to the closest pro-
totype labeled with y;, and d~ (z;) refers to the squared Euclidean distance of
x; to the closest prototype labeled with a label different from y;. ® refers to
a monotonic function such as the identity or the sigmoidal function. Optimiza-
tion typically takes place using a gradient technique. As argued in [12], the
nominator of the summands can be linked to the so-called hypothesis margin of
the classifier, such that a large margin and hence good generalization ability is
aimed for while training.

RSLVQ yields similar update rules based on the following probabilistic model

B3l pen b 2)

where p(x;|[W) = 3, p(w;)p(x;|w;) constitutes a mixture of Gaussians with
prior probability p(w;) (usually taken uniformly over all prototypes) and prob-
ability p(x;|w;) of the point being generated from prototype w;, usually taken
as an isotropic Gaussian centered in w,;. The probability

(s, yi| W) = 68 p(w;)p(a;|w;)

i

with Kronecker delta restricts to the mixture components with the correct la-
beling. This likelihood ratio is usually optimized using a gradient technique.
Thus, modern LV(Q algorithms can be based on mathematical cost functions
which specify the objectives of training. What do we know about the results of
LVQ algorithms of this form? We can observe that the classification accuracy of
the resulting techniques is often quite good. Further, the techniques do hardly
overfit, they include a regularization also for high dimensional data. Indeed,
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one can show that prototype-based classifiers obey large margin bounds [4, 12],
the margin referring to the quantity

min (4~ () - d* (@) ®)

It is possible to derive generalization bounds for LVQ classifiers which do not
depend on the data dimensionality but this quantity only.

Further, it is often claimed that LVQ does not only provide excellent gen-
eralization, but the resulting prototypes w; constitute representatives for the
classes, consisting of typical points which can be inspected in the same way as
data. This claim, however, cannot easily be verified, a quantitative measure for
what means ‘representative points’ being lacking. Quite a few further problems
occur in practice while LVQ training:

e In particular for RSLVQ, prototypes do not necessarily lie at representa-
tive locations of the data, they even do not necessarily lie in the convex
hull of the data of their receptive field. In the limit of small bandwidth
for RSLVQ), it can be shown that the classifier and the learning rule of
RSLVQ are invariant to some translations which are orthogonal to deci-
sion boundaries since a learning from mistakes scheme is taken, see [1].
Hence there is no incentive to put prototypes to representative positions
in terms of the resulting costs in the limit of small bandwidth.

e Also for GLVQ, it is not clear whether prototypes are located in the con-
vex hull of the data in the convergent state, since attractive as well as
repelling forces are used while training. Indeed, for unbalanced classes
or a large number of classes, GLVQ can push prototypes from minority
classes outside of their classes, since the repelling forces accumulate ac-
cordingly. Also in this case, prototypes are not representative for their
class. From a mathematical point of view, this setting corresponds to the
fact that we do not obtain local optima of the GLVQ cost function, rather
saddle points cause optima to move to the borders.

e GLVQ does not necessarily aim at a good classification accuracy, rather
the classification behavior can deteriorate if the optimization of the cost
function is done up to convergence. This effect can be seen when inspecting
the classification error on the training set while training. This effect is
particularly pronounced if, in addition to the prototypes, the metric is
adapted; one can indeed prove eventual degeneration of the metric which
usually results in a decreased classification accuracy [3].

Hence there are quite a few open points concerning the training behavior of
LVQ classifiers, apart from the explicit characterization of the latter in terms of
cost functions. These problems result from the fact that the cost functions of
LVQ have been modeled partially to mimic the behavior of classical LVQ rather
than explicitly addressing the aspects we would expect from LVQ classifiers.
What are the main goals of LVQ classifier, which we would like to achieve and,
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consequently, we should model in the LVQ costs? There are typically two main
goals: we aim at a

1. good classification accuracy for the training set and future data points,
2. representative prototypes such that the model becomes interpretable.

The question is, in how far these two objectives are integrated in LVQ algo-
rithms when considering the cost function. Indeed the situation is quite clear
for RSLVQ: the costs (2) can be rephrased as the objective

E = ZIng(yj\f% W) (4)

which, obviously, aims at a maximization of the likelihood of the given labeling.
Thus, RSLVQ directly aims at an optimization of the classification accuracy, i.e.
objective (1). There is no direct incentive of the algorithm to find representative
prototypes, i.e. to address objective (2)! Rather, this comes as a side effect: the
data which belong to a certain label are modeled via Gaussians, such that,
depending on the bandwidths of these Gaussians, a higher likelihood can be
obtained if the points lie within a reasonable region of these Gaussians.

For GLVQ), the situation is less clear. A summand of the GLVQ costs is
negative (provided ®(0) = 0, otherwise, ®(0) is taken as baseline) if and only if
the point x; is classified correctly. Thus, the algorithm provides a tendency to
find correct classifications, since the summands should be as small as possible,
i.e. it addresses some objective related to (1). However, it is beneficial to further
decrease these terms, which are, in addition, weighted by the sum of the dis-
tances, to arrive at a numerically more stable algorithm. This summation and
scaling has a few effects: it can be better to classify some points incorrectly in
return for others getting a larger margin. In particular, this fact causes a possi-
ble degeneracy of the classification if imbalanced classes are present. I.e. there
are frequent settings where the costs do not directly correlate with objective (1).
Provided the attractive terms are larger than the repelling terms, GLVQ has
a tendency to place prototypes in the class centers, thus finding representative
points for these settings. This is a tendency towards objective (2), however, like
objective(1), objective (2) is not explicitly addressed. The scaling by means of
the sum of the distances has the effect that outliers or points which are far away
from the prototypes do hardly contribute to the adaptation.

Thus, GLVQ aims at a mixture of the two objectives, to classify points
correctly, to optimize the margin, to suppress outliers, and to find representative
prototypes, whereby the interplay of these effects is not very clear, since the
objectives are hidden in one cost function.

Machine Learning Reports
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3 How would we model LVQ if we would start
afresh based on this knowledge?

Having discussed these effects, the questions occurs whether one could model
the desired behavior in a clearer way, such that the relative relevance of the
different objectives can be easily controlled by the user, and modifications of
the cost function taking into account e.g. imbalanced classes or different costs
for different types of errors can be easily modeled. Obviously, there can be
situations where the objectives (1) and (2) are partially contradictory, in which
situations an explicit modeling of the mutual relevance seems beneficial for a
clear outcome of the algorithm.

For RSLVQ, the current cost function (4) is discriminative only, such that
it seems suitable to add a term which takes into account the objective to find
representative prototypes. The latter can be modeled by a data likelihood, for
example, leading to the costs

E=a- Zlogp(yj|a:j, W)+ (1-a)- Zlogp(mj|yj, W) (5)

J

with appropriate weighting term « € [0, 1]. These costs extend (4) by the like-
lihood of the observed data ax; within their respective class mixtures. This
extension has the consequence that update formulas of RSLVQ are enhanced
by a standard vector quantization term within the respective classes as is well
known from Gaussian mixture models, causing the prototypes to locate at rep-
resentative positions of the data.

For GLVQ), the costs do neither address the classification error or margin di-
rectly, nor the representativity of the prototypes. One way to explicitly model
these objectives is by addressing the margin of the classifier directly and, simi-
lar to the proposal (5), to superimpose this dynamics by a vector quantization
scheme. Given a data point «, denote by w™ and w™ the prototypes associated
with the closest decision boundary of the point and by d* and d~ the corre-
sponding squared distances. Then, the distance to the classification boundary

can be expressed as
d”(z;) — d* (=)

6
2w — wt| ()
Hence, overlaying this quantity with a vector quantizer yields the costs
d_(wj) *d+(:13j) +
a'gw‘i‘(l—a)';d (z;) (7)

Note that the first term sums also over points which are not necessarily directly
located at a border of receptive fields with different class labels such that it is
possibly too strong. One can further restrict the sum to only those points for
which w™ and w* share a border within the data set, which can be easily deter-
mined based on the data as explored e.g. in the context of topology representing
networks [9]. Further, the relative scaling of these terms is not clear, since the

10
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distance is typically of a smaller scale as opposed to the vector quantization
term.

To avoid these scaling problems, one can formulate a similar objective as a
constrained optimization problem such as the following:

min Z d*(z;) (8)
such that d*(z;) < d (x;) + 1V 9)

formulating an explicit margin constraint in the conditions, while taking repre-
sentativity as objective. Note that the objective implicitly restricts the length
of prototype vectors w;, such that we drop this term in the constraints. Again,
a restriction to receptive fields sharing their boundary within the constraints
seems reasonable. Naturally there does usually not exist a feasible solution
such that a numeric optimization using slack variables should be considered.
Further, the problem can usually not be treated as quadratic optimization in
its entirety since discrete assignments of data points to prototypes are involved.
It is, however, possible to refer to mixed schemes which in turn optimize these
assignments and the optimization problem provided assignments are fixed.

These proposals constitute first steps towards LVQ cost functions where the
effect of the cost functions is modeled explicitly, hence the results should be
more predictable. Their behavior remains to be tested in experiments.
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Interpretable proximity measures
for intelligent tutoring systems

Bassam Mokbel'*, Benjamin Paassen®, Markus Lux!,
Sebastian Gross?, Niels Pinkwart?, Barbara Hammer!

1) CITEC center of excellence, Bielefeld University, Germany
2) Humboldt University, Berlin, Germany

*) bmokbel@techfak.uni-bielefeld.de

Abstract

Intelligent tutoring systems (ITSs) typically analyze student solutions in order to
provide helpful feedback to students for a given learning task in some learning domain,
e.g. to teach maths, programming, or argumentation. Machine learning (ML) tech-
niques could help to reduce or even circumvent the otherwise necessary intervention
of human tutors: effective feedback can be generated solely based on appropriate ex-
amples or sample solutions, and the general concept of example-based feedback can
be applied in virtually any kind of learning domain, independent of the given learning
task. Therefore, tailoring a content-specific ITS would be obsolete, if a classification
model can reliably associate a student solution to a suitable example, and if the un-
derlying ML toolchain is task-independent. However, to achieve a reliable ML model,
the notion of proximity between solutions plays a crucial role, and thus a meaningful
proximity measure must be defined for each learning domain. In this context, we face
several challenges:

e How to balance the syntactic representation vs. the semantic meaning of solutions?

e How can we make the proximity measure adaptable for different learning tasks or
even domains?

e How can we establish a fine-grained, interpretable proximity calculation to utilize
it for tutoring feedback?

In the workshop presentation, we described our ideas to tackle these challenges, giving
an overview of current research in the DFG-funded research project Learning Feedback
for Intelligent Tutoring Systems (FIT). Our approach is based on the ample premise
that solutions can be represented as formal graphs. We propose to identify and match
meaningful contextual components in the solutions based on graph clustering, graph
features, and nested string alignments.
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Sparse Approximations for Kernel Robust Soft
LVQ

Daniela Hofmann
CITEC centre of excellence
Bielefeld University
Gemany

Abstract

Robust soft learning vector quantization establishes a supervised pro-
totype based classification algorithm with interpretable results. The method
was extended to deal with similarity data to broaden its applicability via
kernelization. Kernel RSLVQ represents prototypes implicitly by means
of linear combinations of data in kernel space. This has the drawback that
prototypes are no longer directly interpretable, since the vector of linear
coefficients is usually not sparse. Different approximations of prototypes
in terms of their closest exemplars after and while training were intro-
duced in order to obtain interpretable and efficient models comparable to
state of the art techniques.
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How is Pandemic H5N1 evolving?

