
MACHINE LEARNING REPORTS

Workshop New Challenges in Neural
Computation 2016

Report 04/2016
Submitted: 02.09.2016
Published: 12.09.2016

Barbara Hammer1, Thomas Martinetz2, Thomas Villmann3 (Eds.)
(1) CITEC - Centre of Excellence, University of Bielefeld, Germany

(2) Institute for Neuro- and Bioinformatics, University of Lübeck, Germany
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The workshop New Challenges in Neural Computation, NC2, takes place for
the seventh time in a row. As became a custom, it accompanies the prestigious
GCPR conference, which takes place in Hanover this year, and it is collocated
with two tutorials on embeddings/metric learning and NVIDIA, respectively.
Hanover as the thirteenth largest city in Germany is well known for its major
trade fairs such as the Hanover fair and CeBIT, providing an inspiring back-
ground for the conference.

The workshop itself centres around challenges and novel developments of
neural systems and machine learning, covering recent research in theoretical
advances as well as practical applications. This year, thirteen contributions
from international participants have been accepted as regular contributions,
spanning the range from deep learning, robotics, vision and language process-
ing up to advanced learning models, which go beyond standard vector-based
data representations, and intriguing applications. In addition, we welcome two
renowned researchers as guest speakers, Prof. Dr. Marc Toussaint from Univer-
sity of Stuttgart talks about representation learning, Prof. Dr. Jörg Lücke from
University of Oldenburg, presents a new deep learning paradigm based on so-
called neural simpletrons. The workshop is supported by the German Neural
Network Society (GNNS), and by the CITEC centre of excellence from Bielefeld
University, Germany. Within the workshop, a meeting of the GI Fachgruppe on
Neural Networks and the GNNS takes place.

We would like to thank our international program committee for their work
in reviewing the contributions in a short period of time, the organisers of GCPR
for their excellent support, as well as all participants for their stimulating con-
tributions to the workshop.
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Keynote talk: Representation Learning - I’ve heard that
one before

Marc Toussaint, University of Stuttgart, Germany

Abstract:

The revival of NNs surprised some, including me. Back then I considered NNs
problematic especially because of their ‘representational limitations’ in compar-
ison to the explicit structure that can be represented (and learned), e.g., with
graphical models, or probabilistic relational models, or representing functions in-
directly via optimization or planning problems, as often done in robotics. In fact,
the limitation seemed not only w.r.t. representational capacity, but also w.r.t.
the computational operations on such representations. It is however interesting
to see that ‘Representation Learning’ became, again, a central research topic
in the NN community. I introduce the talk discussing this controversy between
the (perhaps feasible?) dream of learning everything in a generic, essentially
‘no-prior’ substrate (‘end-to-end learning’) versus the tough science of trying to
identify what we believe is essential problem structure and learning relative to
such priors. I mention some older work of mine as well as some newer that might
seem to move away from the ‘representation issue’, but never really has.
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Keynote talk: Neural Simpletrons - Minimalistic Deep

Neural Networks for Probabilistic Learning with Few

Labels

Jörg Lücke, University of Oldenburg, Germany

Abstract:

Deep learning is intensively studied using supervised and unsupervised learning,
and by applying probabilistic, deterministic, and bio-inspired approaches. Com-
parisons of different approaches such as generative and discriminative neural
networks is made difficult, however, because of differences in the semantics of
their graphical descriptions, different learning methods, different benchmarking
objectives and different scalability. In this talk I will discuss novel neural net-
works that are derived from generative modeling approaches but can be formu-
lated as neural networks, i.e., they take a form similar to standard discriminative
networks such as perceptrons. These novel networks, which we term Neural Sim-
pletrons, are especially well suited for applications to data with no or few labels
because of their roots in generative models. The weakly labelled setting is also
well suited for a quantitative comparison with standard and recent state-of-the-
art neural networks. Empirical evaluations on common benchmarks show that
for weakly labeled data, Neural Simpletrons improve on all standard deep learn-
ing approaches and are competitive with their recent variants. As models for
neural information processing, our research results suggest neural bottom-up /
top-down integration for optimal processing and it assigns important functional
roles to synaptic plasticity, synaptic scaling, and intrinsic plasticity.
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Classi�cation Margin Dependent Exploration

Horizons of Prototypes for Outlier Robust

Classi�cation in Learning Vector Quantization

T. Villmann1, M. Kaden1, and A. Bohnsack2

1 Computational Intelligence Group, Univ. Applied Sciences Mittweida, DE
2 Beru�iches Schulzentrum Döbeln-Mittweida, DE

Abstract. In this paper we consider an outlier sensitive model for learn-
ing vector quantization based on outlier costs compared to misclassi�ca-
tion costs. For this purpose, we introduce the exploration domain of an
learning vector quantization (LVQ) model obtained by local exploration
horizons of the prototypes. These exploration horizons are related to the
classi�cation margin for those prototypes localized at the class borders.

1 Introduction

Classi�cation learning by prototype based models gained a large attractiveness
during the last years because of its generally good classi�cation performance.
Beside the performance power, easy model interpretability and robust adaptation
behavior are additional reasons for increasing number of application of those
models.

One of the most intuitive classi�cation learning models based on prototypes
is learning vector quantization (LVQ,[1]). The model distributes class-dependent
prototypes in the data space by a simple attraction and repulsion procedure to
recognize the class distributions [2]. This adaption scheme is heuristically moti-
vated but refers to Hebbian learning. A cost based LVQ variant was developed
by Sato&Yamada (Generalized LVQ, GLVQ - [3]) approximating the classi�ca-
tion error to be optimized by a cost function based on geometric decision model
regarding the used data dissimilarity measure, e.g. the Euclidean distance. One
of the most interesting advantage of this modi�cation is that GLVQ belongs to
the model class of classi�cation margin optimizers [4]. In particular, it maximizes
the so-called hypothesis margin.

Yet, class distributions are not always compact. Thus outliers or drift in data
may occur, the models has to deal with, e.g. by transformation invariant metrics
[5]. Recently, respective reject options were developed for GLVQ to handle those
samples during the application phase of the model [6].

In this paper we propose an approach, how to integrate the knowledge about
possible outliers in class distributions during learning to obtain an outlier sen-
sitive learning model. Particularly, we relate the acceptance of outliers by the
GLVQ classi�er depending on outliers costs, which are compared to misclassi-
�cation cost. For this purpose, the so-called exploration horizon of a prototype
is considered, which determines the range of secure classi�cation regarding out-
liers. In this sense, outlier detection (and acceptance) can be implicitly related
to the classi�cation margin.
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2 The GLVQ Model for Classi�cation

The GLVQ model assumes data v ∈ RN with class labels c (v) ∈ C = {1, . . . , C}.
Further the set W = {wk}k=1,...,M is considered with class labels ck = c (wk)
such that each class is represented by at least one prototype. Classi�cation takes
places as a winner-take-all (WTA) rule

s (v) = argmink (d (v,wk)) (1)

where d is a pre-de�ned dissimilarity measure, e.g. the squared Euclidean dis-
tance and ws denotes the respective prototype. Thus, the data vector v is clas-
si�ed as belonging to class cs.

Let further, w+ (v) be the best matching prototype for a given data vector
v with respect to the WTA rule (1) which belongs to the same (correct) class
as v, i.e. c (v) = c (w+). We de�ne the respective quantity d+ (v) = d (v,w+).
Analogously, w− (v) denotes the best matching prototype with c (v) 6= c (w−)
(incorrect class) and d− (v). The cost function of GLVQ optimized by stochastic
gradient descent learning (SGDL) with respect to the prototypes is given as

EGLVQ =
∑
v

Ce · f (µ (v)) (2)

where f is a sigmoid function with f (x) ∈ [0, 1] and

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)

is the classi�er function, which become negative for correct classi�cation, e.g. in
case of d+ (v) < d− (v). The quantity Ce denotes the cost for a classi�cation
error. The local hypothesis margin is given as

mh (cs̃, cs|v) =
d (ws̃,ws)

2
(3)

where ws̃ (v) is the second best matching prototype with label c (ws̃) 6= c (ws),
i.e

ws̃ (v) =

{
w+ (v) , if ws (v) = w− (v)

w− (v) , if ws (v) = w+ (v)
, (4)

following the de�nition in [4]. In this way, the local hypothesis margin determines
a local range of decision.

Unfortunately, standard GLVQ does not always generates class typical pro-
totypes [7]. To ensure this property, the cost function EGLVQ has to be extended
to

EG−GLVQ = EGLVQ + γ
∑
v

ds (v)

with ds (v) = d (v,ws) [8], which leads to an additional update term forws in the
SGDL scheme [9]. We denote this variant as the generative GLVQ (G-GLVQ).
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3 Exploration Horizon for Prototypes

In the following we will consider the outlier problem for G-GLVQ. Particularly,
we will introduce so-called exploration horizon for each prototype such that all
classi�cation decision for data points inside of this are seen as to be secure with
respect to the outlier possibility (O-secure).

For this purpose we assume that are at least several prototypes per class to
describe the class distributions. Further, we introduce the exploration horizon

H (k) =
d
(
wn(k),wk

)
2

(5)

for a prototype wk, where wn(k) is the prototype with the smallest dissimilarity

value d
(
wn(k),wk

)
. The class label of wn(k) is denoted by cn(k) = c

(
wn(k)

)
.

This situation is visualized in Fig.(1).

Fig. 1. Visualization of the relations between ws, ws̃, and wn(S) to determine the
exploration horizon H (s) (green circle) of ws by means of the hypothesis margin
mh (cs̃, cs).

All data points being inside of the exploration horizon of a prototype form the
local exploration domain of the prototype. The conjunction of all those domains
is denoted as the model exploration domain.
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With this notations, a classi�cation according to the WTA-rule (1) is called
to be O-secure if

Δ (ds, H (s)) =
ds −H (s)

ds +H (s)
> 0 (6)

is valid with ds (v) = d
(
v,ws(v)

)
, i.e. the data vector v belongs to the local

exploration domain of the winning prototype ws(v). Otherwise, the data sample
is considered to be an outlier. We remark that if the nearest neighbor wn(s) of
the overall winning prototype ws(v) is identical with the second winner ws̃ from
(4), then

H (s) = mh (cs̃, cs|v)

is valid, i.e. the exploration horizon coincides with the hypothesis margin. Hence,
the exploration horizon for prototypes at the class borders is related to the local
hypothesis margin, see Fig.(2).

Fig. 2. Visualization of the relations between ws, ws̃, and wn(S) to determine the
exploration horizon H (s) (green circle) of ws. Here, ws̃ = wn(S) is valid such that
the local hypothesis margin becomes mh (cs̃, cs|v) = H (s), i.e. the exploration horizon
coincides with the margin.

In the following we modify the G-GLVQ such that it is able to adapt regarding
outliers. For this purpose and keeping a cost based approach in G-GLVQ as
suggested in [10] and [11], we relate outliers to costs C0 collected in the additional
outlier penalty function
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EO = Co

∑
v∈V

f (Δ (ds, H (s))) (7)

such that we get

EGO−GLVQ =
∑
v∈V

Ce · f (µ (v)) + Co · f (Δ (ds, H (s))) + γ · ds (v)

as the overall cost function for an outlier sensitive G-GLVQ (GO-GLVQ). with
the cost function asfor SGDL optimization. The outlier penalty function (7)
leads to the additional SGDL updates

∂Eo

∂ws
= Cof

′ · ∂Δ (ds, H (s))

ds
· ∂ds
∂ws

+ f ′ · ∂Δ (ds, H (s))

dn(s)
· ∂H (s)

∂ws

= Cof
′ ·

dn(s)(
ds +

1
2dn(s)

)2 · ∂ds∂ws
+ Cof

′ ·
− 3

2ds(
ds +

1
2dn(s)

)2 · ∂dn(s)∂ws

and

∂Eo

∂wn(s)
= Co f

′ · ∂Δ(ds, H (s))

dn(s)
·
∂dn(s)

∂wn(s)

= Cof
′ ·

− 3
2ds(

ds +
1
2dn(s)

)2 · ∂dn(s)∂wn(s)

for ws and wn(s), respectively, in G-GLVQ learning. Here, dn(s) is the abbrevi-

ation for dn(s) (v) = d
(
v,wn(s)

)
.

4 Illustrating Example

As an illustrating example we consider the (arti�cial) data set depicted in Fig.(3),
whereby one class shows outlier subsets.

Workshop New Challenges in Neural Computation 2016

Machine Learning Reports 7



Fig. 3. Visualization of the arti�cial data set for the illustrating example. The blue
class (symmetric horizontal distribution) with 1000 data samples and the red class
(vertical) with 500 samples. Remark, the two outlier sets for the blue class.

Applying G-GLVQ with 4 prototypes for the horizontal blue class and two
prototypes for the vertical red class we obtain an error rate of 8.0% with 105
samples detected as outliers according to the criterion (6). The distribution of
the prototypes in the data space together with the model exploration domain is
visualized in Fig.(5). Applying GO-GLVQ with Ce = 1 and C0 = 1

25 leads to a
zero number of outliers but with increased error rate of 9.2%, see Fig.(5).

5 Conclusion

In this paper we discussed an approach of outlier sensitive learning in GLVQ
based on the evaluation of the local exploration domains of the prototypes, which
can be related to the classi�cation hypothesis margin at the class borders. If
outliers should be avoided, a cost based GLVQ approach can be derived balancing
misclassi�cation and outlier costs. A �rst experiment for arti�cial but illustrating
data shows the expected behavior. Yet, real world applications as well as stability
analysis of the approach should in the focus of future work.
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Fig. 4. G-GLVQ training result for the arti�cial data. The blue circles ′◦′ and red stars
′∗′ are the learned prototypes. The lines visualize the model exploration domain. We
observe many outliers.

Fig. 5. GO-GLVQ training result for the arti�cial data. The blue circles ′◦′ and red
stars ′∗′ are the learned prototypes. The lines visualize the model exploration domain.
Comparing with G-GLVQ the prototypes ′◦′ are moved to the border regions to capture
the outliers.
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Linear Supervised Transfer Learning for
Generalized Matrix LVQ

Benjamin Paassen, Alexander Schulz, and Barbara Hammer ?

CITEC Center of Excellence, Bielefeld, Germany
bpaassen@techfak.uni-bielefeld.de

Abstract. The utility of machine learning models in everyday appli-
cations critically depends on their robustness with respect to system-
atic changes in the input data. However, many machine learning models
trained under lab conditions do break down if they are confronted with
such systematic changes. Transfer learning addresses this issue by mod-
elling changes in the input as transfer functions, which can be used to
map the data to a space where the learned machine learning model is
applicable again.
In this contribution we introduce linear supervised transfer learning as
a novel transfer learning scheme and propose a realization based on gen-
eralized matrix learning vector quantization. We evaluate our approach
in a practical application from the medical domain, namely classifying
the intended arm motion from a muscle signal, which can be used by
amputees to control a bionic prosthesis and regain hand function after
limb loss.

1 Introduction

The robustness of machine learning models under real-world conditions remains
a hot topic of machine learning research with significant practical implications.
Consider the example of bionic prostheses. For decades, researchers have at-
tempted to develop machine learning models which reliably infer a user’s in-
tended motion from muscle signals (Electromyogram, EMG), such that an am-
putee is able to control her prosthesis just like her former limb [2]. However,
current models are still vulnerable to systematic changes in the input data due
to electrode shifts, posture changes, sweat, fatigue, etc. [5,13]. In general terms,
machine learning models are trained on a certain input data representation. If
this repesentation changes, the model is likely to be inaccurate, i.e. models are
not robust with respect to systematic changes in the data representation [8].

The issue of robustness has been approached from different perspectives in
the past. First, it has been suggested to construct features which are invariant
under transformations, such that certain expected changes to the input data do
not influence the input to the machine learning model [6,11].

? Funding by the DFG under grant numbers HA2719/6-2 and HA2719/7-1 and the
CITEC center of excellence (EXC 277) is gratefully acknowledged.
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Second, in the theory of on-line systems, the notion of concept drift has been
developed, referring to a change in the conditional distribution of the output
given the input [3]. The focus of this approach is not so much on changes in the
input data as on changes in the relation between input and output, while the
input data distribution remains unchanged.

We take a third perspective on the issue of robustness, namely the perspective
of transfer learning. We assume that the data stems from a stationary, underlying
distribution, but is mapped by some function to a different space, in which our
machine learning model is not applicable anymore. Our task is to map the data
back to a space in which our trained model is valid by means of a so-called
transfer function [8].