Gyan Bhanot

Rutgers University
USA

Abstract

Viruses are obligate parasite, which infect hosts across all life. They
use the host’s cellular machinery to copy their genomes and proliferate.
Many viruses live harmlessly in the bodies of their hosts, as a result of
coevolution between the virus and the host immune response. Adaptation
typically happens when the virus evolves slowly so that the immune re-
sponse can keep it under control. The flu virus is a single stranded RNA
virus with eight segments, which code for eleven proteins. Because of
its high mutation rate, the variations in flu strains encountered from one
season to the next are sufficient to cause disease in many people. How-
ever, most flu strains circulating within humans do not cause pandemics.
Pandemics occur when a flu strain appears which has combined segments
from two different species while retaining the ability to infect at least one
of them. The Spanish Flu pandemic of 1918-19, which killed over 50 mil-
lion people worldwide, was a purely avian flu of the variety called HIN1,
which evolved the ability to infect humans. Although the infection rate
between humans from this strain was very high (over 80%), its lethality
was low ( 2.5%).

Currently, there is a flu strain (H5N1) circulating in birds, which has
the potential to be the next great pandemic. All HSN1 human infections to
date have been transmitted from birds to humans. However, the lethality
of the strain is very high and about 60% of humans who get infected die
from the disease. Recently, it was shown that it is possible to create lab
strains of H5N1 which can transmit efficiently between mammals (ferrets).
This suggests the possibility that wild type H5N1 strains can also acquire
the ability of efficient transmission between humans. Consequently, we
obtained data on one of the H5N1 proteins (Hemagglutinin or HA) from
strains collected from infected humans and birds in China, Indonesia and
Egypt between 1997-2013 and analyzed it to understand how the disease is
currently evolving in the wild. We used a bioinformatics model to identify
loci that are under selection in birds and humans. We found two things:
1. That only very specific mutations can cause infections in humans and
2. That escape mutant bird strains of H5N1 cannot cause disease in
humans. Our results are important for surveillance, disease control and
the development of effective vaccines.
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Stationarity and uniqueness of Generalized Matrix
Learning Vector Quantization

Harm de Vries*

Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen

August 31, 2013

Abstract

In this technical report we present the stationarity conditions of
Generalized Matrix Learning Vector Quantization (GMLVQ), a pop-
ular prototype based classifier that incorporates metric learning. The
main finding is that stationary prototypes can be formulated as linear
combinations of the data points, and that the learned transformation
matrix has a tendency to become low-rank. The results imply that the
optimal prototypes and transformation matrix have many degrees of
freedom. We summarize the ambiguities that can arise, and present
extra constraints in order to obtain a unique set of prototypes and a
unique transformation matrix. In general, the report provides insight
into the dynamics of GMLVQ, and we hope that future users benefit
from the presented analysis when they apply the powerful classifier to
their data sets.

1 Introduction

Learning Vector Quantization (LVQ) is a popular family of prototype based
classification algorithms introduced by Kohonen in 1986 [6]. The approach
has attracted much attention over the last twenty-five years because it is
easy to implement, has a natural extension to multi-class problems and the
resulting classifier is interpretable.

*e-mail: mail@harmdevries.com
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Training of the original LVQ classifiers, LVQ1[6] and LVQ2.1 [7], is
guided by heuristically motivated updates of the prototypes. This limits
the theoretical analysis of their dynamics and generalization behavior, and
therefore several LVQ variants were proposed that are derived from an ex-
plicit cost function [12, 13]. One prominent example in this context is Gen-
eralized Learning Vector Quantization (GLVQ) [10] as proposed by Sato and
Yamada.

The performance of GLVQ crucially depend on the appropriateness of the
Euclidean metric for the classification task at hand. Although it is possible
to enhance performance by choosing any differentiable similarity measure,
this requires prior knowledge of the data set which is often not available.
Hammer and Villmann [4] were the first to incorporate metric learning in the
context of GLVQ. Their approach, called Generalized Relevance Learning
Vector Quantization (GRLVQ) [4], employs an adaptive weighted Euclidean
metric which allows for scaling of the features. In this document we focus
on a further extension, dubbed Generalized Matrix Learning Vector Quan-
tization (GMLVQ) [11], that is parameterized by a relevance matrix that
can also account for pairwise correlations between features. It is equivalent
and often preferred to learn a linear transformation of the original feature
space such that in the transformed space GLV(Q performs well. This avoids
a complicated optimization constraint, and also opens up the possibility to
explicitly learn a low-dimensional transformation [3].

Stationarity conditions of the relevance matrix in LVQ1 are presented
in [1]. The authors show that for gradient based optimization, the rele-
vance matrix has a tendency to become low rank. Here, we extend these
results to GMLVQ, but based on other approach. We phrase GMLVQ as
an optimization problem and investigate the first-order necessary conditions
for optimality. The advantage over the approach of Biehl et al. [1] is that
the results are not restricted to gradient based solvers, but are generally
applicable to any type of solver as long as it converges to an optimal so-
lution. Moreover, we do not only investigate the stationarity conditions of
the relevance matrix, but also of the prototypes. Interestingly, the interplay
between the relevance matrix and the prototypes causes ambiguities in the
GMLVQ classifier which will be discussed throughout this report.

The rest of this technical report has been organised as follows. Section 2
reviews GMLVQ and formulates training as an optimization problem. Sec-
tion 3 presents the optimality conditions of the transformation matrix and
the prototypes. In section 4 we show that the results imply that the pro-
totypes and the transformation matrix are not unique. Section 5 concludes
this technical report.

Machine Learning Reports
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2 Review of GMLVQ

We consider a training set of size P consisting of N-dimensional vectors
X={a"e RN}le with class labels S* = S(z") € {1,...C}. (1)

GMLVQ represent the classification problem in terms of class-specific proto-
types which are located in the same N-dimensional input space as the data.
A set of prototypes

W={a R} | withlabels o =o(ad)€{l,...C}, (2)

should be carefully specified with at least one prototype per class. The
classifier is further parameterized by a general quadratic distance measure
of the form

dNE, W) = (Z — 0) A& — @) = [QF —@))> with A=Q7Q. (3

Here, A € Sf has to be positive semi definite in order for d** to be a valid
pseudo-metric. A possible way to ensure positive semi-definiteness of A is
by decomposing it into square root! Q € R¥*N By definition, Q7Q is
positive semi definite and therefore we have avoided a complicated opti-
mization constraint. Note that the distance measure can now be interpreted
as the squared Euclidean distance in a space that is obtained after a linear
transformation {2 of the original feature space.

Classification is performed by a so-called nearest prototype scheme. A
new data point is assigned to the class of the closest prototype with respect
to distance measure d*’.

2.1 Cost function preliminaries

In order to formally treat the GMLVQ cost function we present here some
preliminaries. The sets

Wk = {& | @ € W and o(w) = S(7)}, (4)
WH = {& | @ € W and (@) # S(7")} (5)

!Not uniquely determined. See section 4.2.2.
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contain the prototypes that have the same or different class as the example
a*, respectively. We use the following indicator functions

U (T 7)) = +1 if W =arg min g, ey d* (2, ;)
’ 0 else

+1 if & = argming, cypn d(TH, 10;)

0 else

U () = {
(6)

to identify the closest correct and closest wrong prototype, respectively. We
use the abbreviations \115 * and \Ilét " to denote \Ili(f“, wj), respectively. The
indicator functions are used to determine the distance to the closest correct
and closest wrong prototype

di =y Wit dN ", @), (7)
J

d = whTd (@, ), (8)
J

respectively. In the definition of the cost function we will use the abbrevia-
tions @/, and d” to increase readability.

2.2 Cost function

Training in GMLVQ is guided by the following cost function

diy —d"
FOV.0) = 3 let) with e = G Q
p o

where di and d” refer to the distance of the closest correct and closest wrong
prototype, respectively. The numerator of e* is related to the so-called hy-
pothesis margin, and minimization of this term positively influences the
generalization behavior [5]. The denominator i) bounds e in the interval
[—1,1] and ii) provides invariance to the scale of distances i.e. we can mul-
tiply all distances by a scalar ¢ without affecting e as shown in Eq. 12.
Obviously, the term is negative for a correctly classified example, since d!{
must be smaller than d”. Hence, minimizing the cost function aims at mini-
mization of the classification error and maximization of margins at the same
time. A handle to balance the trade-off between the two terms is provided
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by the monotonically increasing scaling function ¢. A popular choice is a
logistic function of the form

1

" Tren( ) o

(z)
Here, v controls the steepness of the sigmoid and the larger v the more we
approximate the 0 — 1 loss function that directly correspond to the classifi-
cation error.

2.3 Invariant to norm of transformation matrix

In this section we explicitly show that the cost function is invariant to the
frobenius norm of . We use this fact when we derive the stationarity
condition of the transformation  in section 3.1. Let ' = ¢ with scalar
¢ # 0, then the new distance measure reads as

dY (z,0) = (Z — @) () (eQ)(T — @)
= [Q(& - @))?
= Ad(z, ). (11)

Note that the closest correct and closest wrong prototype are not affected
since each distance is multiplied with the same constant ¢?. By plugging the
new distance measure into the cost function of Eq. 9, we see that ¢? cancels
out:

P

FW, )= "¢

Ad" — 2" Poorat — gt
Pt sl (R o+ = W.
chi—kc?d“} ;*p [d“er“] fw.Q). (12)

This implies that the cost function is invariant to the norm of €2, and thus
extra restrictions on € should be considered to obtain a unique solution.

Schneider et al. proposed to fix the sum of the diagonal values of Tr(A) =
> ;M = 1, which also coincides with the sum of eigenvalues. More impor-
tantly, it follows that we restrict the Frobenius norm of €, since ||Q||r =
Tr(Q7Q) = Tr(A) = 1.

2.4 Optimization problem

We are now at the point that we can formulate training as the following
optimization problem

minimize Fw, Q)

Wi . (13)
subject to  h(Q2) =||Qrp —1=0
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It is very instructive to remark that the set of points that satisfy the con-
straint, the so-called feasible set, is a unit sphere. This follows when we
rewrite the constraint function in element-wise form [[Qf|F = 3., Q?j =1
Fig. 1 shows a 3D visualization of the constraint. The blue line correspond
to similar  solutions of different frobenius norm. We have shown in the
previous section that for the optimal €2, the optimization landscape looks
like a valley along the blue line. This latter fact will be important in sec-
tion 3.1 where we derive the stationarity conditions for the transformation
matrix . As a final note we mention that above optimization problem is

14
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Figure 1: A 3D visualization of the constraint on the norm of €2 showing
that a solution must be on the unit sphere. The red spot marks an arbitrary
Q) on the unit sphere. Every other point that is on the line between the red
spot and the origin corresponds to the same cost function value(except at
the origin itself). The point where the blue line hits the other side of the
sphere corresponds to another squareroot of A.

a non-convex problem, and thus the best we can hope for is a solver that
converges to a local minimum.

3 Stationarity conditions

The formulation of GMLVQ as an optimization problem allows to investigate
the first-order necessary conditions for optimality. For constrained optimiza-
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tion problems these conditions are known as the KKT-conditions[2, 8]. The
optimality conditions require that the cost function and its constraints are
continuously differentiable. It is shown in the appendix of [4] that the cost
function of GMLVQ fulfils this requirement, and one can easily see that the
constraint is differentiable everywhere?.

3.1 Stationarity of the matrix

We first investigate the optimality conditions for the transformation matrix.
Obviously, the optimization problem of GMLVQ), as defined in Eq. 13, has an
equality constraint. For equality constrained problems, the KKT conditions
require that the gradient of the cost function is parallel to the gradient of
the constraint:

o0 T an
where ) is a lagrange multiplier. The full gradient of the cost function with
respect to 2 is given by

of(Ww. ) _, 0h(&) (14)

P
w =QI with I'= szy (@ — ) (@ — @) . (15)
w=1 j
The pseudo-covariance matrix I' collects covariances from the data points
* to the prototypes w;. The exact contribution depends on the complex
weighting factor X? which is only non-zero for the closest correct and clos-
est incorrect prototype. The contribution is negative for the closest incor-
rect prototype, hence I' is not necessarily positive semi-definite. We refer
the reader to Appendix A.2 for an exact derivation of the gradient and its
weighting factors. The gradient of the constraint is derived in Appendix A.3
and reads as

Oh(R2)
o1
We plug the gradients terms into Eq. 14 and obtain the following stationarity
condition for the transformation matrix

=20Q). (16)

QO = A2Q or equivalently TQT =X2Q7. (17)

By writing QT into column-wise form [&1, . . ., @y], we immediately recognize
an eigenvalue problem
I&; = 2)\&;. (18)

2A quadratic function is differentiable, and a sum of differentiable function is differen-
tiable.
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for each column w;. This implies that each column of Q7 is a vector in the
eigenspace of I' which corresponds to one particular eigenvalue 2A. Now,
let us first consider the non-degenerate case where I' has unique, ordered
eigenvalues

Y1 < Y2 <--- <7y with orthonormal? eigenvectors g1, go, ..., gn-
(19)
It already follows from the stationarity condition in Eq. 17 that the rele-
vance matrix A has rank one, no matter which eigenvector of I' is in the rows
of Q). In the following we claim, however, that the only stable eigenvector of
I" corresponds to i) eigenvalue zero and ii) the smallest eigenvalue.

Let us first argue that the corresponding eigenvalue must be zero. In
section 2.3 we have shown that the cost function value does not change
when we multiply Q by a scalar ¢ # 0. This suggests that removing the
constraint from the optimization problem will not improve the solution i.e.
cost function value. In Fig. 1 we visualize the constraint function on the
transformation matrix, and show a blue line that represents similar ) so-
lutions of different norm. Now, it is easily seen that the constraint selects
a point along a valley, which implies that its gradient must be zero for an
optimal solution. As a consequence the right hand side of Eq. 17 should
also be zero, and therefore the lagrange multiplier A = 0 for 2 # 0. This
latter fact is in accordance with the interpretation of lagrange multipliers.
Namely, a zero lagrange multiplier means that the constraint can be relaxed
without affecting the cost function [8].

The other eigenvectors of I' with corresponding non-zero eigenvalues are
also stationary points of the lagrangian function. They are, however, not
local minima of the cost function because the gradient is not zero for those
solutions. Formally, we can prove this by showing that the bordered Hessian
is not positive definite for these stationary points [8]. We omit the proof,
however, and rely on the intuitive argument from above.

By now, it should be clear that the only stable eigenvector of I' has
eigenvalue zero. In the following we also claim that this stable eigenvector
corresponds to the smallest eigenvalue. The first argument is given in the
treatment of [1]. The power iteration method allows for a simple stability
analysis that shows that the only stable stationary point is the eigenvector
of T' that corresponds to the smallest eigenvalue*. This is not obviously

3due to the fact that I' is real and symmetric

4The approach can, strictly speaking, not be transferred to GMLVQ. The pseudo-
covariance matrix I' is not stationary: changing Q will always change I". Hence, we can
not apply a power iteration method.
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shown in our approach, and therefore we rely on an intuitive argument by
decomposing I' into

F=r1rt-1" (20)
- ]
40/ (e)d"
with T+ = |3 @ —id“)2 (@ — @)@ — a7
| pn=1 ]
B 4¢' (et)d!! L T
I~ = Zd“—i—d“)Qx —w ) (" —w)
15 1 ]

Here, I't and '~ are positive semi-definite matrices® that collect the co-
variances from all data points to the closest correct and closest incorrect
prototypes, respectively. Of course, we would like to pick the eigenvector of
't with the smallest eigenvalue such that the distance to the closest correct
prototype is as small as possible. On the other hand, we would like to pick
the largest eigenvalue of I'™ in order to have large distances to the closest
incorrect prototypes. However, the minus sign in front of I'” changes the
sign of the eigenvalues which implies that we are again aiming for the eigen-
vector with the smallest eigenvalue. Although there is no clear relationship
between the eigenvectors of I't and the eigenvectors of I', we should not be
surprised that the best cost function value is obtained if we also pick the
eigenvector of I' with the smallest eigenvalue. In short, we have shown that
the stable stationary eigenvector of I' has eigenvalue zero which must be the
smallest eigenvalue. Hence, I' is positive semi-definite.

We have shown that the rows of the transformation matrix {2 contain
the eigenvector g of I which corresponds to the eigenvalue 0. If we take
into account the norm constraint ||Q2||r = 1, we find a particularly simple
solution =

Wi\
a=| """ | with Sa?=1. (21)

angl
Note that this transformation matrix €2 is not unique because we have free-
dom in choosing the a-factors. It corresponds to the fact that a square

de'(e)d” > 0 because the distances d’ > 0 and ¢'(e”) > 0 because ¢

5The scalar @
+)T

is monotonically increasing. The matrix (Z* — @")(Z* — @
definition.

is positive definite by
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Figure 2: An example of the stationary A for a two dimensional dataset
with two classes. The distance is measured along a single direction which is
rendered as a blue line for this dataset.

root 2 of A is not uniquely determined as explained in section 4.2.2. The
resulting A will nevertheless be unique

N
A=0"0=>"dG7 =ngl. (22)

Hence, the stationary A has rank one, and a basis vector of the column
space is ¢1. Note that g; is also the only eigenvector of A with a non-zero
eigenvalue of one.

In above considerations we assumed a eigenvector §; that correspond to
a unique zero eigenvalue. In case of degenerate eigenvalues

M=r==7p=0<- <9, (23)

the rows of {2 can be arbitrary linear combinations of the vectors g1, g2, . . - , Gn-

Then, the rank of A is 1 < rank(A) < n. In case of N degenerate zero eigen-
values we can still obtain a full rank A.

The conclusion we can draw from the stationarity conditions we have
derived is that the optimal A matrix is completely determined by I". How-
ever, in order to construct I', we need the stationary A. Hence, I' and A
are highly interconnected and we can not predict what I' matrix emerges
from a data set. This means that from the stationarity condition itself the
dynamics of A are not immediately clear.

10

Machine Learning Reports

25



MIWOCI Workshop - 2013

In the following argument we show, however, that GMLVQ has a ten-
dency to select a low-dimensional A. Imagine we add an extra feature to
the existing data set that consist of white Gaussian noise with variance o2.
For all classes we draw from the same distribution, and therefore we can
not expect discriminative power between the classes in this dimension. If
we consider one prototype per class, then the value of the extra dimension
is zero (= mean of the noise) for all prototypes. Therefore, we can expect
that the Euclidean distance between a data point and a prototype grows by
o?. This include the distances between a data point and the correct closest

and closest incorrect prototype, hence the cost function reads as

(df +0%) = (d + +0%) \ _ dy —d” (24)
N5+ (@ ++02))  P\d" +d" + 202)

where d! are the distances to the closest correct and closest incorrect pro-
totype in the dataset without the extra dimension. We notice that ¢ can-
cels in the numerator, but not in the denominator. This means that for a

. .t —dt .
correctly classified example (negative d*TTd;) the cost function value dete-

riorates. This simple example demonstrates that the GMLVQ cost function
penalizes a dimension in which there is no discriminative power. Of course,
we can generalize the example to a linear combination of dimension in which
there is no discriminative power. The message here is that it is beneficial
for the GMLVQ cost function to cut off these non-discriminative directions,
and therefore we expect a low-rank A, in general. Note that the extra di-
mension argument does not have a negative impact on an LVQ2.1 related
cost function in which the denominator is left out. Hence, we expect that
incorporating quadratic metric learning in LVQ2.1 would not result in low
rank A.

We conclude this section with an illustrative example of the stationary
relevance matrix A for a simple two class dataset with highly correlated
features as shown in Fig. 2. The stationary A has rank one and the distance
is only measured along a single vector g; which is rendered as a blue line.
The direction of this line is the only non-zero eigenvector of A and at the
same time the eigenvector of I' with eigenvalue zero.

3.2 Stationarity of the prototypes

This section presents the stationarity condition of the prototypes. We derive
the first-order necessary conditions for optimality of the prototypes based on
the optimization problem defined in Eq. 13. In contrast to the transforma-
tion matrix €2, there are no constraints placed on the prototypes. Therefore

11
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Figure 3: An example 3D dataset in which the data is embedded in a two-
dimensional subspace that is visualized by a grey plane. The direction that
is orthogonal to this plane is the null space of the data. The optimality
conditions require that the prototype must lie on this grey plane.

the optimality conditions require only that the gradient of the cost func-
tion with respect to a single prototype w* is zero. A detailed derivation
of the gradient of the prototypes can be found in Appendix A.1, including
the complex weighting factors X? that depend on the role of the prototype.
Here, we work out the gradient term to

p=1

—AXP: f(a - at) = (26)

P
Z ZXk a* | =0, (27)

where the last equation can be rewritten to the following stationarity con-
dition .
Mz
~ . ~ =1 Xp?¥
A (wfc w ) =0 with wf,= Z“Pliku. (28)
Zp,:l Xk
Now, it immediately follows that this equation is satisfied if w* = LD’EC.
Here, U_J’fc is a prototype that is formulated as a linear combination of the

12
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data points, which implies that it is in the span of the data. We give a
concrete example of this result by considering the 3-D data set shown in
Fig. 3. The 3 dimensional data, which is similar to the 2-D data set shown
in Fig. 2, is embedded in a two-dimensional subspace that is visualized by
a grey plane. Now, the prototype w'fc must lie on this infinitely large, grey
plane. In the next section we show that LD’EC is not the only stationary
solution because the relevance matrix A has rank one. The singular A also
implies that stationary prototypes are not necessarily in the span of the data
if the null space of A and the null space of the data have overlap.

4 Uniqueness

This section summarizes the four ambiguities that arise in GMLVQ. We show
in section 4.1 that contributions of the null space of A can be added to the
prototypes. Section 4.2 presents the three types ambiguities of the transfor-
mation matrix: the norm of the transformation matrix €2, the squareroot §2
of A, and underdetermined linear transformation 2. For all ambiguities we
present a projection to a unique solution, and formulate extra constraints
for the optimization problem in section 4.3.