In this contribution, we develop a new transfer learning approach, namely
learning a linear transfer function using labelled data to improve the performance
of a Generalized Matrix Learning Vector Quantization (GMLVQ) classifier. We
evaluate our approach on artificial data as well as myoelectric recordings for
prosthesis control.

2 Related Work

Transfer learning is a well-established field concerned with utilizing knowledge
from one domain/task in a related domain/task [8]. In this case, we are concerned
with systematic changes in the input data representation, while the learning
task stays essentially the same. This scenario has has been dubbed transductive
transfer learning by [8]. [1] further distinguishes the unsupervised case (which
they call transductive) and the supervised case (which they call inductive). We
focus here on the supervised case, where some labels for changed input data are
available. In contrast to previous approaches in this field, we do not adapt the
learned model, but rather learn a linear transfer function explicitly, which maps
from the new representation to the old representation, such that our original
model can be applied again.

3 Supervised Transfer Learning

We phrase a supervised machine learning task as finding a function f : X → Y
which maps input data from a space X to output data from a space Y, such that
for some example dataset Z ⊂ X ×Y an error E(Z, f) is minimized. As such, a
machine learning problem has the form

min
f
E(Z, f) (1)

After this problem has been solved, a systematic change in the input data repre-
sentation occurs via a function g : X → X̂ , mapping input data from the source
space X to a different target space X̂ . In this space, our learned model f is not
necessarily applicable anymore. Note that we assume that data in the target

Workshop New Challenges in Neural Computation 2016
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space are drawn from the same underlying distribution as data in the source
space, but are transformed via g after generation.

Our aim is to make our model f applicable to the data in the target space.
In an unsupervised transfer learning setting, we would attempt to find an ap-
proximation of the inverse mapping g−1 by means of minimizing the difference
between the data distribution in the source space and the distribution of the
target-data after mapping to the source space via g−1 [1]. However, such an ap-
proach has two drawbacks: First, it reproduces features of the source space which
are irrelevant to our machine learning task. Second, it does not exploit additional
features in the target space which might help to improve the performance in the
machine learning task. To address these issues, we propose a supervised transfer
learning approach, which we characterize as follows: We intend to learn a trans-
fer function h : X̂ → X which minimizes our error on data from the target space
after mapping it back to the source space via h. More precisely, assume that we
have access to a small example data set Ẑ ⊂ X̂ ×Y from the target space. Then
we are interested in solving the optimization problem

min
h
E(Ẑ, f ◦ h) (2)

where ◦ denotes function composition.

4 Linear Supervised Transfer Learning for GMLVQ

In this contribution, we propose a novel realization of supervised transfer learn-
ing, namely linear supervised transfer learning for Generalized Matrix Learning
Vector Quantization (GMLVQ) [12]. GMLVQ is a prototype-based classification
algorithm representing each of the available classes y ∈ {1, . . . , L} by prototypes
wy,1, . . . , wy,m ∈ X . Classification is done by assigning the label of the closest
prototype:

f(x) = argmin
y

min
j
d(x,wy,j) (3)

where the distance d is a general quadratic form:

d(x,w) = (x− w)
T ·ΩT ·Ω · (x− w) (4)

The matrix Ω can be viewed as a linear projection of the input data to a space
that enhances classification accuracy. A GMLVQ model is learned by adjusting
the prototypes as well as the matrix Ω to minimize the cost function

EGMLVQ =
∑
x

Φ

(
d+(x)− d−(x)

d+(x) + d−(x)

)
(5)

where Φ is some nonlinear function (typically sigmoid) and d+/−(x) refers to the
distance to the closest prototype with the same/different label as the data point
x.
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Assume now that a trained GMLVQ model is given and we want to apply it
to a setting where the input data is changed by some function g. Let X = Rn and
X̂ = Rn̂. Under the assumption of linearity we can express a transfer function
as h(x̂) = H · x̂ for some matrix H ∈ Rn×n̂. Our transfer learning problem in
turn is expressed by the minimization problem:

min
H∈Rn×n̂

∑
x̂

Φ

(
d+(H · x̂)− d−(H · x̂)

d+(H · x̂) + d−(H · x̂)

)
+ λ · ‖H‖2F (6)

where λ · ‖H‖F is a regularization term with λ ∈ R.

Note that this minimization problem is not convex. Still, a local optimum
can be found efficiently by initializing H as the identity matrix and adjusting it
iteratively by stochastic gradient descent using the gradient

∂

∂H

∑
x̂

Φ

(
d+(H · x̂)− d−(H · x̂)

d+(H · x̂) + d−(H · x̂)

)
+ λ · ‖H‖F

=
∑
x̂

Φ′ ·
2 · ( ∂

∂H d
+(H · x̂)) · d−(H · x̂)− 2 · ( ∂

∂H d
−(H · x̂)) · d+(H · x̂)

(d+(H · x̂) + d−(H · x̂))2
+ 2λ ·H

where the gradient of the distance is given as

∂

∂H
d(H · x̂, w) =

∂

∂H
(H · x̂− w)

T ·ΩT ·Ω · (H · x̂− w)

= 2 ·ΩT ·Ω · (H · x̂− w) · x̂T

This scheme is by no means specific to GMLVQ. Linear supervised transfer
learning can be extended to any machine learning model with a differentiable
cost function.

5 Experiments

We evaluate our supervised transfer learning approach on two data sets, one
artificial and one consisting of real myoelectric data. We compare our transfer
learning algorithm with two baselines: 1) the naive application of the source
model to the target space without any adjustment, and 2) a new GMLVQ model
trained only on the available training data in the target space (retrain). For
training the GMLVQ models we use the GMLVQ implementation provided as
part of the CIS SOM Toolbox Version 2.1 (http://research.ics.aalto.
fi/software/somtoolbox/). Gradient descent for transfer learning is re-
alized using the R-prop algorithm [10]. In both experiments we evaluate the
classification error on test data from the target space in a 10-fold crossvalida-
tion. Further, in each fold we vary the number of available training data points
in the target space.
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Fig. 1. A visualization of the two-dimensional toy dataset. Data points are displayed
as circles, GMLVQ prototypes as diamonds. Colors indicate the class label. The left
column shows the dataset in the source space, the middle column in the target space
and the right column after transfer mapping via H back to the source space (right). The
bottom row displays the dataset after projection via the relevance matrix Ω learned
by GMLVQ.
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Fig. 2. The experimental results for the toy data set. The x axis shows the number of
target space data points used for training in logarithmic scaling. The left plot displays
the average classification error on test data from the target space, while the right plot
displays the average runtime for training. The standard deviation across cross valida-
tion trials is marked by error bars. Different line styles indicate different classification
schemes.
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5.1 Toy Dataset

Our first dataset consists of 3 classes, each corresponding to a two-dimensional
radial Gaussian cluster with 50 data points and standard deviation σ = 0.3.
The means are given as µ1 = (−1, 0), µ2 = (0, 0) and µ3 = (1, 0) respectively
(see Figure 1, top left). In this setting, GMLVQ correctly identifies the second

dimension as irrelevant and discards it via the projection matrix Ω ≈
(

1 0
0 0

)
(see

Figure 1, bottom left). For the target space, we generated another 50 data points
per cluster with the same variance, but moved µ1 to R·(−2, 0) and µ3 to R·(2, 0),
where R is the rotation matrix for 72◦ (see Figure 1, top middle). After applying
the projection Ω, the data overlaps strongly, rendering classification difficult (see
Figure 1, bottom middle).

For learning in the target space we used data from the first two classes only.
Yet, even without any information regarding the last class, our proposed transfer
learning scheme (with regularization λ = 0.1) yields a transfer matrix H which
sufficiently rotates the data, such that the original GMLVQ model is applicable
again (see Figure 1, right). As discussed above, the transfer matrix does not map
the target space data distribution to the source space data distribution. Instead,
it achieves even better class separation than was possible in the source space.

Figure 2 displays the quantitative results. Given 4 our more training data
points from the target space, our transfer learning scheme is able to identify a
transfer matrix leading to zero classification error in all crossvalidation trials. In
comparison, a naive application of the source space model leads to an average
classification error of about 33%. This is also the case if we retrain a new GMLVQ
model on the available target space data, because all data points from the third
class get misclassified.

Regarding runtime, we note that in this simple setting, the GMLVQ training
is considerably faster compared to our transfer learning implementation.

5.2 Myoelectric Dataset

Our second data set consists of myoelectric (EMG) data recorded at the Med-
ical University of Vienna [9] 1. Four healthy subjects were instructed to exe-
cute negative and positive activity in three degrees of freedom (wrist rotation,
wrist extension, as well as hand open/close) as well as combined movements in
two degrees of freedom simultaneously. Subjects executed each movement for
five seconds, followed by two seconds of rest. Muscle activity was recorded at
1000Hz sampling rate with an eight channel Ottobock Healthcare electrode ar-
ray (13E200) attached around the forearm. We preprocessed the raw data by
accumulating time windows of 100ms with 50ms overlap. As features, we used
the 17 standard features offered by BioPatRec [7], in addition to the log-variance
as suggested by [4]. We modelled the movement classification via three differ-
ent GMLVQ classifiers, one for each degree of freedom with three classes each

1 Special thanks go to Cosima Prahm for permission to use the data set.
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(movement in negative direction, no movement, movement in positive direction),
such that combined movements in multiple degrees of freedom could be classi-
fied as well. Disturbance was applied by shifting the electrode array by 8mm
transversally and recording all movements one more time.
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Fig. 3. The experimental results for the toy data set. The x axis shows the number of
target space data points used for training in logarithmic scaling. The left plot displays
the average classification error on test data from the target space, while the right plot
displays the average runtime for training. In the left plot, error bars mark the standard
deviation across subjects and colors indicate the degree of freedom. In the right plot,
error bars indicate the standard deviation across crossvalidation trials.

The experimental results are shown in Figure 3. In the source space, GM-
LVQ achieves classification error below 1% for all degrees of freedom. A naive
application to target space data, however, yields errors of about ≈ 36% for wrist
rotation. Our proposed transfer learning scheme (without regularization) reduces
the error to below 4% for all degrees of freedom. Compared to a retraining of
GMLVQ in the target space, transfer learning is considerably faster, with con-
stant factors of 10 − 15. Due to the high runtime required for retraining the
GMLVQ model, we did not repeat the full experiment for retraining. However,
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results for a single subject in crossvalidation strongly indicated that GMLVQ
retraining achieves similar or even better classification accuracy compared to
transfer learning, if data from all classes is available.

6 Conclusion

In this contribution we extended transfer learning by proposing a realization
via a linear transfer function on generalized matrix learning vector quantization
(GMLVQ) classifiers. We demonstrated that using labels in the target space
has benefits beyond unsupervised transfer learning approaches, namely ignor-
ing irrelevant features of the source space and exploiting relevant features of
the target space. Further, linear supervised transfer learning can outperform a
simple retraining of the classification model, if either the model is too complex,
leading to prohibitive runtime, or if labelled data is not available for all classes.
The theoretical foundations for linear supervised transfer learning provide op-
portunity for further research. In particular, it would be beneficial to identify
conditions under which data from few classes in the target space only is sufficient
for successful transfer learning.
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1 Introduction

Due to improved biochemical sensor technology and biobanking efforts in North
America and Europe the amounts of complex biomedical data is growing con-
stantly. With the data also the demand for interpretable interdisciplinary anal-
ysis techniques increases. Further difficulties arise since biomedical data is often
very heterogeneous, either due to the availability of measurements or individ-
ual differences in the biological processes. Urine steroid metabolomics is a novel
biomarker tool for adrenal cortex function [1] measured by gas chromatography-
mass spectrometry (GC-MS), which is considered the reference standard for
the biochemical diagnosis of inborn steroidogenic disorders. Steroidogenesis en-
compasses the complex process by which cholesterol is converted to biologically
active steroid hormones. Inherited or inborn disorders of steroidogenesis result
from genetic mutations which lead to defective production of any of the enzymes
or a cofactor responsible for catalysing salt and glucose homeostasis, sex differen-
tiation and sex specific development. Treatment involves replacing the deficient
hormones which, if replaced adequately, will in turn suppress any compensatory
up-regulation. Currently, up to 34 distinct steroid metabolite concentrations
are extracted from a single GC-MS profile by automatic quantitation following
selected-ion-monitoring (SIM) analysis, resulting in a 34 dimensional fingerprint
vector. However, the interpretation of this fingerprint is difficult and requires
enormous experience and expertise, which makes it a relatively inaccessible tool
for most clinical endocrinologists.

In this paper we present a novel interpretable machine learning method for
the computer-aided diagnosis of three conditions including the most prevalent,
21-hydroxylase deficiency (CYP21A2), and two other representative, but rare
conditions, 5α-reductase type 2 deficiency (SRD5A2) and P450 oxidorectase de-
ficiency (PORD). Our data set contains a large collection of steroid metabo-
lomes from over 800 healthy controls of varying age (including neonates, infants,
children, adolescents and adults) and over 100 patients with newly diagnosed,
genetically confirmed inborn steroidogenic disorders. The clinical data will be
presented at the Society for Endocrinology BES Conference [2].

The data set and problem formulation comprises several computational dif-
ficulties. On average 8% to 13% of measurements from healthy controls and pa-
tients respectively are missing or not detectable (indicated by 0). The problem
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now arises because those measurements are not missing at random but system-
atically, since the data collection combines different studies and quantitation
philosophy has changed over the years. Furthermore, the measurements are very
heterogeneous. Neonates and infants naturally deliver less urine and only from
Spot and Nappy instead of volume. Moreover the individual excretion amounts
vary a lot due to natural adrenal development and peripheral factors even in
healthy controls and of course severity of enzymatic deficiency in patients. To
account for these difficulties we propose an interpretable prototype based ma-
chine learning method using a dissimilarity between two metabolomic profiles
based on the angle Θ between them calculated on the observed dimensions. Using
the angles instead of distances has two principal advantages: (1) distances cal-
culated in spaces of varying dimensionality (depending on the number of shared
observed dimensions in two metabolomic fingerprints) do not share the same
scale and (2) the angles naturally express the idea that only the proportional
characteristics of the individual profiles matter.

2 Method

We propose Angle Learning Vector Quantization (angle LVQ) as an extension
to Generalized Relevance LVQ (GRLVQ) [5, 4]. As in the original formulation
we assume training data given as z-transformed vectorial measurements (zero
mean, unit standard deviation) accompanied by labels {(xi, yi)}Ni=1 and a user
determined number of labelled prototypes {(wm, c(wm))}Mm=1 representing the
classes. Classification is performed following a Nearest Prototype Classification
(NPC) scheme, where a new vector is assigned the class label of its closest
prototype. Our approach differs from GRLVQ by using an angle based similarity
instead of the Euclidean distance. The vector of (adaptive) relevances (one for
each dimension), r, weights now the influence of individual dimensions when
calculating the angles, such that minimal within-class variation (fingerprints
of the same conditions point in similar directions) and maximum inter-class
variation (different conditions are well-separated in the angle space) is achieved.

Both prototypes and relevances R =diag(r) are determined by a supervised
training procedure minimizing the following cost function [5] calculated on the
observed dimensions:

E =
N∑
i=1

dJi − dKi
dJi + dKi

.

Here the dissimilarity of each data sample xi with its nearest correct prototype
with yi = c(wJ) is defined by dJi and by dKi for the closest wrong prototype (yi 6=
c(wK)). Now the distances d

{J,K}
i are replaced by angle-based dissimilarities:

dLi = gβ

 xiRw
>
L√

xiRx>i

√
wLRw>L

 (1)

with gβ(b) =
exp{−β(b+ 1)} − 1

exp(2β)− 1
and L ∈ {J,K} . (2)
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Fig. 1. Relevance vector of the best angle LVQ model found by cross validation.

Here, the exponential function gβ with slope β transforms the weighted dot
product b = cosΘR ∈ [−1, 1] to a dissimilarity ∈ [0, 1]. Finally, training is
performed by minimizing the cost function E, which exhibits a large margin
principle [3]. To ensure positivity of the relevances we set rj = a2j and we optimize
aj ’s collected in a vector a. We furthermore restrict r by a penalty term (1 −∑
j ri)

2 added to E. Lastly, we added a regularization term −γ
∑
j log rj to E to

prevent oversimplification effects. Optimization can be performed for example by
steepest gradient descent. The derivatives can be found in the appendix section 5.