4.1 Uniqueness of the prototypes

In section 3.1 we have shown that the stationary relevance matrix A has low
rank. In this section we show that a singular relevance matrix A implies that
the prototypes are not unique. Let us first recall Eq. 28 where we presented
the stationarity condition of a prototype @w¥. In the previous section we have
worked out the straightforward solution @w* = 117%0. Here, we show that it
also possible to have stationary prototypes if w* # ’QBIZC. In that case, the
difference vector z = u_i’zc — * has to satisfy Az = 0. In other words, only

contributions from the null space of A can be added to the prototypes
W =@+ 2 with z€ N(A). (29)

Note that this null space contributions leave the distances d*(Z,w) un-
changed for every data point Z, hence the resulting classifier is identical
to the one obtained for w* = u_fﬁc. We illustrate the implications of this
finding in Fig. 4a. The one-dimensional null space of A is rendered as a
black line, and is orthogonal to the blue line that represents the column
space of A. Now, the prototypes can be moved in the direction of the black
line without changing the classifier!

13
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(a) Prototypes can be moved in the direc-(b) The null space of A is projected out of
tion of the black line the prototypes

Figure 4: Tllustrative example of the ambiguity of the prototypes. The single
relevance vector is rendered as a blue line in a) and b). In a) we show that
the prototypes can be moved in the direction of the null space of A which
is rendered as a black line. In b) we show how to obtain a unique set of
prototypes by projecting out the null space of A.

The ambiguity of the prototypes suggest that we have to be careful with
the interpretation of the prototypes as class representatives. Obviously, the
prototypes are not representatives of the classes in the original feature space.
In Fig. 4a we could move the prototypes along the black line such that they
are very far from the data, while the classifier would still be optimal. Hence,
we have to keep in mind that the prototypes are only representative in the
space that is obtained after a linear transformation €2 of the original feature
space. However, we have shown that this space is often low-dimensional,
and one way to ensure that the prototypes live in this very same space® is
by projecting out contributions of the null space of A. We obtain a unique
prototype

0¥ = AY(A@*) where AT is the pseudo-inverse, (30)

which has the smallest 2> norm among all optimal prototypes. Note that
the column space projection is not the only way to obtain a set of unique
prototypes. For instance, we could also restrict to a prototype u‘)’fc that is

Sapart from rotations and reflections of the low-dimensional space itself
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a linear combination of the data points.

We conclude this section with an illustration of prototypes that are pro-
jected in the column space of A. In Fig. 4b we show that unique prototypes
can be obtained by projecting an arbitrary optimal prototype on the blue
line.

4.2 Uniqueness of the transformation matrix

In this section we show that even more ambiguities play a role in the trans-
formation matrix Q.

4.2.1 Norm of the transformation matrix

In the original GMLVQ paper [11] the authors propose to fix ||Q||p = 1
in order to prevent degenerate {2 matrices i.e. a () matrix that approaches
the zero matrix or escapes to infinity. We point out, however, that the cost
function does not have a tendency to approach the degenerate solutions, in
general. We also included the norm constraint |||z = 1 in the optimization
problem, but only to single out a unique norm €2 since we have shown in
section 2.3 that it does not influence the cost function. In other words, we
could leave out the constraint and then project (after optimization) to a
unique norm € solution by dividing all elements of 2 by /||Q||r. In Fig. 1
this corresponds to projecting a €2 solution on the unit sphere.

4.2.2 Square root ) of A

In the distance measure, we have used the fact that any positive semi-definite
matrix can be written as

A=0TQ with QeRVY, (31)

This decomposition of A into its square root €2 is not uniquely determined.

We can multiply 2 by an arbitrary orthogonal (less formally, a rotation/reflection)
matrix R, so that RT R = I, without changing A. This immediately follows
when we let ' = R(), since

QT = (RQ)T(RQ)
= OT"RTRO
= ofq. (32)

To link this technical observation to the GMLV(Q classifier, recall that the
quadratic pseudo-metric d** measures the squared Euclidean distance in a
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Figure 5: The blue line visualizes the only non-zero eigenvector of A. In
a) we show an arbitrary transformation Q of the data and the prototypes.
Remark that such a transformation is rotated with respect to the blue line.
In b) we show a unique transformation Q) that realizes a projection of the
data points and prototypes on the blue line.

linear transformation ) of the original feature space. We can, however,
always rotate the coordinate system (or permute coordinate axes) in this
transformed space without changing the distances. This is exactly what
multiplication by an orthogonal matrix R in Eq. 32 can realize. Hence, the
coordinates of the linear mapping are determined by A, but there is (some)
freedom to choose in which coordinate system we evaluate them.

We show in the following that it is possible to obtain a unique square
root ) if we agree on the coordinate system (set of basis vectors) we use.
Because A is positive semi-definite, we can do an eigendecomposition

A=VDVT, (33)

where V' is a matrix containing the orthonormal eigenvectors of A in the
columns, and D a diagonal matrix containing the eigenvalues in ascending
order. Now, we define a unique square root

Q=vD"VT, (34)

Note that we fix the coordinate system of the transformed space by taking
the eigenvectors of A as a orthogonal basis. Of course, other coordinate
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systems are possible. For instance we could choose V. D%? such that we
arrive at the standard coordinate system with unit vectors as basis. Note
that this choice requires, in contrast to Q7 to fix the sign of the eigenvectors
in order to have a unique transformation matrix. Therefore, we feel that Q
is a more natural solution, and illustrate an example transformation in Fig.
5. We render the eigenvector of A with non-zero eigenvalue as a blue line,
and show in Fig. 5b that the transformation Q) realizes a projection of the
data on the blue line. In Fig. 5a we show that an arbitrary transformation
) often realizes a rotation of the data and prototypes with respect to this
blue line.

4.2.3 Under determined linear transformation ()

As pointed out in Eq. 3, the distance measure implicitly realizes a linear
mapping 2 of the data X and the prototypes W. In the following we assume,
without loss of generality, that prototypes are in the span of the data. Hence,
we consider the linear mapping

OX =Y, with Y eRV*P, (35)

This linear mapping 2 is only uniquely determined if and only if the rank
of X is N. In general, we can not assume this, because the rank(X) < N in
the following cases. If i) the number of features simply exceeds the number
of data points or ii) the features in the data set are highly correlated such
that the data set is embedded in a low-dimensional space (e.g. see Fig. 3).
For such data sets it is possible to add contributions z from the left null
space of data, i.e. 2zX = 0, to the rows of ) without changing the linear
transformation. Hence, many equivalent linear transformations exist, and
the degree of freedom is given by the dimension of null space of X. Note that,
in contrast to the previous section, the equivalent linear transformations
result in a different relevance matrix A.

Strickert et al. [14] showed that it can be misleading to directly inter-
pret the relevance matrix A in this setting. The interpretability can only
be guaranteed if we project null space contributions of the data out of 2.
The authors propose an explicit regularization scheme, while we use the
well-known Moore-Penrose pseudo inverse to obtain a unique linear trans-
formation

Q= (QX)X" with X* the pseudo-inverse. (36)

Note that € corresponds to a least frobenius norm solution of the under de-
termined linear transformation Finally, we remark that in  the statistical
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invariances are removed which might be beneficial for generalization perfor-
mance. Consider Fig. 3 where we have a data set that is embedded in a
low-dimensional space, and assume that we have a learned a linear mapping
for this particular data set. Now, imagine that the classifier encounters a
new data point that is not in the grey plane. Then, the unique transforma-
tion matrix maps this data point and the projection of this data point
on the grey plane to exactly the same point in the transformed space. In
other words, differences along the null space of the original data set are not
taken into account. All other transformations map the two points to (very)
different points in the transformed space, while there is no justification from
the training set for these differences.

4.3 New optimization problem

In section 4.1, 4.2 we have presented the ambiguities that can arise in the
GMLVQ classifier. We also presented recipes to solve the ambiguities and
to come to a unique and interpretable solution. Here, we incorporate these
constraints directly in the optimization problem

P . P di _ dli
ml%%lze f(m Q) = Mz_:l ¥ |:d“—|—d'u:|
subject to ||Q||# ‘ =1 (37)
iy — @ =0 VY
Q-0 =0
Q-0 B

Recall that the constraints do not restrict the cost function, but are used to
single out a unique solution. In other words, we could remove the four con-
straints from the optimization problem, and then project after optimization
to a unique solution. Then, we should, however, first project to  since it
changes A, while the other projections are independent of each other.

5 Conclusion

In this technical report we have presented the stationarity condition of the
prototypes and the transformation matrix of GMLVQ. We have shown that
the relevance matrix has a tendency to become low rank. Consequently,
a stationary prototype, that can be formulated as a linear combination of
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the data points, has many degrees of freedom because it can be moved in
the null space of the relevance matrix. Furthermore, we have shown that
the stationary transformation matrix is not uniquely determined for three
reasons. Firstly, the cost function is invariant to the frobenius norm of
the transformation matrix. Secondly, a particular relevance matrix A does
not uniquely determine the transformation matrix €2, since it is possible to
change the coordinate system such that distances are preserved. Thirdly,
in case the data is embedded in a low-dimensional space, we are facing a
under determined linear transformation. For all four ambiguities we have
formulated additional constraints in the optimization problem to single out
a unique set of prototypes and a unique transformation matrix.

The consequences of the stationarity conditions on the effectiveness of
solvers might be the subject of further studies. For example, the fact that
many ambiguities exist in GMLVQ implies that the corresponding Hessian
matrix has several zero eigenvalues. This might be problematic for sophis-
ticated solvers that explicitly use second-order derivatives. Furthermore,
future studies should also make some intuitive arguments more mathemat-
ically precise. However, we think that this technical report provides more
insight into the dynamics of GMLVQ, and we hope that future users benefit
from the presented analysis when they apply the powerful classifier to their
data sets.
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A Derivation of gradient terms

In this section we present the derivatives of the cost function of GMLVQ), de-
fined in Eq. 9, with respect to a single prototype w; and the transformation
matrix Q. In the following we only present the single example derivatives
since the derivative of the sum is equal to the sum of derivatives.

A.1 Gradient of prototype

By consequently applying the chain rule and product rule we obtain the
derivative of the single example contribution ¢(vet) with respect to a single
prototype ;:

op(et) . Oe
a5, 2 aa (38)
#odh #od”
Oe T Oe i (39)

R,
=2 50 96, T ad"

In the following we present the missing partial derivatives in Eq. 39. The
derivative of the logistic function reads as

'(e!) =vep(e) (1 - p(e")). (40)

With some effort we obtain the derivatives of e* with respect to closest
correct and closest incorrect distance

Oet 2d"
_ - 41
od" ~ (d +d")? (1)
2 —2d"
Oc + (42)

odlL — (d +d")?

respectively. Now, recall that dff = >, \Il’,iidg(f“,u?k) is a sum over the
prototypes that single out the distance to the closest correct or incorrect
prototype. Hence, the derivative can be rewritten to

adl, L d(T*, )
— = |/ A (43)
8wj Z k 8wj
Z dY (2", Wy,
k
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The derivative of d? with respect to w; follows from Eq. 77 of the Matrix
Cookbook [9], and plugging it in gives us

adi pnt et} —
5 = D WEE — 2 A(F — ). (45)
J k

Now putting all partial derivatives together we easily obtain the final deriva-
tive

dop(e") .
S =A@ ) (46)
where X? depends on the actual role of the role of the prototype ;:

Closest correct prototype

d? I
Xj = —4y¢(e) @ 1 A (" — ) (47)
d*
= —4dyp(e") (1 - p(e)) @y A (2 — ;)
+ —
Closest incorrect prototype
=y () A ) (15)
f @+ ) :
dly . .