3 Experiments

We test the proposed technique on the metabolomic data described above and
classify the 3 conditions CYP21A2, PORD and SRD5A2 from healthy controls.
Since the conditions affect enzyme activity we represent the metabolomic pro-
files by vectors of pair-wise steroid ratios. From the 342 possible ratios we select
165 by analysis of variance (ANOVA) of the conditions versus healthy. Further-
more, we randomly set aside over 700 healthy samples and ca. 4 samples of each
condition as test set, so the majority class is down sampled. Now we train our
angle LVQ method using 5 fold cross-validation on the remaining data using
one prototype per class and regularization with γ = 0.001 . We achieve a very
good mean (std) sensitivity of 0.81 (0.049) for detecting patients with one of
the three conditions trained, 0.73 (0.069) precision and an excellent specificity
of 0.97 (0.008) for healthy controls. The resulting relevance vector of the best
model is shown in figure 1, where distinct steroid ratios were identified as most
important for classification. Note, that even samples with 30 to 79% of its ratios
missing were on average 98.7% classified correctly with this model. In direct
comparison GRLVQ with mean imputation for the missing values trained on
the same data splits achieves in average 0.98 (0.018) specificity and 0.81 (0.2)
precision for normal profiles, but only a sensitivity of 0.42 (0.106) for patients.

4 Conclusion and Future Work

We propose an angle and prototype based relevance learning technique called
angle LVQ to learn data of variable dimensions. First results show very good
sensitivity for the prediction of pathological fingerprints from urine metabolomic
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profiles as well as excellent specificity to distinguish patients from healthy con-
trols. Future work will include an in-depth analysis of the bio-medical impact
of this findings. Furthermore, we plan to extend this approach for angle based
transformation, compare its performance to alternative techniques for data with
missing values and derive further theory for learning.

5 Appendix

The derivatives of E (Eq. 1) with Rjj = a2j and ‖v‖A =
√∑M

m=1 v
2
ma

2
m are:

∂E

∂wJ
=

N∑
i=1

2dKi
(dJi + dKi )2

∂dJi
∂wJ

and
∂E

∂wK
=

N∑
i=1

−2dJi
(dJi + dKi )2

∂dKi
∂wK

(3)

∂gβ(b)

∂b
=
−β exp{−βb+ β}

exp{2β} − 1
(4)

∂dL

∂w{L,j}
=

∂gβ
∂wL

a2j (xj
∑
m w

2
{L,m}a

2
m −

∑
m xmw{L,m}a

2
m)

‖x‖A‖wL‖3A
(5)

∂E

∂aj
=

N∑
i=1

2dKi
∂dJi
∂aj
− 2dJi

∂dKi
∂aj

(dJi + dKi )2
(6)

∂dL

∂aj
=
aj2xjw{L,j}

‖x‖A‖wL‖A
−
x2j

∑
m xmw{L,m}a

2
j

‖x‖3A‖wL‖A
−
w2
j

∑
m xmw{L,m}a

2
m

‖x‖A‖wL‖3A
(7)

where v{·,j} denotes dimension j of vector v.
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Abstract. Time series data are frequently analysed or classified by con-
sidering sequences of observations directly as high-dimensional feature
vectors. The presence of several hundreds or thousands of input dimen-
sions can lead to practical problems. Moreover, standard algorithms are
not readily applicable when the time series data is non-equidistant or
the sampling rate is non-uniform. We present an approach that allows
for a massive reduction of input dimensions and explicitly takes advan-
tage of the functional nature of the data. Furthermore, the application of
standard classification algorithms becomes possible for inhomogeneously
sampled time series. The presented approach is evaluated by applying it
to four publicly available time series datasets.

Keywords: Classification; supervised learning; functional data; time se-
ries; Learning Vector Quantization; relevance learning; dimensionality
reduction; missing values

1 Introduction

The classification of time series data is of interest in various domains including
medicine, finance, entertainment and industry [19]. In many applications the
time series data is sampled with high temporal resolution, resulting in high-
dimensional feature vectors. Traditional classification schemes often display in-
ferior performance when applied to nominally very high-dimensional data. How-
ever, due to temporal correlations, the large number of features does not neces-
sarily correspond to high intrinsic dimension in time series data [18]. Although
a variety of machine learning techniques are able to handle high-dimensional
datasets, most of them were not designed to take advantage of the functional
nature and temporal ordering of the features [8].

Here, we consider an explicit functional representation of time series data
which exploits the correlation of subsequent measurements and reduces the num-
ber of input dimensions drastically. To implement the actual classification task,
different machine learning algorithms can be applied, each having characteris-
tic advantages and disadvantages. Here, we resort to prototype and distance
based classifiers, such as Learning Vector Quantization (LVQ) [10], which are

Workshop New Challenges in Neural Computation 2016

24 Machine Learning Reports



straightforward to implement and allow for intuitive interpretation [1,3,4]. The
prototypes in LVQ represent typical exemplars of their corresponding classes.
Together with a suitable distance mesaure, they constitute an efficient classifi-
cation system [3,4].

The choice of an appropriate distance is a key step in the design of any proto-
type based classification system. Although it is computational costly, Dynamic
Time Warping (DTW) [14] is considered a standard choice for comparing time
series [13]. Here, we employ a fast and adaptive quadratic distance measure in
the framework of Generalized Matrix Relevance LVQ (GMLVQ), which is opti-
mized in the training process [15,3]. This is not only more flexible than the use
of fixed, predefined measures, it also facilitates the interpretation of the emerg-
ing distance measure which provides important insights into the structure of the
input data with respect to the classification task [15,16].

Previously, similar variants of relevance LVQ were considered in the context of
short term and long term predictions of time series in [17]. The use of a functional
representation together with GMLVQ in coefficient space was discussed in [11]
for spectral and other functional data. Here, we will transfer and extend this
approach to smooth time series and their specific properties. In particular, we
will show how the functional nature of the data can be exploited to cope with
missing and non-equidistant sampled data.

In the next section we will outline the general framework of time series classi-
fication by combining GMLVQ with functional representations. In section 3 the
performed experiments are described and their results are shown. We conclude
with a discussion of the results and a brief outlook on open research questions.

2 Polynomial approximation of time series

We consider the general classification setup, where a training set of N labeled
feature vectors (xi, yi) ∈ Rd × {1 . . . A}, i = 1 . . . N is used to train a classifier.
Here d denotes the dimension of the data and A the number of different classes
in the dataset. The trained classifier assigns a class label y(x) = 1 . . . A to any
feature vector x.

Furthermore, we assume that the feature vectors xi represent discrete time
series data, which result from sampling an unknown function fi(t) at some known
time points tj . In the following we will assume the time scale to be the interval
t ∈ [−1 . . . 1] and denote the discretized observations as

xi,j = fi (tj) . (1)

Given a suitable set of basis function gk(t) it is possible to represent fi(t) as a
weighted sum of the basis functions:

fi (t) =

∞∑
k=0

ci,kgk(t). (2)

Restricting the number of coefficients to a finite number n, Eq. (2) becomes, in

general, an approximation f̂i(t) of the original function fi(t).
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Although using a Fourier basis is first choice in many signal processing ap-
plications it is most suitable for periodic functions. Here we use Chebyshev
polynomials of the first kind as basis functions. They provide an efficient way
to represent non-periodic smooth functions and have favourable properties with
respect to numerics [6]. The recursive definition reads

T0(x) = 1; T1(x) = x; Tn(x) = 2xTn−1 − Tn−2(x). (3)

The approximation coefficients ci,k can be determined by minimizing a suitable

optimization criterion, e.g. the quadratic error e =
∑d

j=1(fi(tj) − f̂i(tj))
2 or

the maximum deviation e = maxj=1...d(fi(tj) − f̂i(tj)). Here, we exploit the
properties of truncated Chebyshev series to compute the coefficient values in an
efficient way [9]:

ci,k =
2

n+ 1

n∑
l=0

fi(tl)Tk(tl) , with tl = cos

((
l +

1

2

)
π

n+ 1

)
. (4)

Given the maximum degree n, the sampling points tl represent the roots of the
Chebyshev polynomial of degree (n+ 1). Since, in general, the original sampling
points will not match these roots, we perform a simple, linear interpolation of
the original data in order to obtain the values of fi(tl). The linear interpolation
is justified under the assumption that the distance of the tl from the known
sampling points is small compared to the overall length of the time series. It
is, of course, possible to use more powerful interpolation schemes, e.g. Floater
Hormann interpolants [7]. However, using a linear scheme has advantages in
terms of computational effort and, moreover, its invertibility facilitates a suitable
interpretation of the results as demonstrated and discussed below. Note that
approximation quality is not the main goal in the following. The polynomial
representation serves as a method fpr feature extraction in terms of the resulting
coefficients.

We can summarize the transformation from the original data to the space of
approximation coefficients by the equation

ci = SPxi = Ψxi, (5)

where the matrix S ∈ Rn×d represents the linear interpolation of the original
data at the sampling points tl and the matrix P ∈ Rn×n represents the first n
Chebyshev polynomials evaluated at the sampling points tl.

The setup can be easily extended to non-equidistant and non-uniform sam-
pled time series, since no assumption on the number and distribution of the
original sampling points tj is made. An extension to a particular sampling tj,i,
which could be even data point specific, is straightforward according to Eqs.
(1-5) and only affects the interpolation matrix, introducing individual Si.

Under the assumption that the available data results from sampling a smooth
time-dependent function, the presented approach allows for a transformation to
the more abstract space of coefficients. This transformation is also feasible if the
input data is not equidistant (different time intervals between sampled points)
or not uniform (different number of time-points sampled).
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Table 1: Selected datasets from the UCR Time Series Repository [5], together
with the number of samples, sampling points and classes.

Dataset name classes sampling points samples samples
(training) (validation)

ItalyPowerDemand 2 24 67 1029
Plane 7 144 105 105
StarLightCurves 3 1024 1000 8236
Strawberry 2 256 370 613

3 Application to example datasets

In order to evaluate the suggested approach, it is applied to four publicly avail-
able, relatively smooth time series datasets taken from the UCR repository [5].
The selected datasets and their key properties are listed in Table 1. Note that
the repository does not provide detailed information with respect to, e.g., the
interpretation of the values, the meaning of classes or the real world time scales.

For each of the datasets three setups were considered for computer experi-
ments. To obtain a natural baseline for the achievable classification performance
in a first setup (A) the classifiers were trained from the original time series data.

For a second set of experiments (B) the data were transformed to vec-
tors of approximation coefficients and GMLVQ training was performed in this
space. The experiments were repeated for different numbers of coefficients: n =
5, 10, . . . 50.

In the third expermimental setup (C) the original data was manipulated
in order to simulate non-equidistant, non-uniform sampled data. To this end,
a random number (between 20% and 60%) of values was discarded from each
available feature vector. Which values were actually deleted was also chosen ran-
domly and independently for each data point. This resulted in modified feature
vectors with varying number of sampling points and randomized positions of
the available points. The modified dataset {x̃i, ti} was then used to transform
the data to the space of approximation coefficients according to Eqs.(4,5). As in
setup (B), the number of coefficients was varied as n = 5, 10, . . . 50.

In all experiments a corresponding GMLVQ system was trained from the
respective set of labeled feature vectors using the same set of parameters. All
systems comprised one prototype per class. Before each training process the
data was preprocessed in terms of a z-score transformation, yielding zero mean
and unit variance in all dimensions, and therefore equalizing the magnitudes
of the different features. The z-score transformation facilitates the intuitive in-
terpretation of the emerging relevance matrices [15]. The relevance matrix was
initialized as proportional to the identity, while the prototypes were initialized
in the corresponding class-conditional means. As optimization scheme a batch
gradient descent with adaptive step sizes along the lines of [12] was performed
with default parameters as suggested in [2].

The performance of the emerging GMLVQ systems was evaluated as the over-
all classification accuracy with respect to the corresponding validation dataset
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(a) ItalyPowerDemand, d = 24 (b) Plane, d = 144

(c) StarLightCurves, d = 1024 (d) Strawberry, d = 256

Fig. 1: Classification accuracies achieved in the respective validation sets as a
function of the number of approximation coefficients. The solid lines represent
the accuracy achieved in the full set of all available input features (experimental
setup A). Filled circles correspond to accuracies resulting from the classifica-
tion in the space of approximation coefficients (B). Empty squares mark the
results achieved after the randomized deletion of time-points in setting (C). For
comparison the original number of sampling points for each dataset is denoted.

in the UCR archive [5] (cf. Table 1). Validation data underwent the same pre-
processing as the training set in each individual experiment. This includes the
transformation to the space of approximation coefficients and the randomized
deletion of time-points in setting (C). The z-score transformation of the data was
performed with respect to the mean and variance determined from the training
dataset. The results of the experiments are depicted in Figure 1.

4 Results and Discussion

In the example datasets considered here, we observe only insignificant or no
increase of the classification accuracy. However, the transformation of the data
to the space of approximation coefficients yields a massive reduction of input
dimension. The largest reduction (99%) was achieved in the StarLightCurves
dataset when using n = 10 coefficients.

The evaluation of results from setup (C), where up to 60% of the data points
were disregarded, shows that the approach can compensate for missing data
and irregular sampling to a very large extent. In fact, the results show that
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the random removal of time-points had no impact on the overall classification
performance achieved in the considered example problems.

One of the main advantages of prototype based classification is that the pro-
totypes are determined in the domain of the original data. A GMLVQ system
directly trained from time series data, yields interpretable prototypes and rele-
vances with respect to the sampling points of the time series. In the setups (B)
and (C), however, the GMLVQ system is adapted in the more abstract space of
approximation coefficients. Hence, it is not obvious how to interpret prototypes
and relevance matrices adequately. In previous work [11], the interpretation of
prototypes and relevances in the space of coefficients was provided with respect
to the characteristics of the basis functions. Since this is less intuitive than an
interpretation in the original feature space, it is desirable to back-transform pro-
totypes as well as relevance matrices to the original time series representation.
In order to obtain such a transformation we can use the matrix Ψ introduced
in Eq. (5): Including the transformation into the distance measure applied in
GMLVQ [15] we obtain

d(x, z) = (x− z)>Ψ>ΛcΨ(x− z) (6)

where Λc denotes the relevance matrix obtained in coefficient space. This yields
the relation

Λ = Ψ>ΛcΨ (7)

which translates the obtained relevance matrix back to original feature space.
An illustrative example for the prototypes and relevance matrices obtained

in settings (A), (B) and (C) for the Plane dataset is depicted in Fig. 2. Apart
from the implicit smoothening it is evident that, both, prototypes and relevance
profiles are very similar to those obtained in the original feature space. As a
result of the applied normalization steps, the absolute values can be different,
but the general shapes of the relevance profiles are essentially identical. The
comparison of Figs. 2d, 2e, and 2f, does not reveal major differences. Note, in
particular, that although there is a loss of information in experiments (C) due
to the random dilution of time-points, prototypes as well as relevances can be
transformed to a uniformly sampled input space. Therefore we maintain their
interpretability over the complete input space.

5 Summary and Outlook

We have presented an approach for time series classification using a represen-
tation that takes the functional nature of smooth time series into account. Our
computer experiments show that the approximation of the time series with a
suitable set of basis functions yields a massive reduction of input dimensionality
without significant loss of classification accuracy. Furthermore we studied the in-
fluence of irregular, missing data by randomly deleting up to 60% of the values
in each sample. The achieved results show that the functional approximation of
the data can compensate for the missing information to a very large extent. No
significant decrease in classification accuracy was observed.
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(a) Prototypes A (b) Prototypes B (c) Prototypes C

(d) Relevances A (e) Relevances B (f) Relevances C

Fig. 2: Prototypes and relevance profiles emerging from the different setups (A,
B, C). For setting (A) prototypes and relevance profiles directly emerge from the
model, in (B) and (C) they are shown after back-transformation to the original
feature space. The shown results were achieved using n = 20 approximation
coefficients. For the sake of clarity, only the prototypes for the first (solid line)
and second (dashed line) class are shown.

The use of Chebyshev polynomials as basis functions in combination with
a linear resampling of the data constitutes a suitable representation of time se-
ries. Furthermore the transformation of the data can be done in a single matrix
multiplication and therefore has clear advantages over DTW in terms of com-
putational effort. Finally, the linearity and invertibility of the transformation
makes it possible to interpret the GMLVQ system also in the original input
space. The interpretation of prototypes and relevances is maintained over the
full time domain, even for time series with non-equidistant and non-uniform
sampling.

Future work will concern the selection of alternative basis functions for the
analysis of time series and other functional data. An interesting question con-
cerns the choice of an optimal number of approximation coefficients correspond-
ing to a minimum number of adaptive parameters while maintaining close to
optimal accuracy. The presented approach allows for a compact representation
of smooth time series, which should be very useful for the analysis of heteroge-
neous datasets comprising several data modalities.
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Abstract. Recurrent neural networks capable of sequential pattern gen-
eration could facilitate new types of applications like music generation.
Here, we explore the capability of echo state networks for parameterized
pattern generation and present a new approach utilizing regression in
the model space. The goal of the learning is a system that can gener-
ate patterns for previously unseen parameterizations. Contrary to other
approaches, where a single network is trained to generate all pattern pa-
rameterizations, we learn to generate a different network for each pattern
parameterization. We evaluate the classical and our modular approach
on several synthetic, periodic datasets. We show that regression in the
model space of echo state networks can generate parameterized patterns
more precisely than a single echo state network.

Keywords: time series generation, pattern generation, echo state net-
work, reservoir computing, model space

1 Introduction

Sequential pattern generation has potentially many applications in signal pro-
cessing, e.g. filling gaps in time series, computational creativity, e.g music gener-
ation and time series modelling. Compared to the main areas of machine learning
such as classification, regression and clustering, few advances have been made
in pattern generation. The reasons for this include the lack of datasets and
benchmarks and the difficulty of training recurrent neural networks, especially
to generate stable output. Recently, several variants of Echo State Networks
(ESNs, [6]) were applied to a range of pattern generation tasks including fre-
quency modulation [7, 9, 10] and learning human motion [13, 8].

Here, we focus on parameterized pattern generation: Given a set of pattern
sequences shaped by control parameters, the goal is to learn to generate patterns
for new control parameter values. In a sine wave generator, for example, the
control parameter would be the frequency and the goal the generation of a sine
wave with a frequency not used during training. This is a more difficult task than
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to learn to reproduce patterns, since it involves the learning of the underlying
dynamical system producing the patterns and requires the learner to generalize
in the space of the control parameters. The solution for this type of task with
ESNs, as applied for similar tasks in [7, 9, 10, 13], is to train a single network,
which receives the control parameter as input. We propose a different solution,
where for each pattern a new network is generated based on the value of the
control parameter. This approach is inspired by learning in the model space
[3], which was successfully applied to time series classification [4, 2] and to the
similar problem of modelling parameterized processes [1].

Fig. 1 visualizes the core architectures of both approaches. In contrast to the
classical approach, in our modular approach for each control parameter value the
generalist creates a specialist generator, which is only responsible for generating
the corresponding pattern. The generalist is responsible for generalizing in the
control parameter space, so that the specialists can concentrate on generating
their specific patterns. Thus, the generalist maps the control parameter space
to the space of specialist models - we refer therefore to our approach in accord
with [1] as model space regression (MSR).

3/15	

Generalist	
Model	

y	Specialist	
Generator	

creates	

					Classical	Architecture																																																	MSR	Architecture	

Generator	p	 y	 p	

Fig. 1: Pattern generation with a classic (left) and a modular MSR architecture
(right). The control parameter p shapes the produced output y.

The remainder of this paper is structured as follows. In the next section,
we describe the basic, classical ESN pattern generator. In Section 3 we present
our modular approach. In Section 4, we compare both approaches on several
synthetic datasets. The paper closes with a discussion and some concluding re-
marks.

2 Echo State Network pattern generator with the control
parameters as inputs

An ESN consists of two parts: A reservoir of recurrently connected neurons and a
linear readout. The reservoir provides a non-linear fading memory of the inputs.
For pattern generation, the network operates with output feedback (cf. Fig. 2).
The reservoir states x ∈ RN and readouts y ∈ RO are updated according to:

x(k) = (1− λ)x(k−1) + λf(W recx(k−1) + W inu(k) + W backd(k)) (1)

y(k) = d̂(k + 1) = W outx(k), (2)
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where u(k) ∈ RU and d(k) ∈ RO with k = 1, . . . ,K are the input and output
sequences, respectively; λ is the leak rate, f the activation function, e.g. tanh,
Wrec the recurrent weight matrix, Win the input weight matrix, Wout the
matrix from the reservoir to the output and Wback the matrix from the output
to the reservoir. Win, Wrec and Wback are initialized randomly, scaled and
remain fixed. W rec is typically scaled to achieve a spectral radius smaller than
one.

The readout is trained to predict the next pattern step, using the training
sequence, which is known as teacher forcing [7]:

E(W out) =
1

K−1

K∑
k=2

(d(k)−W out
i x(k−1))2 + α

∥∥W out
∥∥2 , (3)

W out = (XTX + αI)−1XTD, (4)

where D are the row-wise collected pattern signal values and X the correspond-
ing reservoir activations. α is the regularization strength.

21/15	

u	 Win	
Wout	

y	

Reservoir	

Wback	

Fig. 2: Echo State Network with input u and output y, which is fed back to the
reservoir.

During testing (pattern generation) the output y(k) = d̂(k + 1) serves as an
estimation of the next pattern step and is fed back into the reservoir. In param-
eterized pattern generation, the input u corresponds to the control parameter,
e.g. the sine frequency for a sine wave generator.

3 Parameterized pattern generation via regression in the
model space

The training of the MSR architecture is depicted in Fig. 3. It consists of two
steps: First, for each pattern, an ESN is trained using teacher forcing. The ESNs
are trained independently, but share the same reservoir parameters W rec and
W back in order to create a coherent model space. Second, an Extreme Learning
Machine (ELM, [5]) is trained as generalist to map the control parameters to
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di,2	 di,j+1	 di,K	
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Fig. 3: Training with Model Space Regression (MSR). In the first step, for each
of the P control parameters pi a specialist generator is trained using the corre-
sponding pattern outputs di,j , where j = 1, . . . ,Ki is the pattern sample index.
In the second step, the generalist ELM is trained to map the the control pa-
rameters pi to the ESN readout weights W out

Si
.

the trained readout weights of the ESNs. The ELM is a two-layer feed-forward
network with a random hidden layer and a linear readout layer trained by ridge
regression. We chose here the ELM for its simplicity and fast training time -
other non-linear regressors like multilayer perceptrons could be used too.

During testing, the generator creates from a control parameter value the
ESN readout weights. A new ESN is created with the reservoir shared by all
ESNs during training and the created readout weights. Then, the created ESN
is run autonomously in a feedback loop.

4 Results

We tested the classical ESN pattern generator and our MSR approach on sev-
eral synthetic datasets. As testing scheme we used leave-one-out-cross-validation
(LOOCV), where in P folds, P−1 patterns were used for training and the remain-
ing patterns for testing. That is, the trained system, given the control parameter
value, had to produce the corresponding pattern from a zero-state.

ESNs have several important hyper-parameters, e.g. input scaling and ridge
factor, which have severe effect on the performance. Additionally, in MSR also
the generalist needs tuning. We performed randomized grid parameter search
to find good parameters for both approaches. As metric we used the distance
between the target and the generated outputs computed via fast dynamic-time-
warping [11].
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4.1 Sine wave generation

We consider first a sine wave generator modelling y = a · sin(b · x). The goal
of the trained generator is to produce a sine wave with the given amplitude a
and frequency b. We vary the frequency in the range [0.2, 0.6] with step size 0.25
and the amplitude in the range [0.5, 2] with step size 0.75. For each pattern, 500
steps were used for training and testing. The last 100 steps of the best LOOCV
generation results are shown in Fig.4. While MSR is able to generate a sine wave
with a given amplitude and frequency, the classic ESN generator fails to produce
the sine wave with the lowest frequency and highest amplitude (cf. Fig.4 bottom
left).

0
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Target ESN MSR-ESN

A
m

p
lit

u
d
e

 1
.2
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0.10
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.0

0

0.35
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Fig. 4: Sine wave generator with ESN and MSR-ESN. Each cell depicts the
LOOCV test generation results over the last 100 generated steps for the de-
noted frequency and amplitude.

4.2 Skewed figure eight generation

As second task we consider the two-dimensional figure eight pattern:

y1 = sin(x)

y2 = a · sin(2x− b) + (1− a) · cos(x+ b),

where a controls the shape and b the skewness. When y2 is plotted over y1,
(a = 0, b = 0) corresponds to a circle and (a = 1, b = 0) to the figure eight. We
varied a and b in the range [0, 1] with step size 0.5 and recorded the resulting
nine patterns for 300 steps.
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MSR produces the target signal with high precision, while the classic ESN
shows a relative strong deviation (cf. Fig. 5). A version with a constant b, where
only a was varied, posed no problem for either approach.

0
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Target ESN MSR-ESN
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Fig. 5: Figure eight generator with ESN and MSR-ESN. Each cell depicts the
LOOCV generation results for the corresponding values of the parameters (a, b).

4.3 Teardrop generation

The teardrop curve is defined as:

y1 = cos(x) (5)

y2 = sin(x) · sinm(0.5x). (6)

We varied m uniformly in the range [2, 10] with step size 2 and recorded each
pattern for 300 steps. While both ESN and MSR-ESN capture the overall shape,
neither is able to create a new curve with precision (cf. Fig. 6).

4.4 More complex tasks

We also experimented with a parameterized multiple superimposed oscillator
(P-MSO) in it’s simplest form: y = sin(a ·x) + sin(b ·x), and varied (a, b) in the
range [0.1, 0.6]. We were, however, unable to train either architecture successfully.
This is not surprising, considering that a (non-parameterized) MSO is not an
easy task for ESNs and requires additional measures to solve (cf. [12]).

The ability of an ESN to generate each pattern places a natural limit on
what can be learned - if an ESN can not learn a single pattern, than it will not
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Fig. 6: Teardrop generator with ESN and MSR-ESN. Each cell depicts the
LOOCV generation results for the corresponding value of the parameter m.

be possible to generate an ESN which can, or train an ESN to produce multiple
patterns.

5 Discussion

The training of a single network to generate different patterns presents two chal-
lenges. First, the number of patterns that the network can learn is inherently
limited. Similar patterns, as in the case of parameterized patterns, might re-
quire less memory, but might also interfere with each other in the state space
because of their similarity. Second, the network must be able to change it’s out-
put according to the control parameter - it has to be able to reach the attractor
corresponding to the control parameter pattern from any state. Both challenges
were tackled recently by Jaeger’s Conceptors [8]. However, the conceptors were
used for morphing between different patterns, and not to learn parameterized
patterns - it is unclear, how the conceptor concept can be extended to learn to
generate patterns for new control parameter values.

MSR bypasses both challenges by creating networks tailored to each pattern.
The basic assumption is, that similar control parameter values result in similar
sequences and that the generalist can learn this relationship.

6 Conclusion

In this paper we introduced regression in the model space of ESNs for parame-
terized pattern generation. In contrast to other approaches, where a single ESN
is trained to generate different patterns, in our modular approach for each pat-
tern a specialist ESN (more precise: a readout) is created. The specialist ESN
then autonomously generates the pattern. An evaluation on several synthetic
datasets showed that MSR-ESN can generate parameterized patterns with a
higher precision than a single ESN.

The successful application to the synthetic datasets shows that for some tasks
the readout weights can be expressed as a function of the control parameters and
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learned from few examples. Further research is required to assess whether the
recurrent network weights can also be learned from the control parameters and
to extend the approach to more complex tasks.
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Abstract. In this work, we present a novel model for a cognitive asso-
ciation task where two visual sequences represent different instances of
the same semantic sequence. Also, the model learns the binding between
abstract concepts and vectorial representations (e.g., 1-of-K scheme). In
this case, the output vector of a network are used as symbolic features,
and the network learns to ground the abstract concepts to them. This
task is inspired by the Symbol Grounding Problem. Our model uses one
Long Short Term Memory (LSTM) with an EM-training rule. One im-
portant feature of the training is to use one of the two sequences as a
target of the other sequence for updating the LSTM network, and vice
versa. Our architecture is based on a recent model that uses two LSTM
networks for this association task. We compare our model using a gener-
ated dataset from MNIST. The presented model reaches similar results
against the model with two LSTM networks. Also, our model is compared
to a trained LSTM using only one sequence with a predefined binding of
the abstract concepts, and the performance is also similar.

1 Introduction

The language development in humans relies on learning the binding between
abstract concepts and the physical world. In more detail, the brain encodes
the information produced by the sensory input signals, e.g., visual, audio, and
haptic. Cognitive Science, Neuroscience, and Artificial Intelligence are exploring
this challenging task, which is still an open problem. Harnad [7] denoted Symbol
Grounding as the mapping between abstract concepts and the physical world.

Moreover, infant development and the Symbol Grounding Problem have a
relation, which starts learning the semantic association between all sensory input
signals (mono- and multi-modal) and the recognition for each input signal. As a
result, infants are able to classify different representations (visual, audio) of the
same semantic entity. In addition, a relation between object recognition (visual)
and vocabulary acquisition (audio) is found by Gershkoff-Stowe and Smith [5].
The authors claimed the first hundred words have a visual representation, e.g.,
dad, mom. Another example of the semantic relation between sensory input
signals is found by Asano et al. [1]. They mentioned that infant brains show two
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Fig. 1. Differences between components of traditional and cognitive association tasks.
Consider two independent instances that represent the same semantic sequence. The
traditional association has a predefined binding between each semantic concept in the
sequence and the vectorial representation before training. In contrast, the cognitive
association task includes learning the binding during training. This is similar to the
Symbol Grounding Problem where abstract concepts are grounded to the physical world.

different activity patterns, which depend on the correct or incorrect semantic
relation between visual and audio sensory input signals.

In this work, we are interested in exploiting the semantic relation between
two input sequences that express the same semantic sequence. Note that here
the semantic sequence is a sequence of abstract concepts. With this in mind, it
is possible to use one sequence as a target of the other sequence, and vice versa.
In addition, our cognitive association task adds a new constraint, in which the
semantic concepts are known, and their vectorial representation (e.g., 1-of-K
scheme) are unknown. In other words, the semantic concepts without a prede-
fined vectorial representation are fed to a classifier, and the classifier learns to
bind semantic concepts and vectorial representations. This binding process can
be seen as the Symbol Grounding Problem. In contrast, a traditional association
setup requires the binding between them before training. Figure 1 shows the
difference between the traditional and the cognitive association tasks. This cog-
nitive constraint was introduced by Raue et al. [11]. Furthermore, the presented
model relies on Long Short Term Memory (LSTM), mainly in sequence classifi-
cation for unsegmented input. Note that unsegmented input means that LSTM
does not require to assign a label for each feature vector of the sequence (more
information in Section 2). Our contributions in this paper are the following:

– We reduce the complexity of the model proposed by [11]. Our model uses
only one instead of two LSTMs. In addition, one LSTM network is robust to
handle one sequence input as a target of another sequence, and vice versa.

– We evaluate our model in a dataset that contains pair samples of different
instances that express the same semantic sequence. Our model reaches sim-
ilar results to the model proposed by Raue et al. [11]. Also, we compare our
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model with a LSTM trained using only one sequence, and the performance
of our model reaches similar results.

2 Long Short-Term Memory (LSTM)

Long Short Term Memory (LSTM) is a Recurrent Neural Network that avoid
the problem of vanishing gradients for learning long sequences [9, 8]. Moreover,
LSTM uses a set of gates in order to read, forget, and update the information
through a memory cell. LSTM networks have been applied for learning sequences
in several tasks, such as, Neural Machine Translation [2], Image Captioning [13].
In this work, we are interested in exploiting the results in Speech Recognition [6]
and OCR [4] for sequence classification in unsegmented input. This has been
accomplished by introducing a new layer called Connectionist Temporal Classi-
fication (CTC). The target sequence includes a blank class (b), which contributes
to align the sequence without pre-segmenting the input sample. For example, the
sequence ‘353’ is converted to ‘b3b5b3b’. As a result, LSTM aligned its output
against a forward-backward algorithm (similar to Hidden Markov Models). In
other words, the desired target of CTC layer is a combination of the forward and
the backward propagation of probabilities. The label classification is obtained
by decoding LSTM output vectors.

3 Cognitive Association Learning

Our paper is based on the association model proposed by Raue et al. [11]. The
model associates two text lines1 that represent the same sequence of semantic
concepts. The authors use the network output as symbolic features, and the out-
put of one network is used as a target of the other network. Their model learns
the relation between the abstract concepts and the symbolic features. Addition-
ally, both LSTM networks learn to agree on the same association because of the
shared semantic relationship. With this in mind, they proposed a model that has
two parallel LSTM networks with an EM-training rule and alignment between
both LSTM networks. Figure 2a shows a general view of the architecture.