A.2 Gradient of transformation matrix

Analogous to the prototype gradient, we first present the derivative of the
single example contribution with respect to the transformation matrix €2

dp(et)

det ad'.  der od"
_ + -

ad” 90 " ad" o9 |

(49)

g%ﬁ are already presented in Eq. 40, 41,

The derivatives ¢'(e#), 3% and
+

42. The only missing derivative is

5di it d (f“, u_fj)
aQ_;%(m (50)
23

38

Machine Learning Reports



MIWOCI Workshop - 2013

where the partial derivative of distance measure with respect to €2
ad® (T, )
of)

follows from Eq. 69 of the Matrix Cookbook [9]. Now, putting the partial
derivatives together results in the final gradient term

W) — S - ay)@ -y 52)

= QT — @) (@ — aj) (51)

J
= Q) W@ @)@ - @)’ (53)
j

where Xf depends on the actual role of the prototype which is defined in
Eq. 47, 48.
A.3 Gradient of constraint

From Eq. 103 of the Matrix Cookbook [9] it immediately follows that

on(Q)
S =20 (54)
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On the Relevance of SOM: Integrating Adaptive Metrics
into a Framework for Body Pose Detection

Mathias Klingner', Sven Hellbach!, Martin Riedel?, Marika Kistner?, Thomas Villmann?,
Hans-Joachim Béhme! *

! University of Applied Sciences Dresden, Artificial Intelligence and Cognitive Robotics Labs,
POB 12 07 01, 01008 Dresden, Germany
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2 University of Applied Sciences Mittweida, Computational Intelligence and Technomathematics,
POB 14 57, 09648 Mittweida, Germany
{kaestner, thomas.villmann}@hs-mittweida.de

A suitable human robot interface is of great importance for the practical usability of mobile
assistance and service systems whenever such systems have to directly interact with persons.
These interaction is commonly based on the learning and interpretation of the gestures and facial
expressions of the dialog partner in order to avoid collision and to infer their intention. Therefore,
it is necessary to track the motion of the human body or rather the movements of individual parts.

This work proposes an enhancement of the approach presented in [1]. It relies on the 2.5D
point cloud data (Fig. 1) of a depth camera from which a Self-Organizing Map (SOM) is trained
to model the human upper body.

Fig. 1. A view of the 2.5D point cloud data recorded by a depth camera. In the foreground a person
standing in front of a monitor while the background contains the walls an the ceiling of the room.

The assumption is that only the foreground contains data of a person (Fig. 2(b)). The necessary
separation of foreground and background in the captured scene image data is based on the Otsu
threshold algorithm [2]. In addition, we use a Viola Jones face detector to find a face in the field
of view of the camera to confirm this hypothesis. Having successfully detected a face in the scene,
the face detector will be offline until the person leaves the field of view.

After the successful face detection and the extraction of the foreground we initialize the pre-
shaped SOM in the center of gravity of the resulting foreground point cloud [1]. Pre-shaped means
that the SOM’s topology is created in the form of an human upper body with horizontally out-
stretched arms (Fig. 3(a)). In [1] the best-matching neuron (BMN) for a presented stimulus is

* This work was supported by ESF grand number 100130195.
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(a) Unsegmented RGB data. (b) Segmented foreground data.

Fig. 2. Subfigure (a) shows a RGB image from the camera. The corresponding foreground data after the
foreground-background segmentation is shown in (b).

determined based on the Euclidean distance in the three spatial dimensions z,y and z. Computa-
tion of the minimal Euclidean distance seems to be the most straight forward solution.

y
2 3.
]
.|
Re—- r. = o P. 2 o P
6r 5r 4r 4] 51 6l
X 0 Lower torso
1 1 Middle torso (point of origin)
2 Upper torso
3 Head
0 4r/l  Left and right Scapula
5r/l  Left and right upper arm
6r/l  Left and right lower arm/hand
(a) Initial skeleton model. (b) Related joint description.

Fig. 3. Subfigure (a) shows the skeleton model at the point of initialization. All joints of the model are
named in (b).

Furthermore, we compute for each voxel of the resulting point clound different textural fea-
tures like Histograms of Oriented Gradients [3], Local Binary Patterns[4], Grayscale Co-ocurrence
Matrix [5] and also standard color spaces, like RGB and HSV. With that modification the input
space increases from R? to R™ with n much larger than 3.

The final modification is based on the approach presented in [6].

In this work a global relevance matrix is computed based on the regions and the textural
features of each voxel in the foreground point cloud. This computation is done parallel to all
remaining processes of the motion tracker. Furthermore we replace the Euclidian metric with an
adaptive metric [z — w]T Az — w] describing the relevance of textural dimensions. The matrix
A is trained in supervised maner using regional information automaticaly gained from the SOM
topology (Fig. 4(a)). For this each stimulus gets a region label of its related best-matching neuron
from the SOM. Six regions were defined, head, body, left arm, right arm, left hand and right hand
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based on the position of the neurons in the topology of the SOM. From this point each distance
between a stimulus and a neuron will be computed by using the enhanced feature space and the
relevance matrix as weight matrix (Fig. 4(b)).

RGB
HSV

GLCM 0.02

RGBHSV GLCM
(a) Colored regions of the SOM. (b) The computed lambda matrix.

Fig. 4. Subfigure (a) shows the colored regions of the SOM based on the SOM topology. Using the textural
features of each voxel in the foreground a global relevance matrix (b) is computed. The right side of (b)
shows the color scale from the minimal (top) to the maximal (bottom) relevance value.

In the end a verification of the SOM is done by reshaping the trained SOM to a skeleton model
to estimate the anatomical correctness of the pose. Having generated the skeleton model, incorrect
Self-Organizing Maps will be rejected if the subsequent verification failed.
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Derivatives of [,-Norms and their
Approximations

M. Lange and T. Villmann

Abstract

We provide in this technically oriented paper derivatives and ap-
proximations thereof for general dissimilarities based on [,-norms. These
derivatives require smooth approximations of the absolute value func-
tion as well as the maximum function. We explain several variants,
which can be used for gradient based methods in optimization, neural
networks and machine learning.

1 Introduction

Vector quantization as well as other machine learning approaches for data
mining and data analysis essentially depend on an appropriate choice of the
underlying dissimilarity measure. Whereas in traditional vector quantiza-
tion the Euclidean distance is standard, kernel methods like support vector
machines make use of kernel similarities. Widely applied is the Gaussian
kernel incorporating also the Euclidean distance in the data space. If those
approaches are optimized by gradient descent learning, the dissimilarity mea-
sure are assumed to be differentiable.

During the last years, non-standard metrics became popular replacing
the Euclidean metric by more sophisticated dissimilarities, which may be
more appropriate for certain data processing tasks. Examples are weighted
Euclidean distances |14], general bilinear forms |36, 35|, correlations [22,
37, 19], functional norms and Sobolev distances [17, 25, 32, 38|, divergences
[8, 7, 39, 41| or kernel distances |10, 33, 21, 40|, to name just a few. Obviously,
most of them are differentiable.

Recently, [,-norms with p # 2 moved into the focus as alternative dissimi-
larities in machine learning approaches [1, 2, 13, 24, 27, 29, 30, 31]. Laplacian
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kernel are based on the [;-norm and are successfully applied in support vector
machines |18, 33|. Depending on the parameter p, [,-norms show different
behavior, which makes them interesting for particular applications |2, 24, 31].

Yet, differentiation of [,-norms and their respective dissimilarities suffer
from the inconsistency for the origin x = 0 due to the inherent absolute
value function in /,-norms. Therefore, the application of /,-norms in gra-
dient based machine learning approaches requires appropriate, i.e. smooth,
approximations and respective derivatives.

The aim of the paper is to provide several smooth approximations of dis-
similarities based on [,-norms and semi-norms together with their consistent
approximations of the derivatives. Thus, they can immediately applied in
dissimilarity based gradient learning.

2 [,-Norms

Commonly, [,-norms are generalizations of the Euclidean norm

for 1 < p < oo with the corresponding Minkowsk: distance

& (v, w) = v —wl), . 2)
For p = oo we have
X[l = Tim [jx][], = sup || (3)
p—00 i

which leads to the mazimum distance
doo (V, W) = max |v; — wy] (4)
3

whereas

dy (v, w) = Z v — w; (5)
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is known as the Manhattan distance corresponding to the [;-norm

[l = Z 2] - (6)

The choice of the p-value causes different behavior of the distance. The
larger p the more important great variations become in a single dimension.
For p < 1 small variations, are emphasized and the unit ’circle’ becomes
concave, see Fig.1.

p=0.5 p=1 p=2 =10

LA VAAN T

Y A

-1 05 0 05 1 1 D& 0 06 1 BT 0 05 1 -1 08 0 06 1

Figure 1: Unit circles for several Minkowski-p-norms ||x||, according to (1):
from left to right p = 0.5, p = 1 (Manhatten), p = 2 (Euclidean), p = 10.

For co > p > 1 the respective [,-space is a Banach space with the semi
inner product (SIP, [12, 26])

1 - _
5 > wilyil” sgn (ui) (7)

(Ilvll,)” =

for x,y € R with sgn (x) is the signum function defined as

[X> }’]p -

1 x>0
sgn (z) = 0 r=0 . (8)
-1 x <0
The respective norm is obtained as
Ixll, = /[x.x], (9)

with p = 2 yielding the Euclidean norm. Obviously, [x,y], is the usual
Euclidean inner product (x,y) and, hence, [5 is a Hilbert space.
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For p =1, the SIP

vl =yl X2 @i - sgn (vi)
(10)
= Iyl it w0 i - o
is obtained |6], which generates the prominent /;-norm.

For 0 < p < 1, [le]|, from (1) is a still well-defined functional ¢, (x) =
|x[|,. However, it is not longer a norm. It is only fullfills the weaker con-

ditions of a quasi-norm [28]. For a general quasi-norm m, only a relazed
triangle inequality

V][ + [[wll < Cllv + w]] (11)
holds with a quasi-norm constant C' > 1, whereas the other usual norm
axioms are still valid. For the quasi-norms defined by the functional ¢, (x) =
[x[|, with p € (0,1), this constant obtained as C' = max{l,QTpp}. The
respective vector space is a complete Quasi-Banach-space [11|. Additionally,
the reverse Minkowski inequality

IV, + 1wl = vl =+ W], (12)

holds for those l-quasi-norms with |x| = (|zy],...,|z,])". Further, the p-
triangle inequality

VI + wlly < v+ wil; (13)

is valid. It turns out that
p
dy (v, w) = (v = w,) (14)

is a translation-invariant metric also for the quasi-norm case [20]. For this
scenario, [, with d, (v,w) is not a Banach space but a so-called F-space!.
In contrast to the distance d (v, w) from (2), d, (v,w) from (14) is only
a dissimilarity measure for oo > p > 1, [28|, which, however, is frequently
considered in machine learning. The similar weighted dissimilarity

A (v, w) = Ao — wil’ (15)
=1

I F-spaces are generalizations of Banach spaces, i.e. each Banach space is also a F-
space. F-spaces are complete with respect to the metric, the metric is translation-invariant
and continuous. Yet, F-spaces are not locally convex whereas Banach spaces fulfill this
property [15].
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with A; > 0 and )" | A; = 1 was proposed for p = 2 in relevance learning for
learning vector quantization [14]. The generalization thereof is the matrix
variant

) (v, w) = Z

=1

>y (v — wy)

J=1

with € R™™ and [x], = x; [4], which was first considered in [35] for p = 2
and m = n.
For p = oo we define the weighted mazimum distance as

= Z(HQ (v—w)L)"  (16)

=1

do (v, w) = max (A [v; — wi) (17)

again with \; > 0 and > " ; \; = 1 whereas the matrix variant is defined as

ZQz‘j (v — wy) ) : (18)

In case of the real function space £, and 1 < p < oo we have

fodl, = —— / FoloP - sgn (g (1) dt (19)

(ll,)"

in analogy to (7) with the norm [|f||, = /[f, f], [12]. The above mentioned

properties of /,-spaces remain valid accordingly.