3.1 Association Training

Initially, two input sequences are represented by the vector sequences x
(1)
1 , . . . ,x

(1)
t1

and x
(2)
1 , . . . ,x

(2)
t2 ∈ Rn, where t1 and t2 are the sequence lengths. Each input

are fed to each LSTM for obtaining the symbolic features represented by the

output vectors z
(1)
1 , . . . ,z

(1)
t1 and z

(2)
1 , . . . ,z

(2)
t2 ∈ Rc. Note that the semantic

concept does not have a vectorial representation. Thus, a set of weighted vectors
γi and βi, where i = 1, . . . , c, is introduced for learning the binding between

1 text line is a visual representation of a text. This term is common use in Document
Analysis Field.
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Fig. 2. Differences with the model proposed by Raue et al. [11] and this work. Figure 2a
shows two LSTM networks that used the information of one network as a target of the
other network. Figure 2b shows the proposed reduction that uses one LSTM network,
and one sequence uses the other sequence as a target.

abstract concepts and their vectorial representation in the network (more in-
formation in Section 3.2). At this step, the role of the weighted concepts is to
generate vector representations for each semantic concept in the sequence for ap-
plying the forward-backward algorithm for CTC (cf. Section 2). Consequently,

each LSTM generates fb
(1)
1 , . . . ,fb

(1)
t1 and fb

(2)
1 , . . . ,fb

(2)
t2 as the result of the

forward-backward algorithm. Then, LSTM1 uses the information of LSTM2 as

a target. We can state that LSTM1 is trained p(z
(1)
1 , . . . ,z

(1)
t1 |x

(2)
1 , . . . ,x

(2)
t2 ).

The model aligns both sequences via Dynamic Time Warping (DTW) [3]. In
this manner, the output sequence of one network can be approximated to the

other network. In other words, the target sequence in LSTM1 fb
(1)
1 , . . . ,fb

(1)
t1 is

converted to fb
(1)
1 , . . . ,fb

(1)
t2 as the LSTM2 target. Afterwards, the weights of

both LSTM networks are updated with the previous approach, and the weighted
concepts are updated based on the statistical distribution.
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3.2 Mapping Semantic Concepts and Vectorial Representations

The relation between semantic concepts and their vectorial representation is
learnt during training. Hence, a set of weighted vectors γ1, . . . ,γc ∈ Rc, where
c is the number of semantic concepts. The weighted vectors encode and decode
the mentioned relation. For example, the semantic concept “five” could be rep-
resented by the index 2 of a one-hot vector where all values are zero except the
position 2, which is one. The learning algorithm is based on an EM-approach.

The E-step estimates the relation between the semantic concepts and their
vectorial representation

ẑi ← f(z1, . . . ,zt,γi), where i = 1, . . . , c, (1)

Ẑ =
[
ẑ1 . . . ẑc

]
, (2)

where the function f(z1, . . . ,zt,γi) is an average weighted sum given the out-
put vectors z1, . . . ,zt and the weighted concept vector γi. The intuition of ẑi
is to have an approximation of the probabilistic distribution of all the symbolic
features. The matrix Ẑ is assembly for each semantic concept. Afterwards, an
elimination mechanism is applied for determining the one-to-one relation be-
tween semantic concepts (columns) and vectorial representations (rows).

The M-step updates the weighted concepts given a statistical distribution
as a target. With this in mind, the loss function for each semantic concept is
defined by

costγi =
(
ẑi − φi)2, where i = 1, . . . , c, (3)

where φi is the target statistical distribution vector (e.g., uniform distribution).
The weighted vectors are updated by gradient descent. The weighted concepts
not only ground the semantic concept to the symbolic feature represented by
a vectorial representation, but also decodes from the symbolic features to the
semantic concepts.

4 Complexity Reduction

In this paper, we propose a complexity reduction of the association model (Sec-
tion 3). We reduce to one LSTM network for learning the sequence association
task. In this case, one sequence is the target of the other sequence that represent
the same semantic sequence. The training rule is updated for one LSTM. Initially,

both input sequences (x
(1)
1 , . . . ,x

(1)
t1 and x

(2)
1 , . . . ,x

(2)
t2 ) are propagated forward

to the common LSTM network. The activations from both sequences after the

forward pass are stored. Each output sequence (z
(1)
1 , . . . ,z

(1)
t1 and z

(2)
1 , . . . ,z

(2)
t2 )

are fed independently to the weighted concept vectors (γ1, . . . ,γc) based on
Equation 1. In contrast to the original model, only one set of weighted concept
vectors is required. Afterwards, the CTC-forward-backward algorithm is applied
to each output sequence. Both output sequences from the forward-backward

step (fb
(1)
1 , . . . ,fb

(1)
t1 and fb

(2)
1 , . . . ,fb

(2)
t2 ) are aligned in the time-axis to each

other via DTW. In this reduction, the LSTM network has two error functions.
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One error function is between the output of sequence 1 and the output from
the forward-backward step of sequence 2. The other error function is between
the output of sequence 2 and the output from the forward-backward step of se-
quence 1. Figure 2b shows the presented model, for which the required number
of parameters is reduced to half.

5 Experiment Design

Our cognitive association task is between two parallel text lines that represent
different instances of the same semantic sequence. We used the same generated
dataset in [11], which is based on MNIST [10].
Semantic Sequence Generation: The length of each semantic sequence was
randomly chosen between four and eight digits. The training set and testing set
had 50,000 samples and 15,000 samples, respectively.
Visual Sequence Generation: After the semantic concept generation, two
parallel text lines of digits (called sequence1 and sequence2 ) were generated
from MNIST [10]. First, each digit from the semantic sequence was represented
with different instances for each sequence input. Second, all digit instances were
horizontally stacked for generating the visual sequences. The space between the
digits in the text lines has random size. Our training and testing datasets have
digits only came from the training and testing set of MNIST, respectively.

We compared the presented model against two different setups that are our
baselines. The first setup is the original model proposed by [11], which has two
parallel LSTM. The second setup is one LSTM trained on one sequence indepen-
dently with a pre-defined relation between the semantic labels and their vectorial
representation. The parameters of the proposed simplification model are: hidden
size was set to 20 memory cells, momentum was set to 0.9, the learning rate of
LSTM network was set to 1e-4, and the learning rate for learning the coding
scheme was set to 0.001. The pixels of the text lines were normalized between
0.0 and 1.0.

6 Results and Discussion

The cognitive association task is measured by the number of correct elements
found on both sequences. We reported the average results of the Association
Accuracy (AAcc), which is defined by

AAcc =

∑N
i=1 LCS(output

(1)
i , output

(2)
i , gti)∑N

i=1 len(gti)
, (4)

where output
(1)
i and output

(2)
i are the label classification of the input sample i,

N is the number of samples, gti is the ground-truth label, function LCS is the

length of the longest common sequence between output
(1)
i , output

(2)
i , and gti;

and len(gti) is the number of elements in the ground-truth sequence gti. In this

Workshop New Challenges in Neural Computation 2016

Machine Learning Reports 45



Table 1. Average results of the Association Accuracy (%) and Label Error Rate (%).
The proposed reduction reaches similar results to the original model and the standard
LSTM.

Association Label Error Rate (%)
Models Accuracy (%) Sequence 1 Sequence 2

LSTM trained for one sequence 93.07± 1.47 3.47± 0.99 3.52± 0.80
original model (Raue et al. [11]) 95.69± 0.27 2.29± 0.27 2.21± 0.17
proposed reduction (this work) 95.87± 0.88 2.12± 0.46 2.15± 0.43

INPUT
SEQUENCE 1

INPUT
SEQUENCE 2

LSTM
OUTPUT 1

LSTM
OUTPUT 2

COST
MATRIX 1

COST
MATRIX 2

Fig. 3. The presented examples shows our model learns correctly to classify and agrees
on the same coding scheme for both sequences. For example, the concept ‘one’ is
represented by the one-hot vector 9 (dark blue). In addition, the cost matrix shows the
alignment path (red line) between sequences.

work, we choose 10,000 samples from the training set and 3,000 samples from
the testing set. This procedure were repeated ten times. In addition, we also
reported Label Error Rate (LER) (similar to [6]) for evaluating each sequence
independently.

Table 1 shows the performance between the presented reduction and the
original model. The proposed reduction reached similar results to the original
model with only one LSTM. Also, we compare our model and LSTM networks
that were trained using only Sequence 1 or Sequence 2. Note that the neuron
activations from one sequence are used for updating the weight connections given
another sequence as a target. The training between sequences did not reduce the
overall performance of the presented model.

Figure 3 illustrates two output examples. It can be seen that both outputs for
each example agree on the same vectorial representation. For instance, semantic
concept ‘one’ of the first example (first row) is represented by the coding vector
‘9’ (dark blue) in both LSTM outputs. In addition, the cost matrix shows the
alignment path (red line) between both outputs. In more detail, the path crosses
over several areas that represents the alignment under two cases: alignment
between blank space and alignment between semantic concepts.
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7 Conclusions

In this paper, we were interested in the association of two sequences and learning
the symbolic representation at the same time. We proposed a reduction of an
association model, where the coding scheme is not defined before training. A
new learning rule is introduced where one LSTM was able to agree on the same
coding scheme of two independent sequences that were represented by text lines.
However, this scenario has some limitations. We will work on more realistic
scenarios, where the semantic concepts are not available. In addition, we will
work on different types of text lines, such as printed text vs handwritten text.
Moreover, we want to evaluate the behavior of our model if one sequence is
more dominant than the other sequence. In other words, one sequence is only
aligned to the dominant sequence, and the dominant sequences is trained without
alignment. Finally, the symbol grounding problem is not a simple task and still
is an open problem for understanding the language development [12].
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using Bayesian Hierarchical Models

Oliver Walter and Reinhold Häb-Umbach
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Abstract. In this paper we demonstrate an algorithm to learn words
from speech using non-parametric Bayesian hierarchical models in an
unsupervised setting. We exploit the assumption of a hierarchical struc-
ture of speech, namely the formation of spoken words as a sequence of
phonemes. We employ the Nested Hierarchical Pitman-Yor Language
Model, which allows an a priori unknown and possibly unlimited num-
ber of words. We assume the n-gram probabilities of words, the m-gram
probabilities of phoneme sequences in words and the phoneme sequences
of the words themselves as latent variables to be learned. We evaluate the
algorithm on a cross language task using an existing speech recognizer
trained on English speech to decode speech in the Xitsonga language
supplied for the 2015 ZeroSpeech challenge. We apply the learning al-
gorithm on the resulting phoneme graphs and achieve the highest token
precision and F score compared to present systems.

1 Introduction

Automatic speech recognition (ASR) systems mostly rely on supervised learning,
with an acoustic model and a language model, trained from transcribed speech
and text data. Both, the inventory of words and phonemes are known, and a
lexicon with word pronunciations in terms of phoneme sequences is given.

Here we consider a setting, where neither the pronunciation lexicon nor the
vocabulary are known in advance, since the acoustic training data come with-
out labels. In general, the phoneme inventory is not know either, however here
we use the acoustic models of another language to decode the acoustic data,
demonstrating the effectiveness of cross language transfer.

As depicted in Figure 1 an audio recording is typically represented as a time
series of feature vectors. A symbolic representation can be learned by discover-
ing repeated sequences of vectors and assigning the same labels to similar se-
quences, corresponding to phone-like units [1, 19, 17, 13]. On this label sequence
again similar sequences are discovered and given labels from another label set,
thus arriving at a segmentation into words [18, 8, 4, 5, 7]. An n-gram language
model is learned simultaneously and used to calculate the probabilities of words,
depending on their n− 1 preceding words.

Figure 2 depicts the generative model: a language Model G and the lexicon
are generated from a prior process, the Nested Hierarchical Pitman-Yor process.
Within the nested process, a word language model is drawn from a Hierarchical
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Pitman-Yor process, whose base distribution is a distribution over all possible
phoneme sequences, calculated by a phoneme language model. Phoneme Se-
quences not corresponding to a word in the lexicon, and therefore new words,
are obtained as draws from the same phoneme language model whose prior is
again a Hierarchical Pitman-Yor process with a uniform base distribution over
phonemes. The words W are generated (drawn) using the language model and
mapped to phoneme sequences Y using the lexicon. Acoustic feature vectors X
are finally generated employing an acoustic model.

Here we will focus on the discovery of words from phoneme sequences, where
the phoneme sequences have been generated by a phoneme recognizer, trained
with another language, assuming a phoneme set and acoustic models for each of
the phonemes to be known.

2 Unsupervised Word Segmentation

If neither the pronunciation lexicon nor the language model are known, and we
are left with the task to segment a phoneme string into the most probable word
sequence, we have to learn the language model together with the words. We use
the Nested Hierarchical Pitman-Yor Language Model (NHPYLM), denoted by
G, which is a Bayesian language model and allows new, previously unseen words,
to evolve and assign probabilities to them. It is based on the Pitman-Yor process
prior, which produces power-law distributions that resemble the statistics found
in natural languages [14, 15, 7].

An n-gram language model Gu is a categorical distribution over the N words
of the vocabulary, conditioned on the n−1 preceding words u = wl−1, . . . wl−n+1:
Gu = {P (w1|u), . . . , P (wN |u)}. In a Hierarchical Pitman-Yor process, Gu is
modeled as a draw

Gu ∼ PY (d|u|, θ|u|, Gπ(u)) (1)

from a Pitman-Yor process with base measure Gπ(u), strength parameter d|u|
and discount parameter Θ|u| [15]. The base measure corresponds to the expected
probability distribution of the draws and is set to the language model Gπ(u) of
the parent (n−1)-gram. This process is repeated until the parent language model
is a zerogram, which in the supervised case means that all words have the same
probability, given by one over the number of words. Since in the unsupervised
setting the vocabulary size is not known in advance, the zerogram cannot be
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specified. It is therefore replaced by the likelihood for the word being a phoneme
sequence, calculated by a Hierarchical Pitman-Yor Language Model (HPYLM)
of phonemes H′ where a hierarchy of phoneme language models is built up to
some order m, similar to (1). The phoneme zerogram is finally set to a uniform
distribution over the phoneme set. The resulting structure is the NHPYLM,
which consists of a HPYLM for words and a HPYLM for phonemes.

Since we now have to learn the NHPYLM along with the words and the
phoneme sequence, the maximization problem becomes:

(Ŵ, Ĝ, Ŷ) = arg max
W,G,Y

P (W,G,Y|X)

= arg max
W,G,Y

P (W,Y|X,G)P (G) (2)

The Nested Hierarchical Pitman-Yor process prior P (G) over the language model
is introduced. Instead of having one particular language model, we have to find
that pair of language model, word sequence and phoneme sequence which max-
imizes the joint probability.

The maximization is carried out by Gibbs sampling, first jointly sampling a
word and phoneme sequence from P (W,Y|X,G) [8], by keeping G constant in
(2) and then sampling the NHPYLM from P (G|W) [7] in an alternating and
iterative fashion for each utterance. To avoid the recomputation of the acous-
tic model scores with every iteration, we use a speech recognizer to produce a
phoneme lattice, containing the most likely phoneme sequences.

Joint sampling of the word and phoneme sequence can be very costly. To
reduce the computational demand, the phoneme sequence is first sampled from
the speech input according to P (Y|X,H) and then a word sequence from that
phoneme sequence according to P (W|Y,G) [5, 4]. For the sampling of the pho-
neme sequence, an additional phoneme HPYLM H, which includes the word
end symbol, is employed. To incorporate knowledge of the learned words, the
phoneme HPYLM is sampled from P (H|W) using the sampled word sequence
and their corresponding word sequence.

3 Experiments

We evaluate the segmentation algorithm on datasets provided for the 2015 Ze-
roSpeech challenge [16]. The datasets consist of an English dataset containing
conversational speech from the Buckeye corpus [10] and a second dataset con-
taining prompted speech in Xitsonga, a south African Bantu language, from the
NCHLT Xitsonga corpus [2]. Our goal is to demonstrate the possibility of using
existing acoustic models from another language to perform the word segmen-
tation, we use acoustic models trained on prompted English speech for both
datasets. The English dataset is used to demonstrate the segmentation perfor-
mance when using acoustic models of the same language. The Xitsonga corpus
serves as the low resource language for which we assume to only have audio data
available but no transcriptions.
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We use the tools provided for the 2015 ZeroSpeech challenge for the evalua-
tion and to be able to compare our results to previous publications. We focus on
the type and token scores. The type scores are a measure for the quality of the
discovered lexicon and therefore the set of discovered words. The token scores
are a measure for the quality of the discovered word tokens and therefore the
transcription of the speech, also called parsing quality. A detailed description of
the evaluation framework and evaluation measures can be found in [16].