4! (v, w) = max (

3 [,-Norms and Derivatives

3.1 Formal derivatives
3.1.1 The case 0 < p <

Gradient based vector quantization algorithms frequently optimize an cost
function applying the derivatives of the dissimilarities between prototypes.
Suppose, data vectors v € R™ and prototypes w € R", we consider the dis-
similarity measure d, (v,w) = > |v; — w;|” from (14). Then optimization
of a prototype requires the formal derivative

ad, (v, w) B

8wk

L0z

— . p_l

(20)
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with
Z=V—W. (21)

The gradient (20) can be written in vectorial form as

8dp (V,W) = —p- |Z‘*(p_1) o M

22
ow 0z (22)
where xoy = (z1-y1,..., %y - yn)T denotes the Hadamard product. Further,
x** denotes the componentwise power of x = (x’f, e ,x’fl)T and a|z| %
holds. Analogously, we find
od) (v, w) |z
p \V> — —p-\ *(p—1) 23
—gw = PAcld 5 (23)
and o> )
V,W .
pT = |z[" . (24)

For the matrix variant we obtain

8dQ (v,w)

d]s;
_ pzysl\pl 'S Qi (25)

with .
S; = Z QZJZ] (26)
j=1

forming the vector

s=QzcR"™ (27)
and gj}; = —Q;. The derivative gé Y) becomes
0d (v,
Ody (v w) _ L (28)
8le a Sk

with %’; = z is valid.
Both matrix variant derivatives may be written in vector notation as

Ody, (v, w) 7 (-1 9(s])
Tow - 7Y (‘S' a—) (29)
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and\mathcal{S}

0dy (v, w) 9([s])
§4 ? — ) *(p—l) . T
o9 P (|S| ° " os ) z (30)

respectively, using the convention that vectors are assumed to be column
vectors.

3.1.2 The case p = c©

For this case we consider the formal derivative %‘;’W) of the maximum

distance do, (v, w) from (4). We denote by

max (x) = max (x;) (31)

the maximum function. Then we calculate

dds (v,w)  Omax(|z]) 0Oz

Omax (|z])
= — 32
s (32)
using g—i}’z = —1. Analogously, the weighted maximum distance (17) yields

the derivatives
ad> (v, w) _ Omax (Ao |z)

= 33
ka (9Zk ( )
whereas the matrix variant d! (v, w) from (18) delivers
odst (v, w) "\ Omax (|s|)
using here % = —(;,. The respective matrix notations are
od, (v, w) dmax (o |z|)
ow =S 0z (35)
e 00 (viw) - Omax(js)
V,W max (|s
= SR MDA S W el VA
ow Os (36)
accordingly.
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For the parameter updates we get

ody, (v,w)  Omax(Xoz|) Oy

O ayk Ok
Jmax (y)
= i O 37
- S (37)
with y = A o|z| and
ode (v,w)  Omax(|s|) Os
anl N ask le
~ Omax ([s|)
= aSk 2] (38)
for the matrix variant. Again we jot down the vectorial description
o), (v, w) Jmax (y)
—an 2] o oy (39)
e 0% (v w) _ 9mas (Js)
s (V,W)  Omax([s]) -
o0 os (40)
accordingly.

3.2 Smooth Numerical Approximations for the Max-
imum Function and Absolute Function and their
Derivatives

3.2.1 Smooth Approximations of the Maximum Function

Smooth approximations of the maximum function max (x) from (31) are
well-known. A convenient parametrized variant is the a-softmaz function

7}7 xieowci
S (%) = —Zinl e (41)
1=1

with o > 0, frequently applied in optimization and neural computation [3,
16]. A value o < 0 in (41) yields a smooth minimum approximation whereas
for &« — 0 a soft approximation of the mean is obtained. Another smooth
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approximation of the maximum function related to the a-softmax function

S, is\mathcal{S}
Q, (x) = élog (Z e‘“’i> (42)

proposed by J.D. CooK [9]. We refer to Q, (x) as a-quasimaz. This a-
quasimax can be seen as a kind of a generalized functional mean or quasi-
arithmetic mean discussed in |23]. One can easily verify that

log (n)

Q, (x) < max (x) + —

is always valid.

3.2.2 Consistent Smooth Approximations of the Absolute Value
Function

In the following we discuss smooth approximations of the absolute value
function. We will see that these approximations are based on the maximum
function. Hence, a consistent numerical smooth approximation has to take
care to the underlying maximum approximation.
A smooth approximation of the absolute value function was proposed in
[34]:
[2lo = (2)5 + (=) (43)

with
(¥)o = max (yo) (44)
for yo = (v, O)T. This is equivalent to

(w2=y+ébg0+eﬂﬂ (45)

as a convex a-approximation defined for values y > 0 [5]. Keeping in mind
the\mathcal{S} identity e~** = 1 we observe that (y). = (y)%" with

W) =y + Qa (yo)

using the a-quasimaz function Q,, from (42) in (44). Inserting these formulae
in (43), we obtain an approximation

1
2|2 = o log (24 €% + ¢*7) (46)

Machine Learning Reports

51



MIWOCI Workshop - 2013

referred as a-quasi-absolute. Hence, |x|2 is consistent with Q,, (x) with the

upper bound

1 2
] — ]2 < 228 2) (47)
(0%

shown in [31].
Alternatively, we may consider

W) =y+Sa(y)

using the a-softmaz function S, from (41) in (44), which leads to

s xT- (eazv _ e—az)
— 48
212 = (48)

denoted as a-soft-absolute.

3.2.3 Derivatives of the Smooth Numerical Approximations

If the above introduced smooth approximations are used in gradient based
numerical methods, neural networks or other methods in machine learning
the derivatives have to be known. We provide the respective formulae in the
following;:

In particular, we obtain

O|x|2 B eor — T
or (2 + e—o% + ear)
= tanh (%x) (49)

for the a-quasi-absolute |x| and

Olzls  a(e™ —e )
dr 24 e e
«Q ax
= tanh <—m> 4+ — 50
2 2 (cosh (%x))Q (50)

for the a-soft-absolute |z|S. Although |x|€ and |z|S look quite different, their
derivatives differ only slightly
Olz[s _ Olz|?
or Oz

+ Asg (ax)
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with the deviation term
ax

(51)

For the a-softmax function S, (x) from (41), the gradient can be ex-
pressed in terms of S, (x) itself

S, (x) ek

= 1 - S, 52
Oxy, D iy €0 1+ (s (x))] (52)
whereas for the a-quasimax function Q,, (x) from (42) we simply obtain
09, (x) ek
- ) 53
Oy, Z?:l eloi) 53)
We observe again a slight variation
08, (x) 09, (x)
= -V 54
8$k axk se ( )
where
Vso =[1+a(z,— S, (x))] (55)

is a multiplicative corrector here.

4 Laplacian and [,-Kernels K,

Kernel mappings and kernel metrics became popular in classification by
means of support vector machines [33|. Recent developments introduce
them also for learning vector quantization (LVQ), but require differentiabil-
ity |21, 40]. In context of [,-norms, the family of exponential kernels comes
into play. The Laplacian kernel is defined as

L(v,w) = e W) (56)

whereas the Gaussian is given by

da(v,w)

G(v,w)=¢e 27 , (57)
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and the original exponential kernel is

7d§(v,w)
G*(v,w)=¢ 27 . (58)
In general, we can define [,-kernels by
7dp(v,w)
K,(v,w)=¢ o7 (59)

and, obviously, we can replace in this definition also d,, (v, w) by their parametrized
counterparts d (v,w) and d;} (v, w). Thus, the formulae for the numerical
calculation of the gradients with respect to w follow immediately from the
above considerations in a trivial manner.

5 Conclusion

In this technical paper we consider derivatives of dissimilarities based on [,-
norms. Generally, these dissimilarities contain the absolute value function,
which causes difficulties for the (numerical) calculation of the derivatives.
We provide smooth approximations and explain the respective derivatives.
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Notes on soft minimum and other function
approximations

Marc Strickert, Eyke Hiillermeier
Computational Intelligence Group, Philipps-Universitdt Marburg, DE

Abstract

Optimization of non-differentiable functions mixed with continuous ex-
pressions is a frequent problem in machine learning. For example, optimal
continuous models over triangular norms, ¢;-norms, and rankings involve
non-differentiable minimum, maximum, relational, or counting operators.
Soft formulations of such operators are investigated for model optimiza-
tion by gradient-based methods. Several aspects of the original presen-
tation on ’Amazing Soft-Min’ at the fifth Mittweida workshop on com-
putational intelligence are summarized in the following, being extended
beyond the mere minimum operator.

1 Introduction

Many computational intelligence methods involve data-driven model adapta-
tion, but sometimes real-valued data clashes with discrete or non-differentiable
mathematical operators in an otherwise continuous problem setting. Examples
include value ranking, relational comparisons, absolute value calculations, and
minimum operations.

One of the typical examples for the use of smooth function approximations
is model regularization with the ¢1-norm, like in lasso regression. Linear map-
ping coefficients are being optimized in a continuous context under the non-
differentiable constraint of minimum ¢; norm. Explicit smoothing function
approximations exist in this context [12]. Vector quantization models using
non-standard metrics or model regularization approaches led to recent research
activities directed towards smooth function and norm approximations for data-
driven optimization [11, 8].

A general framework for smoothing non-differentiable or discrete objective
functions, based on calculus of variations, was recently described [13]. That
framework makes use of the expectation of the function of interest under a
custom input value distribution. A Gaussian with some parametrization may be
considered as a natural though not exclusive choice, but functional expressions
for the expected function outcomes may not be computationally accessible.

In the neural network community, a soft-max function based on the Maxwell—
Boltzmann distribution for energies in statistical physics is used to model the
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activation of the most stimulated network nodes, not exclusively the most stim-
ulated one [1]. In this context, the common soft-max function was derived as
node indicator arg max rather than as calculator of the overall maximum stim-
ulus value max [4].

The focus of this work are soft approximations of the min function, but before
discussing options, the standard minimum function and its (semi-)derivative are
revisited:

min(z) = min(xy, a2, ..., Tk, ..., Tp) (1)
Omin(z) |1 if =z} =min(x) 2)
Orr, |0 else

The derivative is just the discrete indicator function for the index of the min-
imum value. For unique minima the indicated component is the only one to
receive any signal in gradient-based model updates, thus creates a winner-takes-
all dynamics. If minima are constituents of a complex cost function expression,
it may happen that minimum cut-offs are effective for model parameters that
prevent any further update due to their zero derivatives, for example, as caused
by inappropriate random initializations. From neural gas vector quantization
models it is known that relaxed approaches for winner-takes-most dynamics,
e.g. based on ranks, also involve 'minor’ model components for potentially im-
proved convergence properties and robustness [10].

Smooth derivatives are of special interest for second-order gradient methods
that rely on valid curvature information of the cost function. Besides this, the
focus on the min function is motivated, because it can be easily turned into
max(x) = —min(—x), and it can be used as building block of other functions
of interest, such as the absolute value function.

2 Soft-Min formulations

This section deals with different alternatives for a smooth approximation of the
minimum function. First, we exclude a derivation of soft-min from a limit of
the maximum vector norm. Then, a standard soft-min formulation from the
neural network community will be revisited. Subsequently, a formulation based
on a function shearing transformation will be derived and presented. After
discussing some of its challenges, a more suitable expression based on a smooth
step function is studied.

2.1 Soft-Min and the maximum vector norm

The well-known expression of the maximum norm for M-dimensional vectors «

M 1/k
el = lim (Z |x> ~ max(a) 3)
i=1
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only holds for #; > 0,i = 1...M. For limited domains z; € [-K,K] a
component-wise shift operation could be used to express max(zi,...,zn) =
max(zy + K, ...,y + K) — K and thus min(x) = — max(—ax). This approach
will not be pursued here, for avoiding numerical challenges with very large ex-
ponents.

2.2 A standard Soft-Min formulation

The common soft-max activation function in neural networks simulations [15]
is turned into probability for components i of M-dimensional vectors to be

minimum as
efmi K

anim(x) = W . (4)
j=1

Obviously, ZZ 1 Prini(z) = 1. The squashing factor £ > 0 controls the strict-
ness of the approxunatlon larger k result in crisper decisions, and kK — oo would
yield P32 (x) = 1 for i = arg min(z), else zero.

For computmg soft-min values, the scalar product of the data vector and

this probability vector, as indicated by bullet notation (e), is considered:

e~ Tk

soft minﬁ(w) = <w7 min, o sz ' (5)
Z] 1 e v

The derivative is reported for potential optimization purposes:

BORIE) bt ) (1= 5 (i = soltming(@))) . (6)

There is a catch in using this formulation of soft-min for optimization pur-
poses. As illustrated for soft min(0, z) in Figure 1, the function is not monotonic,
making the derivative sign-sensitive to whether the value is less or greater than
about 1.3 in this case (black circle). Depending on overall optimization scenar-
ios, parameters might diverge beyond such critical points where non-negative
derivatives should be expected.

2.3 Soft-Min from sheared hyperbolas

The general shape of a minimalistic minimum function of z against zero should
show three basic features: monotonic increase, and asymptotic convergence
against = for x < 0 and against 0 for x > 0. The left panel of Figure 1 shows a
graph of such a target function.

The concrete soft-min function in Figure 2 has been derived by a shearing
operation of the hyperbola —1/x shown in the fourth quadrant in the left panel.
From geometry it is known that a 45 shearing transformation can be obtained by
multiplying two-dimensional points (2) = ( f(zm) ) by the transformation matrix
(§1), thus

(i’) - ((1) 1) ' (f(%) = <(1) D ‘ (x }_(];gx)> f)z1/e (“Jf) - (7
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Soft-min from Maxwell-Boltzmann distribution Derivatives of Maxwell-Boltzmann distribution

soft (k=1)
hard

soft-min (k=1)
hard min 1 0

-5 0 5 -5 0 5

Figure 1: Soft-min based on Maxwell-Boltzmann distribution and hard mini-
mum against 0 (left) and their derivatives (right). The black circle indicates
zero derivatives.

To convert this parametric form z'(x) = x — 1/x A y'(x) = —1/z back into a
functional expression, the equations are rewritten by substitution:
y=-1lz « z=-1/y (8)
.T/:*]./y/+y/<:>y/2*$/‘y/*1:0 (9)

=y =1/2- (' — Va2 +4) = soft min(0, z) . (10)

Equation 10 exhibits the desired properties for approximating soft min(0, x),
and a pairwise comparison can be realized by a diagonal shift in the coordinate
system:

soft min(z,y) = soft min(0,z —y) + v . (11)

Unfortunately, a generalization to more than two arguments is not trivial.
Generally, for hard minima it is obvious that argument order has no influence,
such as in

min(zx,y, z) = min (min(a:, y), min(y, z)) , (12)

but in the analogous soft formulation, for example, the result of soft min(1, 2, 3) =
—0.24 is different from soft min(2,1,3) =~ —0.52. Argument ordering could be
validly integrated out by averaging over all feasible pairings, but since more
than three arguments would need a tree-based reduction of minima, this would
lead to runtime requirements exponential in the number of arguments.

y() =-1/x y(x) = 172 (x - (P+4)"?)

10 i
[ ob oo ad
5 . : ‘ ]
|
o—_—

| -5 i
_5 : : ! J softmin(x,0)
l " min(x,0)
-10 -

-3 -2 -1 0 1 2 3 -10 -5 0 5 10

Figure 2: Soft-min (right) derived from a sheared hyperbola (left, quadrant IV).
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Another disadvantage of the approach is the lack of tunability. For the above
numeric example, both values of —0.24 and —0.52 are quite far away from the
minimum of 1, but the curvature cannot be easily adapted towards stricter
approximation. The canonic idea to replace the hyperbola by (—1)%*~1/z* for
integer k > 0 does not work, because of the generally non-algebraic functional
expressions for the parametric shear. For these reasons, this approach is being
discontinued.

2.4 Soft-Min based on transformed smooth step functions
Smooth approximations of step functions are obtained by Fermi sigmoids:

1

sgdy(7) = Tqrers"

(13)
As illustrated in Figure 3, large values of the parameter k yield steeper transi-
tions between 0 and 1 around values of zero. The derivative can be elegantly
expressed as

sod,.
OSBE) _ - spe(o) - (sedel) 1) (14)
The logarithm of the sigmoid log(sgd.(x)) = —log(1 + exp(—+ - x)), dis-

played in the right panel of Figure 3, has interesting properties: most obviously,
soft min(0, ) is being expressed for Kk = 1. For k = 5 the slope is 5, thus, the
kink of the soft-min can be controlled, and the scaling towards the diagonal can
be expressed by

soft min (0, z) = % -log (sgdu(x)) = —% -log(exp(0) + exp(—k-z)). (15)

For the record, this expression is equivalent to a point rotation of the graphs by
180 around the origin, subtracted from the diagonal line x:

1
soft min (0,z) =z — — - log(1l + exp(k - x)) . (16)
K
This expression was derived and used in early stages of this work, but the

algebraic structure of mixed summation, product, and logarithm doesn’t make
it appealing for other operations in this form.

Simoid function y = (1+exp(-k x))_l Log-simoid function y = log((1+exp(-k x))_l)

1 | — -
/- O ===~ —
05 s / |
k=1 K=1
K=5 K=5
0 -10 .

-5 0 5 -5 0 5

Figure 3: Sigmoid squashing function sgd, (left) and its logarithm.
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Regarding Equation 15 we easily see that

soft min ,(0,x)  is strictly increasing in =z, (17)
soft min . (0,0) = —1//<; log(2), (18)
xh_)ngo soft min ,; (0, z) = (19)
lim soft min ,(0,z) = (20)

Tr—r—00

1 1
soft min . (0, z) = - log(14+e7"7) < - log(e™ ™)y =z. (21)

Combining these statements, a good asymptotic approximation of the rigorous
function min(0,x) can be stated, because even for modest values |k - x\ belng

Tre—w7
141% quickly converges to 1. By its design, the largest deviation of the soft-min
approximation occurs at the critical point where the arguments become equal.

The obvious limitation of the previous definition of the soft-min is its re-
striction to approximate results of min(0,x) for single scalar arguments x. A
more detailed definition and discussion for two arguments is found in [2], but
the sigmoid-based approach can be generalized to arbitrary vectors by canonic
summation:

inserted in Equation 21, the ratio of the arguments of the logarithms

soft min, () = fflogz e (22)

This equation can be used as soft min, (0, z) to emulate the behavior of Equa-
tion 15.
The derivative of the approximation in Equation 22 can be easily computed

as
Osoft min,, (x) e _pr
8$i Z;\/[ e — e min,s

() (cf. Equation 5). (23)

It seems appealing to state a connection between the probability density function
of the Maxwell-Boltzmann distribution in Equation 5 and the proposed soft-min
expression in Equation 22.

3 Vector quantization example

Using distance minimization, a simple vector quantization scheme based on soft-
min can be devised: let X € RV*M be a set of N data vectors of dimension M,
and let W € RVXM be a set of data-representing prototypes. Then the cost

function
N

E=> min(d(X;,W),...,d(X;, Wp)) (24)

i=1
is to be minimized, that is, prototypes being closest to given data vectors,
in terms of distance d, should be placed even more closely if possible. This
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Vector quantization: initialization Vector quantization using hard minimum
° °
60; @ @ o : 60[ ® e o
° °
40 @ @ (] 40 9 & [ ]
o 9. o i if °
20 ® d L4 20 & o ( )
°
°
0 ot Lo , 0 ot Ty
o % )
-20 0 20 40 60 -20 0 20 40 60
Vector quantization using MB distribution ~ Vector quantization using log—sigmoid
o o
100 @ L4 40 e & ® .
[} L o
50 oo 30 98 ¥ R
o @
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0 o0 . » % 2 «
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. op B @ B .8
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Figure 4: Application of soft min to simple vector quantization with prototypes
in red.

optimization task can be solved by gradient-based methods that profit from
providing explicit derivatives of the cost function w.r.t. the prototypes:

OE o~ Omin(e)  9d(X;, Wy)

= . 25
oW, P od(X;, W) oWy, (25)
Using, for example, squared Euclidean distance this yields:
ad(X;, W
d(Xs, W) = ||X; — W2 with 7(aw b . X, —Wy).  (26)
k

The minimum function min and its scalar derivative 0 min(e)/9d(X;, W},) can
be taken as pairs of previously discussed approaches for the hard minimum (1,2),
for the minimum based on the Maxwell-Boltzmann distribution (5,6), and for
the minimum based on log-sigmoids (22,23).

Since the task is just meant as illustration of the different characteristics,
a 2D data configuration and an initial prototype setting is fixed as shown in
the top left panel of Figure 4. The number of prototypes and the number of
generated Gaussian clusters both equal 25, and the number of points per cluster
is also 25. For demonstration purposes, some prototypes are initialized outside
the convex hull of data — as to represent a typical scenario of parametrization
that may occur in unconstrained optimization involving the above-mentioned
minimum functions. Technically, MATLAB with fminbfgs toolbox [7] was used
for optimization, involving the memory-limited 2nd-order BFGS method, after
validating the derivatives of E using the derivest toolbox [3].
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Figure 4 shows the final configurations using the same convergence criteria.
The hard-minimum manages to re-distribute the prototypes with non-empty ini-
tial receptive field, as shown in the top right panel. The outer prototypes never
receive any signal, because of strictly zero-derivatives of the min function. For
the Maxwell-Boltzmann distribution the parameter was set to k = 0.005 to illus-
trate potential parameter divergence, shown in the lower left panel. Prototypes
tend to be evenly spread over the data, but some initially exterior prototypes
are pushed further apart, because of the non-monotonic soft-min characteristic.
Too small values led to placing all prototypes either in the center of gravity of
the data; too large  led to strong divergence (not shown). For the log-sigmoid
approach, a pretty useful value of x = 0.0234 can be found that leads to visually
correct prototype placement. The lower right panel indicates a potential bias
of the approach, though, because prototypes in the outer clusters tend to be
dragged to the overall data center of gravity.

4 Other function approximations based on Soft-
Min

With soft minimum formulations at hand more complex functions can be com-
posed.