3.1 Setup

For the acoustic model we use a p-norm DNN-HMM triphone speech recognizer
[20] trained on English speech from the WSJ0+1 corpus [9]. We build the rec-
ognizer using the nnet2 p-norm recipe for WSJ provided with the Kaldi [11]
speech recognition toolkit. The recipe was modified to enable phoneme recogni-
tion without a word lexicon by building a simple lexicon, mapping each triphone
to its middle phoneme.

The recognizer uses LDA transformed 13 dimensional MFCC feature vectors
extracted with a frame rate of 10 ms and a context of ±3 frames at a target
dimensionality of 40. FMLLR speaker adaptation of the LDA transformation is
performed by a two pass decoding scheme where we assume the speaker ID to
be known.

The recognizer is used to create phoneme lattices for both datasets which
are processed by the segmentation algorithm. We varied the word- and charac-
ter language model order in the segmentation algorithm from 1 to 2 (WLM) and
1 to 8 (CLM) to evaluate the performance with different model complexities.
Gibbs sampling is performed until iteration 150 to generate the segmentation
of a sentence and to update the language model. From iteration 151 Viterbi
decoding is performed to generate a segmentation. From iteration 176 the fall-
back probability to the character model is set to zero to disable the discovery of
new words and clean up the language model by removing infrequently, especially
uniquely, discovered words. The thresholds were chosen so that in each step the
algorithm converged.

3.2 Results

Evaluating the performance of the segmentation algorithm on the Xitsonga
dataset delivers insight into its usefulness for low resource language process-
ing. We treat the Xitsonga language as a low resource language by assuming
that only audio data is available but no transcriptions. We also assume that no
acoustic model is available and instead use the English acoustic model to create
phoneme graphs for the segmentation algorithm. This concept is also called cross
language transfer, where knowledge from one language is transfered to another.

Figure 3 shows the type F scores for different language model orders and
decoding settings. It can be seen that the performance increases with increasing
character language model order. The overall scores are fairly low though. This is
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mainly due to the mismatch in acoustic models and the resulting errors and nois-
iness of the phoneme latices. Viterbi decoding delivers a little lower performance
although for higher character language model orders it matches the performance
with Gibbs sampling. This might partly be due to the noisy characteristics of
the input phoneme Lattices. Viterbi decoding is supposed to find the result with
the highest probability. Due to the noise this might not be the optimal result.
While Gibbs sampling delivers samples from the distribution of segmentations
and language models seems to result in better performance. Deactivating the
character language model deteriorates the results. Most likely the input data is
too noisy resulting in many infrequent words which are being removed in this
case. Increasing the word language model order from one to two also does not
change the results significantly. The scores are a little higher for the lower order
character language models but almost the same for the higher order language
models. It seems that word context improves the performance for lower order
character language models and noisy input but not for more complex models,
contrary to previous results on less noisy data [5].

Figure 4 shows the token F scores. The behavior is similar to the type F score.
The result deteriorates with Viterbi decoding and deactivating the character
language model. Increasing the word language model order from one to two
results in marginally better results. The biggest issue in this low resource setup
seems to be the noisy input data making it difficult to learn appropriate models
at higher word language model orders.
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Fig. 3. Type F-score with varying word- and character language model order for Xit-
songa dataset. Iter.: 150 (Gibbs), 175 (Viterbi), 200 (No character model fallback)
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Fig. 4. Token F-score with varying word- and character language model order for
Xitsonga dataset. Iter.: 150 (Gibbs), 175 (Viterbi), 200 (No character model fallback)

3.3 Comparison with previous results

In the 2015 ZeroSpeech challenge two types of systems participated. The two sys-
tems can be classified into segmentation systems that segment, cluster and label
the complete utterance. Our system also falls into this category. On the other
hand Spoken Term Discovery (STD) based systems discover similar segments
and only clusters and labels those, leaving segments not discovered as similar to
others unlabeled. In Table 1 we compare our results to the two types of systems.
For the challenge only two systems were submitted [3] and we compare to the
best setups of each.

Osc. Seg. is based on a simple segmentation algorithm finding minima in a
particular oscillation frequency of the speech similar to the theta-rhythm brain
oscillations and segment according to those. Fixed length representations of the
Discovered segments are then clustered, labeled and n-grams of those clusters,
sorted in ascending order from longest to shortest, labeled as words [12].

STD is a system based on finding similar segments, building a graph with
edges connecting those similar segments with weights proportional to their sim-
ilarity and clustering them using graph clustering algorithms [6].

For our system we compare the best setups with word language model order
one and highest type F score (NHPYLM 1) and word language model oder
two and highest token F score (NHPYLM 2) to the other systems. The system
performs best in both settings on the English dataset, since we are using English
acoustic models. On the Xitsonga dataset our system performs best on the token
precision and F score and second best in all three token performance measures.
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It also performs better then the Osc. Seg. system. For the type performance our
system performs second best in all measures after the STD system. Since our
system is a segmentation system it performs better on the token measures while
the STD system is able to discover a better lexicon but not label all segments,
resulting in higher type measures on the Xitsonga dataset.

Since we are using English acoustic models, the comparison on the English
is to be understood as a baseline in case of known and partly matching models.

Table 1. Precision (P), Recall (R), F-score (F) for Type and Token on English and
Xitsonga dataset with different algorithms. Red: best score, blue: second best score.

English Xitsonga

Type Token Type Token

System P R F P R F P R F P R F

Osc. Seg. 14.1 12.9 13.5 22.6 6.1 9.6 2.2 6.2 3.3 2.3 3.4 2.7
STD 3.1 9.2 4.6 2.4 3.5 2.8 4.9 18.8 7.8 2.2 12.6 0.8

NHPYLM 1 18.1 38.7 24.6 28.8 19.0 22.9 3.9 8.2 5.3 4 2.7 3.2
NHPYLM 2 17.8 36.7 24.0 24.5 25.5 25.0 3.7 8.5 5.1 4.1 3.4 3.7

4 Conclusion

Our system demonstrated a higher performance over a comparable segmentation
system while still suffering from noisy input data. Although we achieved better
performance than the STD system on the tokes, type quality is still behind STD
systems. It is still an open question how to deal with noisy input data. Future
research will investigate the integration of the acoustic model into the learning
process and how to extend the system to deal with errors in the phoneme lattices
and pronunciation variants.
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Abstract. Goal Babbling is a recently introduced method for direct
learning of the inverse kinematics within few hundred movements even in
high-dimensional sensorimotor spaces. This paper investigates if random
selection of movement directions in goal space can be used for Goal Bab-
bling without pre-specifying goals, instead, the goals will be generated
along the chosen direction. This so-called Direction Sampling was pre-
viously developed for a 2D workspace with a simple planar arm model,
whereas we scale it to full 3D and a complex 9-DOF humanoid robot
(COmpliant huMANoid - COMAN) integrating simplified walking be-
havior by means of a simulated robot-floating base. The paper evaluates
how much of the workspace can be discovered, what the performance
of the learned inverse model is, and how the different degrees of free-
dom can be constrained by changing the exploration noise model. The
results show that the combination of Goal Babbling and Direction Sam-
pling works even under these difficult conditions, but has limitations in
performance if the workspace is not fully explored.

Keywords: Exploratory learning, Goal Babbling, Humanoid robot

1 INTRODUCTION

With the advent of humanoid and other robots with many degrees of freedom,
motion control and in particular movement skill learning has attracted renewed
attention recently. Historically, movement skill learning has been a topic in ma-
chine learning, robotics and neuroscience since the 90th, where it is widely ac-
cepted that human motor control is organized on the basis of forward and inverse
models [1]. A number of schemes have been developed for learning of such inter-
nal models, among them the seminal work on distal teachers [2] and on feedback
error learning [3]. However, these models were applied to simple robots only and
assume that first a forward model is learned or is already available which converts
actions into predicted outcomes, before learning an inverse model, that converts
goals, e.g. positions to reach, into motor commands. These models cannot de-
scribe how to learn from scratch, i.e the first phase of motor learning when a good
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body coordination is not yet established. Therefore, a number of works have pro-
posed an initial learning phase to obtain a forward model by random exploration
of motor commands under the notion of motor babbling [4], [5]. This appears
unrealistic, however, for robots with many degrees of freedom. The respective
high-dimensional spaces for motor commands cannot be explored randomly or
systematically because of a combinatorial explosion. Furthermore, there is an
evidence from infant studies that already neonates perform goal directed action
from the very beginning of learning [6]. Apparently, they learn how to reach by
trying to reach, and they adapt their motion by iterating their tries [7]. These
insights motivated researchers to turn to the idea of direct learning of inverse
models [5], [7], [8]. Such models directly yield a motor command to achieve a
goal and do not depend on a previously learned forward model. But they have
to deal with both the problem of redundancy, which is the problem that a re-
dundant robot has many possible ways to achieve a goal and needs to make a
selection from these. And they need to assure the scalability in high dimensions.
A particularly efficient has been introduced under the notion of Goal Babbling
[9]. Goal Babbling follows the approach to explore rather the low-dimensional
space of goals, e.g. target positions in space to be achieved for a robot hand.
This is in contrast to exploring the much higher dimensional action space of
motor commands that motor babbling explores. Goal Babbling systematically
generates consistent samples for supervised learning of the inverse model, for
which typically a local linear map [7] or a neural network [10] is employed as
learner. It has been shown that Goal Babbling scales to high dimensions (up to
50 DoF for a planar arm [7]), it has been applied to learn the body coordination
of the humanoid robot ASIMO [9], and its online version [7] has for instance
been applied to learn the inverse kinematics of an soft elephant trunk robot [11]
in a truly ”learning-while-behaving” fashion.
One limitation of Goal Babbling is that the algorithm needs a predefined set of
goals to achieve, for instance a grid of positions to reach in the task space. If the
workspace is not fully known a priori or unreachable goals are devised, either
only parts of the work space are explored or it can be time consuming to ask
the robot to achieve unreachable goals. To overcome this drawback, in [12] an
extension of Goal Babbling to discover and determine the reachable workspace
while learning the inverse model was introduced as ”Direction Sampling”. The
algorithm is based on random selection of movement directions to explore while
learning the inverse kinematic mapping along the way. A planar arm was used for
evaluation the effectiveness of this direct sampling. In this case, the workspace
is 2D and thus very limited, whereas random directions in 2D are easy to follow.
The current paper investigates, if direction sampling can be used for a realistic
humanoid robot by simulating the robot COMAN (Compliant Humanoid) that
can move in space in order to discover its 3D workspace autonomously. This
obviously is a harder problem, which is further complicated by the fact that the
robot has very different types of movement available. It can ’walk’, which we
simulate by means of a simple linear x-y translation in space, and reach with its
full upper body with nine degrees of freedom.
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Algorithm 1 Online Goal Babbling

INPUT: home postures qhome, targets X∗, and forward kinematic function FK.
1: for number of iteration
2: for each target x∗

3: generate a temporary path
4: for each temporary point along the path x∗

t

5: estimate joints’ value q̂∗t
6: add exploratory noise E: q+t = q̂∗t + E(x∗

t , t)
7: x+

t = FK(q+t )
8: end for
9: end for

10: end for
OUTPUT: learner ←− (q+t , x+

t )

2 The Goal Babbling Algorithm

The algorithm is given in Algo. 1. Goal babbling starts with an initial inverse
estimate g, which has parameters θ adaptable by learning, and is initialized in
t = 0 such that it always suggests some comfortable home posture: g(x∗ ,θ0)
= const = qhome . Then, continuous paths of target positions x∗t are iteratively
chosen by interpolating between the K representative points located on the
grid of predefined goals. The system then tries to reach for these targets, which
roughly corresponds to infants’ early goal-directed movement attempts. For that
purpose, the current inverse estimate is used to generate a motor command q∗t .

The command q∗t is sent to the robot and executed, the outcomes (q+t , x
+
t )

are observed, and the parameters θt of the inverse estimate are updated online
before the next example is generated. It is crucial to make the distinction between
q∗t and q+t at this point: the command q∗t might not be executable, or might
not yet be reached at the time of measurement. Hence, only (q+t , x

+
t ) but not

(q∗t , x
∗
t ) represents a sample of the ground truth forward function that is useful

for learning. The perturbation term E(x∗t , t) adds exploratory noise in order
to discover new positions or more efficient ways to reach for the targets. This
allows to unfold the inverse estimate from the home posture and finally find
correct solutions for all positions in the volume of targets X∗

For learning, a regression mechanism is needed in order to represent and
adapt the inverse estimate g(x∗). The goal directed exploration itself does not
require particular knowledge about the functioning of this regressor, such that
in principal any regression algorithm can be used. For an incremental online
learning, a local-linear map has been chosen. The inverse estimate consists of
different linear functions gk(x), which are centered around prototype vectors and
active only in its close vicinity which is defined by a radius d. The function g(x∗)
is a linear combination of these local linear functions, weighted by a Gaussian
responsibility function [7].

spanned by the
predefined goals [11]. The most efficient movement will be learned by using the

weighting scheme, which helps out to solve the redundancy problem.
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2.1 Direction Sampling

Discovering the workspace could be done by using Motor Babbling, i.e. random
motor commands are executed, and their outcomes are observed. However, the
robot will discover the workspace without learning it. In contrast, the Goal
Babbling uses inverse model which suggests a motor command necessary to
achieve a desired outcome and learns it. However, a limitation of Goal Babbling is
the need to pre-specify the goals. To this aim, targets must be known beforehand
or there is a risk to waste time and to distort the learned inverse model by trying
to achieve unreachable targets. To tackle this issue, in [12] Direction Sampling
was presented, which is an approach to discover the reachable workspace while
learning the inverse kinematic mapping during the discovery. It employs Goal
Babbling while generating targets in the workspace instead of predefining them.
A random direction 4x will be chosen, and the targets will be generated along
this path as given in (1):

x∗t = x∗t−1 +
ε

‖∆x‖
·∆x, (1)

where ε is a step-width, t is a time-step, x∗t is a generated target, and x∗t−1 is the
previous one. The robot starts exploration from its home position xhome, which
is corresponding to some initial joints’ values qhome. It tries to explore along the
desired direction until it reaches an unachievable target i.e. the current position
deviates from the desired goal by more than 90 degrees, given in (2):

(x∗t − x∗t−1)
T

(xt − xt−1)< 0, (2)

where xt is the current position, and xt−1 is the previous observed movement.
In this case, a new direction will be chosen and the agent will try to follow
it again [12]. Every 100 times the initial position qhome is used as a target to
avoid drifting. While this mechanism is simple and worked well to explore a 2D
workspace, it is not apparent that in full 3D and with a complex robot this
mechanism is sufficient to explore a reasonable part of the workspace.

2.2 Noise Scaling

In this section, we introduce a further extension of the Goal Babbling, which
is motivated from the idea that not all degrees of freedom should be employed
equally much. E.g. walking for a robot can be considered more costly than mov-
ing its hand or arm. The previous approach of Goal Babbling already used an
efficiency factor to value samples more if they feature more efficient movements.
This, however, was purely geometry based, e.g. a shoulder joint needs a smaller
deviation to achieve a significant hand movement than an elbow because of the
longer lever. But in principle, more factors should be considered such as equilib-
rium, balance, and motors’ synchronization. We therefore try to constrain the
learning dynamics to favor solutions that use or avoid certain joints by scaling
the exploratory noise for the joints’ movement as

qt = g(x∗t , θt) + Et(x
∗
t )w. (3)
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Fig. 1: Compliant humanoid (COMAN) with floating base model in Matlab Robotics
toolbox (a) and in VREP (b)

Et is the exploratory noise weighted by a coefficient vector w. The larger the
exploratory noise is in one joint variable i, i.e. the larger the respective wi, the
more likely the learning dynamics will discover a solution for reaching to a point
that employs this joint. This implements an implicit, soft constraint. We give
highest efficiency for the arm movement, less weight for the torso motion, and
the least for the lateral displacement ”walking”.

3 Setup with the COMAN robot

Unlike standard manipulators, humanoid robots are not physically fixed to a
base, there is a so-called floating base. Therefore, the workspace for the humanoid
robot is in theory unlimited. However, if we limit the movement to some amount
forward and sidewards (in the experiments: ±1.5 m), there is a limited reachable
workspace around the robot where we can expect interaction of moving, leaning
with the upper body and arm motion. We target to discover this reachable
workspace with the 3D Direction Sampling approach. Technically, we simulate
walking by replacing the actual lower body by two additional degrees of freedom
(linear forward, linear sidewards). Therefore, the floating base for the COMAN
robot is simplified to move in X-Y plane. The remaining model has 7 DOF: the
torso has 3 DOF, the shoulder has 3 DOF, the elbow has 1 DOF. Together with
the two virtual DOF for the floating base this is in total a nine dimensional
joint space. Note that the types of movement here are very different: linear in
the floating base, rotational in the torso and in the arm. The kinematic model
has been setup in MATLAB using the Robotic Toolbox [13] and in V-REP for
visualization as shown in Fig. 1(a) and Fig. 1(b) respectively.

4 Evaluation

In a first step, we verify that Goal Babbling can deal with the complex robot
setup and learn to reach 45 targets arranged in a regular 3D grid as illustrated
in Fig. 1(a): 15 targets in front of the robot at distance 30 cm, 15 at the coronal
plane, and 15 in the back of the robot at distance 30 cm as well. The vertical
distance between targets is 5 cm. Fig. 2(a) shows a typical learning curve, the
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(a) (b)
Fig. 2: (a) Goal Babbling error in meter, (b) discovered workspace using Direction
Sampling

(a) (b)
Fig. 3: Reachable workspace (a) vs Discovered workspace (b)

reaching error drops very fast and already after 200 learning epochs a decent
performance on the targets is achieved, i.e. after 800 movements the error drops
to 2 mm. The robot leans to use the lateral movement of the floating base
to reach to targets behind its body and combines it with the torso and arm
movement. Next we turn to Direction Sampling. To obtain a ground truth of
the reachable workspace, we use extensive sampling in simulation with a kind
of motor babbling to collect 3× 106 samples. Then the volume of the reachable
workspace is estimated using the alphavol MATLAB function with radius R =
0.01. The estimated volume is 11.5117m3 and is illustrated in Fig. 3(a). However,
the robot learns nothing about reachable targets in this way. Now, we apply
Direction Sampling to explore, discover, and learn the workspace simultaneously.
Although the direction sampling is very simple, the robot manages to discover
most of the workspace in few thousand steps. Fig. 2(b) illustrates the discovered
workspace after 60000 samples. The Direction Sampling algorithm is evaluated
after 104, 5 × 104, 6 × 104, 105, and 106 samples. The discovered workspace is
again estimated using alphavol function. The results are illustrated in Table.1,
and the discovered workspace after 106 samples is illustrated in Fig. 3(b). As
expected, the robot visits an increasing portion of the workspace with more
learned samples, and it performs well on the grid targets which were previously
used to evaluate the efficiency of standard Goal Babbling, as shown in Table 1.

To gain more insight about the performance relative to the distance from the
body, two further target grids for reaching are presented in front of the robot
with distance 1 m, and 0.5 m. Then targets are presented in the coronal plane,
i.e. some are inside the robot such that it must “walk”, i.e. the lateral movement
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Table 1: Volume of discovered workspace averaged over 5 runs

Number of Samples
Average Volume Percentage Volume Average Error

Discovered Discovered for 45 targets

104 0.715± 0.07 6.211% 0.377 m
5× 104 2.17± 0.2 18.85% 0.0284 m
6× 104 3.18± 0.02 27.62% 0.0484 m

Goal Babbling - - 0.02

Table 2: Testing Error Measured for Different No. of Samples.

Distance

Front On Behind

No. of Samples −1 m −0.5 m 0 m 0.5 m 1 m

104 0.2091 m 0.16 m 0.17 m 0.42 m 0.2517 m

5× 104 0.2315 m 0.0234 m 0.02 m 0.074 m 0.1256 m

6× 104 0.14 m 0.127 m 0.03 m 0.158 m 2.37 m

106 0.1020 m 0.0123 m 0.0181 m 1.0625 m 7.17 m

Table 3: Discovered workspace after adding noise scaling

Factor of the
scaling noise

Percentage Volume of
the Discovered Workspace

[1 1 1 1 1 1 1 1 1] 27.62%
[0.15 0.15 0.5 0.5 0.5 1 1 1 1] 12.5%
[0.1 0.1 0.5 0.5 0.5 1 1 1 1] 10.2%

[0.01 0.01 0.5 0.5 0.5 1 1 1 1] 3.3%

in x-y direction. Finally, they are behind the robot at a distance 0.5 m, and
1 m. The performance error is illustrated in Table. 2. Apparently, the targets
behind are much more difficult to reach and in the final row, some of the targets
were out of the discovered workspace and produced large errors, as the learner
extrapolated rather badly because it is a local linear.

The final experiment is on modulating the learning dynamics to use particular
joints more or less. The noise is weighted as shown in Table. 3, which scales down
exploration with the floating base (i.e. walking) systematically. The discovered
workspace after adding the constrains was evaluated after 60000 samples. The
robot discovered less workspace, because of the constrains. For example, 0.01
limit the joint movement exploration more than 0.15 illustrated in Table 3.

5 Conclusion

We have shown that Goal Babbling with or without combination with Direction
Sampling can be used even in a complex scenario where a 9 DOF humanoid
robot discovers its 3D workspace. There were no indications of local minima or

105 3.59± 0.01 31.816% 0.047 m
106 9.338 81.18% 0.036 m
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of the algorithm being captured in already explored areas, which is quite re-
markable given the complexity of the mapping to be learned. The results also
show, however, that a large number of direction changes are needed and the
learner naturally performs badly for goals in the undiscovered areas. It is inter-
esting that indirectly, through scaling of the noise, certain degrees of freedom can
be preferred. Future work shall improve the direction sampling. A more active
choice of directions towards undiscovered areas should yield better performance,
however, at the cost of an increased complexity of the algorithm.
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Abstract. Surface treatment constitutes a particularly energy consum-
ing process, such that its careful planning offers promising optimisation
potential. One crucial quantity, which characterises the production pro-
cess, is given by the number of racks, which are required to mount con-
struction parts for subsequent anodisation or powder coating. Typical
orders consist of a list of construction parts together with a specification
of their treatment, and an estimate of the overall square meters within
the order; orders do not directly reveal the required number of racks.
In this contribution, we develop a pipeline, which phrases the mounting
of construction parts on racks as a bin packing problem (BPP). After a
slight adaptation, it can approximately be solved by the so-called first
fit decreasing algorithm. We compute virtual optimisations of exemplary
orders, to generate a training set of pairs of orders’ square meters and
required number of racks. By a simple linear regression, we can infer a
mapping of these quantities. As a result, these quantities can be com-
puted from available digital information for subsequent efficient planning.
In addition, the proposed BPP solution can serve as a suggestion how to
optimally mount a given set of construction parts.

Keywords: Surface treatment, bin packing problem, production planning, op-
timization

1 Introduction

The buzzword ‘industry 4.0’ refers to the ever increasing digitalisation of indus-
trial automation processes and production pipelines, including cyber-physical
systems, and the internet of things [4]. It carries the promise of smart factories,
where intelligent data exchange and adaptive process optimisation enable robust
and efficient pipelines for highly individualised manufacturing [5]. While classical
process automation and planning already reveals a large optimisation potential,
highly individualised processes or products as often faced in modern industry
require its efficient data-driven adaptation and optimisation on demand [7, 3].
Recent success stories of data-driven optimisation and modelling range from
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high-quality process modelling for ultrasonic wire bonding up to an improved
process control based on local sensors [8, 6].

Powder coating and anodisation constitute modern environmentally friendly
surface treatments, which require specialised manufacturing lines: construction
parts are grouped according to the type of treatment and mounted on racks,
which, bundled in small groups, undergo a sequence of processes such as pre-
treatment, anodising, etc. The number of required racks directly influences the
required processing time, the overall process planing, and the overall energy con-
sumption of the manufacturing pipeline. However, the number of required racks
is not available in current orders, rather orders comprise construction parts, their
numbers, and the required surface coating only.

In this contribution, we address the particular problem how to mount a given
multiset of construction parts on a minimum number of racks. For this purpose,
we formalise the process by abstracting from the exact geometrical shape, first,
and phrase it as a BPP [2]. We investigate its approximate solution, thereby
aiming for the answer of two questions:

1. Do simple efficient approximation schemes of the BPP problem enable good
mountings for practically relevant settings? We answer this question by re-
alising an adaptation of the so-called first fit decreasing algorithm, and by a
comparison of the achieved results to lower bounds for exemplary orders.

2. Does there exist a simple connection of the square meters of a typical order
and the required number of racks? If so, this crucial number could be es-
timated based on the available digital information, and further production
planning could be based thereon. We answer this question by investigating
the relation of these quantities for exemplary results, which are obtained by
virtual optimisation based on (1).

Now, we first formalise the mounting problem as a BPP. We investigate approxi-
mate solutions and their quality for typical benchmarks. Finally, we infer a linear
relation of square meters and required number of racks for typical orders using
linear regression for the observed examples.

2 Formalisation of the mounting problem

An order consists of a multiset S of construction parts, characterised by their
unique identifier and the multiplicity of their occurrence in S, corresponding to
multiple identical parts being contained in one order. These parts are mounted
on racks with suitable width and fixed height. We assume that parts are already
ordered in groups according to their surface treatment, i.e. construction parts
in the same multiset can be assigned to the same rack, if space permits. The
lengths of the parts is irrelevant for the number of batches which occur, since it
is accounted for by two or more racks and a fixation of the construction parts
at two or more points with different mutual distance. Similarly, the exact shape
of the profile of the parts is irrelevant, rather their maximum width and height
determines the required space. Hence it is sufficient to describe every part by
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Fig. 1: Example of a mounting
problem. Parts are represented
via their bounding box only.
The distance in between two
parts is based on the height of
the parts. The maximum width
of the parts determines the re-
quired width of the rack. The
height of the parts determines
the number of parts which fit on
a given rack.
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its bounding box. Mounting parts corresponds to the problem of stacking the
parts on the racks while respecting a suitable distance in between parts; see
Fig.1 for a schematic display. Thereby, the exact width also becomes irrelevant
– the maximum width per rack determines the required width of the entire rack.
Hence this problem constitutes a variant of the BPP as follows:

Definition 1. Assume a multiset S = {hi | i = 1, . . . , p} where hi ≥ 0 is the
height of part i is given. Since S is a multiset, the element hi can be contained
more than once – corresponding to the fact that a number of identical parts are
coated. Assume a distance ∆hi, which is required in between two parts, is fixed.
Assume a height H > 0 for a rack is fixed. We say that a multiset S′ ⊂ S fits
on H, iff ∑

hi∈S′

(hi +∆hi)− max
∆hi:hi∈S′

∆hi ≤ H (1)

The mounting problem is the problem, to find a number k ∈ N and a decompo-
sition of S into multisets

S = S1 ∪̇S2 ∪̇ . . . ∪̇Sk (2)

such that every Si fits on H, and k is a minimum number with this property.

In practice, we chose ∆hi := hi/2; this choice can easily be changed if the
application requires it. Obviously, equation (1) refers to the fact that the parts
in S′ fit on the rack with height H provided a distance ∆h has to be maintained
in between two parts. By ordering the part with maximum height h at an end, we
safe this distance ∆h exactly once. Then the mounting problem simply searches
for the minimum number of racks which are required to mount all parts in the
multiset S on a rack.
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Algorithm 1 FFD algorithm

1: sort h1 +∆h1 ≥ h2 +∆h2 ≥ . . . ≥ h|S| +∆h|S|
2: for j ← 1 . . . |S| do
3: insert hj and its space into the first rack which has enough space left

This problem constitutes a variant of the BPP, i.e. the problem is NP hard.
We aim for an upper bound on the number of racks in terms of a good assignment,
and a lower bound to estimate the quality of the approximation in concrete
examples. Note that we can easily determine a lower bound of the number of
racks by the minimum required space of all parts together with their distance.
Assume distances are sorted in decreasing order ∆hi1 ≥ . . . ≥ ∆hi|S| . Then the
lower bound

kmin := min
k

{
k
∣∣ ∑

hi∈S

hi +∆hi ≤ k ·H −∆hi1 − . . .−∆hik

}
(3)

results – this corresponds to k racks where the largest k distances can be saved
by placing the respective parts on the bottom.

There do exist efficient approximation algorithms for the BPP [9, 1]. The
First Fit Decreasing algorithm (FFD) proceeds as described in (Algorithm 1). It
provides a 11/9 approximation for the classical BPP. However, it does not take
into account that the largest distance can be omitted per rack. For the latter, we
propose a slight variation, the FFD with spaces (FFDS) algorithm, as shown in
(Algorithm 2). We will use these algorithms to efficiently generate upper bounds
as well as concrete good assignments for the constructions parts to racks.

3 Results

For an evaluation, we investigate 11 concrete orders which were processed in
the last year in a company for surface treatment. The orders constitute typical
examples of diverse profiles which are required for windows and doors. Charac-
teristics of these orders (number of elements and estimated square meters) are
displayed in Tab.1. As a first step, it is necessary to extract bounding boxes for
the involved profiles. The profiles and their measures are not contained in the

Algorithm 2 FFDS algorithm

1: sort ∆hi1 ≥ . . . ≥ ∆hi|S|
2: compute kmin as in (3)
3: for j ← 1 . . . kmin do
4: insert hij in rack j

5: sort h1 +∆h1 ≥ h2 +∆h2 ≥ . . . ≥ h|S| +∆h|S| , thereby omitting i1 . . . ikmin

6: for j ← 1 . . . |S| − kmin do
7: insert hj and its space into the first rack which has enough space left
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order 1 2 3 4 5 6 7 8 9 10 11

number of parts 1303 12 89 194 89 17 46 12 87 18 6
m2 2405 22 165 356 153 28 51 23 171 40 8
kmin 77 1 6 12 6 2 3 1 6 2 1
kFFD 79 1 6 12 6 2 4 1 6 2 1
kFFDS 78 1 6 12 6 2 4 1 6 2 1

Table 1: Exemplary orders, its characteristics, and the obtained lower and upper
bounds for the number of racks. For almost all examples the bounds are tight.

orders itself. Rather, every construction part is characterised by an ID which can
be accompanied by a digital file displaying its profile in pdf format. Hence we
devised a technology to extract bounding boxes of profiles from these pdf files
by relying on suitable image processing and pattern recognition technology. The
process has been automated such that a correct bounding box could be found
for 97% (out of 559) parts. The results have been manually curated, in addi-
tion. Due to the required image processing and partial manual curation, that
the process of an extraction of the bounding boxes for the given parts is quite
costly and not suited for an integration into the online planning and manufac-
turing process. Rather, it serves as an intermediate step to generate a number
of example orders with a provably correct minimum number of required racks.

Afterwards, the height H = 154 cm of the rack has been chosen and upper
and lower bounds have been computed using the proposed algorithms. Interest-
ingly, in all but two cases the obtained bounds are tight (see Tab.1). That means
that the simple FFD algorithm constitutes an excellent heuristic for the consid-
ered problem. We verify the feasibility of this modelling by a comparison of the
result to the number of racks which have been used in the actual production
for the largest order (order number 1). In the manufacturing plan provided by
the company, 91 racks have been reported for this order, which corresponds to
an increase of about 14% as compared to the optimum. This finding allows two
conclusions: the modelling of the mounting process is correct, since a correct
size has been obtained for a large order; this result is significant due to the num-
ber of involved parts, since random effects for single elements do hardly change
the overall result. Further, this finding indicates that there exists the potential
to optimise the mounting process in the company by following the proposed
optimisation scheme.

4 Interpolation

These results provide a set of 11 example pairs of square meters and their re-
quired numbers of racks. We investigate whether these virtual examples enable
us to predict the required number of racks from the digital information which is
available within an order. Each order contains the IDs of the parts which have
to be coated as well as the overall number of parts and an estimate of the overall
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square meters. Note that, in general, it is impossible to compute the number of
required racks from the square meters or the number of parts of an order only,
unless additional constraints are present for the order: while square meters are
influenced by the length and width of the parts, the required number of racks
only depends on the height of the involved parts. That means, in general, there
can exist orders with the same number and square meters, but a different num-
ber of required racks, provided arbitrary bounding boxes are present in the data.
In practice, this is not the case: parts stem from typical series, i.e. orders possess
a typical characteristics. Based on the given samples, we investigate whether a
relation in between square meters and required number of racks exist for such
typical orders.