4.1 Absolute value function

In model regularization scenarios, the absolute value function gets important to
be part of the ¢; vector norm ||z||; = Z,Ai1 |2;|. This function can be written
as:

|z| = max(—z,0) + max(z,0) = —min(z,0) — min(—z,0) . (27)

Thus, soft approximations are obtained by utilizing any of the soft-min defini-
tions:
|z| &~ —soft min,(z, 0) — soft min, (—x,0). (28)

Two different approximation types are shown in Figure 5. It can be seen that
the Maxwell-Boltzmann approach, shown in the left panel, is always less or equal
to the absolute value (red line), reaching its minimum of zero independent of .
This property requires a violation of convexity. As displayed in the right panel,
the opposite holds for the approximation by log-sigmoids: the minimum of zero
would only be reached in the limit of K — co. Since often the precise minimum
is not of interest, but only the curvature near to it, this convex approximation
of the absolute value might be a desirable choice.

4.2 Triangular norms

Triangular norms are important operators in probabilistic metric spaces and
multi-valued logic [5]. Two prominent norms used in the construction of the
intersection of fuzzy sets are the
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Absolute value function based on Maxwell-Boltzmann Absolute value function based on sigmoid

k=1
k=5
abs

Figure 5: Soft absolute value function based on Maxwell-Boltzmann distribution
(left) and on soft-min expression using a log-sigmoid (right).

e Minimum t-norm: T pin(z,y) = min(x, y).
e Lukasiewicz t-norm: Tpuk(z,y) = max(0,z+y—1) = —min(0,1—z —y).

Again, soft-formulations may come in handy in optimization scenarios. For
example, it may be desirable to optimize the fuzzy gamma rank correlation [6]

M M
C=ZZT(RX(%,%%RY(%%)) and D:ZZT(RX(%,%),RY(%,%))
i=1 j£i i=1 jAi

between two vectors &,y € RM | involving two strict fuzzy order relations Rx
and Ry, respectively, and one of the above t-norms. Using soft-min, v can
be composed of smooth differentiable functions. Without going into detail,
Oy(L,XM)/OM could be used to optimize a model M € RM such that the
linear transformation of X fits the ordering of elements in L by gradient-based
maximization of fuzzy rank correlation [9)].

5 Conclusions and Outlook

Smooth function approximations possess some potential for dealing with gradient-
based optimization of non-differentiable or discrete functions. As has been il-
lustrated for different expressions of the soft minimum function, convexity and
tunability are important properties, as obtained by transformations of Fermi
sigmoids. This was demonstrated for a simple vector quantization problem.
Soft-min is proposed, but not limited to this, as building blocks in smooth
absolute value approximation and triangular norms.

If optimization only needs to know the way how to approach the bound of
a minimum, but not the precise value of that bound, an alternative would be
to define how the derivative should look like for a desired update dynamics and
then doing function integration. It would be interesting to look at the class of
non-analytic smooth functions like the one shown in Figure 6. This function has
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Non-analytic smooth function

e Y for x>0, else 0
0.5

Figure 6: Non-analytic smooth function as potential building block for smooth
function approximation [14].

a benignly deformed sigmoidal shape and has the interesting property that the
gradient effectively vanishes to zero if started in the positive regime and adapted
by gradient descent. Thus, contrary to barrier methods, regimes of asymptot-
ically vanishing derivatives can be introduced in unconstrained gradient-based
optimization to prevent parameters from divergence.
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Two Or Three Things We Know About LVQ

Michael Biehl*
Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

August 22, 2013

Learning Vector Quantization (LVQ) and its recent extensions have at-
tracted considerable interest due to several positive features: LVQ is fast,
easy to implement and intuitive. The representation of classes by prototypes
facilitates interpretation and fruitful discussion with domain experts. Multi-
class problems can be addressed naturally without resorting to hierarchical
or pair-wise schemes. Adaptive distance measures can be incorporated ele-
gantly in terms of Relevance Learning. As a consequence, LVQ variants are
frequently applied with great success in practice.

As a major downside, the lack of mathematical foundation and analysis
of LVQ is frequently mentioned. This presentation summarizes a number
of recent theoretical findings which help to close some of the gaps in the
theoretical understanding.

The presented results were obtained in ongoing collaborations among nu-
merous researchers including K. Bunte, B. Hammer, M. Kastner, D. Nebel,
M. Riedel, F.-M. Schleif, P. Schneider, M. Strickert, T. Villmann, and H. de
Vries.

Prototype Stationarity
Stationarity conditions for prototype updates can be worked out for both,
heuristic and cost function based LVQ algorithms. In particular, for Koho-
nen’s LVQ1 and Generalized LVQ (GLVQ) it can be shown that stationary
prototypes are given by linear combinations of the feature vectors in the
training set.

If the distance measure is a more general quadratic form as in Matrix
Relevance Learning, prototypes can incorporate contributions from the ker-
nel or null-space of the relevance matrix. However, this does not alter the

*e-mail: m.biehl@rug.nl
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classification scheme and the null-space contributions can be removed by a
column space projection.

Further investigations should address the sensitivity to initial conditions
and the question of the uniqueness of stationary solutions. The question
arises, whether the restriction of prototypes to linear combinations of fea-
ture vectors might be beneficial throughout the entire training progress. The
influence of the detailed properties of the GLVQ cost function on the posi-
tioning of prototypes constitutes a further topic for further investigations.

Stationarity of Relevance Learning

The stationarity of Relevance Learning can also be studied analytically. The
main result of the analysis is that matrix extensions of LVQ1 and GLVQ
yield low-rank relevance matrices. Note, however, that the precise configu-
ration depends on the outcome of the training dynamics. The self-consistent
analysis does not allow to predict the stationary configuration from the data
set alone.

This property of matrix relevance learning helps to avoid over-fitting
since the effective number of adaptive parameters is reduced and remains lin-
ear in the dimensionality of the data. Moreover, the intrinsic low-dimensional
representation of the feature vectors also facilitates the discriminative visu-
alization of labelled data.

A number of open questions deserves further attention: The actual rank
of the stationary relevance matrix depends on the presence of certain de-
generacies which play an important role in practical examples, apparently.
Subtle differences between LVQ1 and GLVQ result in very different conver-
gence behavior in practice, which are not yet fully understood.

Regularization and Improved Interpretation An important problem
of Matrix Relevance Learning was pointed out only recently. The distance
measure is, with respect to training data, invariant under non-trivial mod-
ifications of the relevance matrix. This relates to the covariance matrix
computed from all training examples and prototype vectors; contributions
from the kernel or null-space do not modify the classification of training
examples. Hence, LVQ1 or cost function based training can accumulate
such contributions which may deteriorate the generalization behavior with
respect to novel data.

The problem is highly relevant in practice and arises whenever features
are highly correlated or even linearly dependent. The former occurs, for
instance, in functional data, while the latter is always the case when the
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number of examples is lower than the dimensionality of the feature space.

As shown recently, a posterior regularization in terms of a column space
projection is straightforward to implement. It improves, both, the classifi-
cation performance and the interpretability of the relevance matrix, e.g. in
the context of feature selection.

Many interesting questions require further studies. The application of
the column space projection throughout the training process might be ben-
eficial and clearly deserves attention. The fact that prototypes can be re-
placed by linear combinations of feature vectors suggests a simplified regu-
larization which could be applied even prior to training.
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A basic introduction to T-norms
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Abstract

Working with approaches to perform or evaluate fuzzy clusterings or
classifications, more than once I got confronted with the concept of ”t-
norms”. Yet in general, most participants of the MiWoCI workshop are
more or less unfamiliar with this topic. This article offers an introduction
into the basic concept of t-norms including definition, properties, and
different variants.

1 Introduction

T-norms are a generalization of the triangular inequality of metrics and were
introduced by Menger [1]. They can also be used as generalizations of the
Boolean logic conjunctive "AND’ operator to multi-valued logic. Applied in
fuzzy logic t-norms represent the union of fuzzy sets. Its dual operation t-
conorm analogously refers to the 'OR’ operator and can be used to represent
the intersection of fuzzy sets.

T-norms are widely used in fuzzy set theory with multiple applications [2, 3,
4]. Recently, t—norms have also been analyzed in alternative frameworks [5, 6],
motivating their use in general classification methods.

T-norms are also applied to evaluate fuzzy clusterings and classifications.
For example, the fuzzy Rand Index [7], which measures the similarity between
two cluster solutions, is based on t-conorms. Another measure to evaluate the
agreement of two or more classifiers is the Cohen’s Kappa Index [8] or Fleiss’
Kappa Index [9], respectively. The fuzzy versions thereof also use t-norms [10,
11].

2 Definition of T-norms
A t-norm is a dual function T : [0, 1] x[0, 1] — [0, 1] with the following properties:
1. Commutativity T(a,b) = T(b,a)

2. Monotonicity T(a,b) = T(¢,d),ifa=cand b=d

3. Associativity T(a, T(b,¢)) = T(T(a,b),c)
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4. Identity T(a,1) =a

According to this definition, the values of t-norms are only specified on the
corner points of a unit square and along the edges. In the middle area the values
are restricted to the range [0, 1].

3 Several T-Norms

There exist a variety of different t-norms which comply with the definition spec-
ified in section 2. In the following a short listing of the most common t-norms
is given. Their graphical representation based on a unit square can be found in
Fig. 1.

Minimum or Zadeh t-norm
Tmin(a,b) =min(a,b)
Product or Probabilistic t-norm
Tproa(a,b) =a-b
Lukasiewicz t-norm
Tiuka(a,b) =max(a+b—1,0)

Drastic t-norm

a ifb=1
Tdrastic(a7 b) == b lf a=1
0 otherwise

Further, there are several parametrized t-norms. Some of them are equivalent
to one of the above t-norms for a certain choice of the parameter ~.

Hamacher t-norm

Tham(aa b) = { if v > 0

ab
v+(1—v)(a+b—ab)

For v — 400 this t-norm is equivalent to the Drastic t-norm and for v =1
to the Product t-norm.

Weber t-norm

a+b—1+~ab

Tweber(a, b) = max( T

,0) with v > —1

For this t-norm it can be observed that for v = 0 the Lukasiewicz t-norm is
obtained. For v — 400 the Product norm is approximated.
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(a) Minimum t-norm (b) Product t-norm

(c) Lukasiewicz t-norm (d) Drastic t-norm

Figure 1: Plots of various non-parametrized t-norms based on the unit square
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Yager t-norm

T yager(a,b) =max(1 — /(1 —a)¥ + (1 —b)?,0) with v >0

The Yager t-norm reduces to the Minimum t-norm for v — 400 and to the
Lukasiewicz t-norm for v = 1.

Aczel-Alsina t-norm
Taczer(a,b) = exp(—((—log(a))” + (—log(b))?)7) with 0 <~ < oo

Setting v = 1 the Product t-norm is obtained. For v — 400 the Aczel-Alsine
t-norm approaches the Minimum t-norm and for v — 0 the Drastic t-norm.

4 Some remarks

Point wise comparison of the above non-parametrized t-norms yields the order-

ing
Td'r‘astic(a’ b) S Tluka(ayb) S Tp'r‘od(aa b) S Tmin(avb)v (1)

which explains the discrepancy in the results of the Fuzzy Fleiss’ Kappa Index
obtained in [11] by using different t-norms. There it has been observed, that by
applying the minimum t-norm T,,;, the highest and most reliant index values
were achieved while for example by using the Lukasiewicz t-norm Tj,x, the
index values drop drastically.
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