Due to the small number of available samples, we restrict the model to a
simple linear fit, which results from a least squares regression for the given data.
A linear regression model trained for all data reveals the function as displayed
in Fig.2. An excellent fit can be reached with a mean squared error of 0.3021
and a mean absolute error of 0.376. For all but one sample the absolut error is
less than 1 rack.

The feasibility of the obtained model is supported by an evaluation of its
generalisation ability in a leave-one-out cross-validation: the mean squared test
error equals 0.669 and the mean absolute test error equals 0.578. When rounding
the respective output of the linear regression to the next natural number, since
no partial racks can be used, the mean absolute test error becomes 0.546. For
all but two samples, this absolute error is less than one rack. For two samples,
the cross-validation reveals an error of 1.8 racks (see Fig.2): one order with 51
square meters requires a number of 4 instead of predicted 2.29 racks. Further, a
large order requires 78 racks instead of predicted 76.21 – note that an error of
less than two racks corresponds to less than 3% error in this case, i.e. the model
shows excellent extrapolation capabilities for this sample, hence we expect that
the inferred function is approximately correct for a wide range of typical orders.

5 Conclusions

We have investigated an optimisation problem within the context of digital fac-
tories. In the present case, digital data are available in the form of tables within
orders, which change from week to week. The question occurs, whether the pro-
cess of mounting these orders on racks can be optimised such that the resulting
algorithm is easy enough to be useful in practical applications. Further, we have
addressed the question whether a prediction of the number of required racks
is possible for typical orders based on the available (extremely sparse) digital
information only. We have answered both questions positively: by modelling the
mounting problem as an instance of the BPP, we have efficient approximation
algorithms at our disposal, which can be adapted to the given task, with ex-
cellent results. These require the availability of the height for the given parts
(which is currently not the case by simple means). Further, we have enhanced
typical samples to the full digital information, including bounding boxes, by

Workshop New Challenges in Neural Computation 2016

Machine Learning Reports 69



means of automated image processing methods (since these are specific for the
given parts, we did not further explain this part). This information allows for
the virtual optimisation of exemplary orders. As a result, a (small) training set
becomes available, based on which a linear regression model can be learned.
This establishes a simple relation of the squared meters to the number of racks,
with excellent performance also in a leave-one-out cross-validation. Hence the
resulting model enables a simple rule of thumb for the required number of racks
based on which planning and process optimisation becomes possible for the whole
manufacturing process. We would like to stress that the resulting technique is
efficient such that their use in online scenarios with changing (but typical) orders
per day is possible.
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Abstract. We introduce a novel artificial neural network architecture
that integrates robustness to adversarial input in the network structure.
The main idea of our approach is to force the network to make predictions
on what the given instance of the class under consideration would look
like and subsequently test those predictions. By forcing the network to
redraw the relevant parts of the image and subsequently comparing this
new image to the original, we are having the network give a “proof” of
the presence of the object.

1 Introduction

Convolutional Neural Networks (CNNs) have been shown to work well on image
classification tasks [19]. However, CNNs are vulnerable to adversarial images [16,
23]. In this paper we introduce a novel type of network structure and training
procedure that results in classifiers that are provably, quantitatively more robust
to adversarial samples. Adversarial images can be found by perturbing a normal
image in such a subtle way that the change is usually imperceptible by the naked
eye [7, 23].

The main idea of our approach is to force the network to make predictions
on what the given instance of the class under consideration would look like and
subsequently test those predictions. Technically we achieve this by chopping the
classifier network into three stages: estimation, projection and comparison.

The first stage estimates a vector of parameters (displacement, rotation, scale
and, possibly, various object specific internal deformations) from the image. The
second stage generates an image based on the estimated parameters. The third
stage compares the projected image with the actual image and delivers a likeli-
hood value which can be turned into a verdict using a threshold. The working
hypothesis is that this network structure improves robustness against adversarial
samples.

There are two intuitions behind this working hypothesis. The first is that
parameter estimation is a smoother task than classification. Meaning that an
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orbit through the multidimensional output space can be expected to have a
smooth corresponding orbit through the input space. In other words: it is possible
to meaningfully interpolate parameters for a model of a given class but it is
much harder to meaningfully interpolate between models of two or more different
classes.

The second intuition behind our working hypothesis is that, by forcing the
network to draw a new image using only the estimated parameter vector and
subsequently comparing this new image to the original, we are having the net-
work give a “proof” of the presence of the object. By carrying out this compar-
ison only through myopic, local features we ensure that, in order to get enough
probability mass to make the threshold, the network must be fairly precise in
reproducing the internal details of the objects. In effect we force the network to
learn much more than just a discerning set of features, we force it to learn also
the detailed internal structure of the object, thereby making it inherently more
robust against adversarial input.

In this paper we lay the conceptual groundwork and give initial experimental
results. We hope that this will enable further research on combining our approach
with other, orthogonal, approaches like adversarial training [7] and on applying
this method, or refinements inspired by it, on real- world tasks.

The source code for training the networks and to generate adversarial images
is available at https://github.com/hberntsen/resisting-adversarials.

1.1 Related Work

Neural networks recognise objects in a different way than humans. As Ullman et
al. [26] point out: “. . . the human recognition system uses features and learning
processes, which are critical for recognition, but are not used by current models”.
They show that where humans can recognise internal components of the objects
in the image, current neural networks do not. With knowledge about the internal
representation of the objects, false detections can be rejected when it is not con-
sistent with the internal representation of the object. This corresponds with the
sensitivity to adversarial images with an imperceptible change that have been
shown in [23] and various work since [16]. They show that the smoothness as-
sumption does not hold for neural networks; an imperceptible change in the query
image can flip the classification. Goodfellow et al. argue that the primary cause
for this is the linear behaviour of the networks in high-dimensional spaces [7]
as opposite to the nonlinearity suspected in [23]. The adversarial images are
not isolated, spurious points in the pixel space but appear in large regions of
the space [24]. Moreover, adversarial images can be efficiently computed using
gradient ascent, starting from any input [7].

Though the existence of adversarial examples is universal [23], neural net-
works can be made more robust against them. One way is to include adversarial
examples in the training data [7, 10, 14, 23], e.g. by assigning them to an addi-
tional rubbish class. Apart from increasing the robustness it can also increase the
accuracy on non-adversarial examples. Another approach is to adapt the model
of the network to improve robustness [4, 8]. In [4] the authors identify features
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that are causally related with the classes. Their learning procedure could be
seen as a way to train a classifier that is robust against adversarial examples.
In [8] the authors test several denoising architectures to reduce the effects of
adversarial examples. They conclude that the sensitivity is more related to the
training procedure and objective function than to model topology and present
a new training procedure.

We use 3D models to train the classifier. Though this is artificial data, it can
be used as training material for real data, e.g. for object detection [18, 22] or
even aligning 3D models within an 2D image [1, 15, 21]. The work of [1] does this
using HOG descriptors, while [15, 21] use neural networks. They have trained a
CNN to predict the viewpoint of 3D models and were successful in applying this
model to real-world images.

2 Network Architectures

In this section we describe the network architectures that we use to test the
robustness of our approach. The task of each network is the same: classify the
image. Our data consists of greyscale ImageNet images where a part of the
image is overlaid with an alpha-blended instance of a 3D model. We use three
3D models that are parametrised by their Euler rotation. The neural network
has to recognise the 3D models in all those rotations and emit which 3D model, if
any, is visible in the query image. We compare the robustness against adversarial
images using three concrete network structures. We will refer to the three 3D
models as positive classes and refer to the ‘None’ class as the negative class.

2.1 Networks

Direct Classification To set a baseline, we train a network to map the query
images directly to a probability distribution over the classes. This network is
based on AlexNet [12], which has been shown to work well in various situa-
tions [17, 20, 21, 25]. To adapt AlexNet to a reduced set of classes and smaller
query image, we use a reduced version of AlexNet from [2] which uses smaller
layers. We replaced the last layer with a softmax classification layer. The soft-
max layer has four outputs, three for the positive classes and one to indicate the
negative class.

Direct Classification + Parameter Estimation The Direct Classification +
Parameter Estimation network is a variant of the Direct Classification network
that has an additional output: the parameters of the model. This additional
output forces the neural network to develop a better understanding of the 3D
models it has to recognise. The parameter estimation is only used to guide the
training process and is not used after the network has been trained.
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Triple-staged We will first describe the triple-staged network as if it is specific
to one single class. We expand this design later to a configuration for multiple
classes. The triple-staged network contains three stages: (1) estimation, (2) pro-
jection, (3) comparison, shown in Fig. 1. Each stage was trained separately and
finally merged into one network.

Fig. 1: Data flow diagram of the triple-staged network structure for a single 3D
model. The model parameters are estimated from the input image, converted
back to an image and then compared to the original image.

The first stage maps the query image to a parameter vector that describes
a 3D model. In our running example the parameters describe just the Euler
rotation of a 3D model but in general this can also include scale, pan, and
internal parameters such as dimensions, and rotational and linear joints. The
estimations are clipped to their valid range. The network structure of this stage
is the same as the direct classification + parameter estimation network without
the task to predict the class.

The second stage of the network projects the parameter vector to a 2D image
that contains the rendered 3D model in front of a black background. The alpha
channel indicates to which degree each pixel belongs to the 3D model. In [5], it
was shown that a deep, deconvolutional neural network can be trained to gen-
erate images that are parametrised by a broad set of classes and viewpoints.
Due to our smaller set of classes and parameters, we use a downscaled variant
of the 1s-S network from [5]. The first and second stage together form an au-
toencoder where the bottleneck contains an understandable instantiation vector
of the input. This concept was already applied in the context of transforming
autoencoders [9].

The final stage has to compare each projected image with the query image.
Here we follow [27], which shows how to compare image patches using CNNs. We
adapted the 2-channel structure to create a network that compares 10×10 pixel
image patches with respect to the alpha channel. This network is convoluted
over the output of the second stage, giving it only local data to work with. The
network was trained to emit a binary output that indicates whether the original
and projected image patch should be considered equal. Fig. 2 visualises how this
network works.

The combination of the three stages is capable of determining the presence
of a single class in the query image. This does not scale well since a separate
network has to be trained for each and every class. This issue is addressed by
adding the class to generate as a parameter to the projection stage of the net-
work. Each stage can now be trained on data of all the 3D models at once. The
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Fig. 2: Visualisation of the comparison stage of the network. We convolute a net-
work that compares a 10×10 pixels patch with stride 1 (top left). This generates
the convoluted similarity map that shows which areas of the image should be
considered as being the same. Next to this similarity map, we apply a 10 × 10
average pooling layer over the projected alpha channel to generate the convo-
luted, projected alpha channel (top right). We can then directly multiply the
convoluted alpha channel and the convoluted similarity map to end up with the
normalized, convoluted similarity map (bottom left). Next we feed both the nor-
malized, convoluted similarity map and the convoluted, projected alpha channel,
as a whole, into a single-output, sum–reduction layer. Finally we obtain the ratio
by having a single output multiply the similarity sum with the reciprocal of the
total weight sum (bottom right). To obtain a final verdict we apply a threshold
Θ over the output (cf. Section 4).

class parameter improves scalability of the triple-staged network since only one
network needs to be trained for multiple classes. To generate a classification for
a query image, it is provided as an input to the network multiple times with a
different class parameter. If there is any class where the output of the network
rises above the threshold Θ, we use the class that yields the highest similarity
score. Otherwise we judge that none of the classes are visible in the query image.

Similarly, an optimisation we applied is to supply the class parameter to the
prediction stage of the network. We add the class as additional binary channels
to the query image. Without the class information passed to this network, the
network would internally need to determine which class is visible in the query
image. We found that supplying the class information to the network increased
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the robustness of the triple-staged network. Figure 3 shows the triple-staged
network architecture we used.

Fig. 3: Usage of the triple-staged network. A classification is obtained by pass-
ing the query image three times through a single network, each time with a
different reference class given as extra input. Since these passes are completely
independent they could also be parallelised.

2.2 Rationale

The main feature of the triple-staged architecture is to be robust against adver-
sarial samples that cause the network to indicate that a certain class is visible
when it is not. To let the neural network produce a false positive classification, an
adversary needs to perturb the image such that it ultimately fools the compara-
tor stage of the network. However, in order to do so, it must pass through both
the estimator and the projector stage. Any attempt to generate a false positive
will start drawing another 3D model over the existing one because the compara-
tor compares the query image with the stable internal projection of the class in
question. Ultimately then, the ‘false positive’ class will be evidently visible in
the query image.

Since the comparator network directly consumes the query image, this net-
work could still be susceptible to adversarial perturbations of the query image in
much the same way as a normal classifier would be. In order to reduce suscepti-
bility, we limited the input space of the network to a single 10× 10 pixel patch.
This is enough to learn the general concept of two patches being “similar” (mod-
ulo some minor deviations and/or artefacts) but it is not enough to learn longer
range correlations in the query image (that would give the adversarial a clear
gradient to follow in generating adversarial input). We convolve this local net-
work across the whole image, hence an adversary would need to simultaneously
fool sufficiently many individual, local patch comparisons to make a significant
impact on the overall similarity mass.
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3 Experiment Set-up

In this section we describe how we will test the network architectures from the
previous section for their robustness.

3.1 Training method

As objects to recognise, we use parametrised 3D models. We rendered 64 ×
64 pixel greyscale images of three 3D models: a Monkey (the Suzanne model
from [3]), Penguin [13] and an Aeroplane [6] using Blender [3]. We took the
rotation of the 3D model over three axes as our parameter space though our
method is not limited to this. The rotations were uniformly sampled from the
range of [−0.5, 0.5] radians. To give the 3D models a ‘natural’ background, we use
alpha-composition to blend the 3D model in front of randomly sampled images
from the ImageNet dataset [19]. This reduces overfitting of the network on the
otherwise black background. We generated 4 × 104 samples for each class. The
None class simply consists of random ImageNet images.

We used Caffe [11] for the network implementations. The direct classification
networks were trained using all 16×104 samples. We left the predicted parameter
vector for the negative samples undefined. Each stage of the triple-staged was
trained separately. The estimator stage was only trained on the subset of positive
samples. The second stage was trained on the original data as rendered through
Blender. The input of this stage consists of the binary encoding of the class and
the rotation parameters.

The data for the third stage of the network was generated by passing data
through the first two stages of the network. This resulted in a new dataset with
the query image, ground truth class, projected image and projected alpha mask.
From this data we generated a balanced dataset where half of the samples should
be considered the same and the other half of the samples is not. The samples
that are considered different compare the query image, which is either a random
ImageNet image or one of the 3D models in front of an ImageNet background,
against one of the projected images by the second stage of the network. From this
training set we sampled 10 × 10 pixel patches where the projected alpha mask
indicated that at least 1% of the pixels belonged to the model. The other samples
do not matter since their comparison is cancelled out by the multiplication with
the projected alpha (visualised in Fig. 2).

3.2 Adversarial Image Generation

When we want to generate an adversarial query image x̃, we search for a min-
imal perturbation of the original image x that is sufficient to flip the classifier
towards a chosen adversarial target class value y. To do this we adopt the fast
gradient sign method of [7]. The fast gradient sign method can efficiently gener-
ate adversarial images using backpropagation. Our aim is to generate adversarial
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samples that flip the classification to another positive class value y. Specifically,
we perturb an image by computing

x̃ = clip(x− sign(∇xJ(θ, x, y)), 0, 255),

with J the loss function over the query image x and network parameters θ. Since
we use 8-bit greyscale images with a range of [0, 255], each pixel of the image
will be minimally perturbed. This function is applied as often as needed to flip
the classification of the network to the target y.

4 Results

We test our networks on a separate test set which consists of 10000 samples of
each class. The backgrounds are sourced from the ImageNet validation set. We
first measure the classification performance of the networks on non-adversarial
images, see Table 1 for the results. The direct classification networks have the
lowest error rate, followed by the triple-staged network. With Θ = 0.2 orΘ = 0.7,
the ‘None’ class is chosen more/less often. Although choosing Θ somewhere in the
middle seems to be the best option purely in terms of minimizing classification
error, our data clearly shows that there is a trade-off to consider concerning
robustness to adversarial samples versus classification error.

Table 1: Classification error rate of the networks.

Network Error rate

Direct classification 0.01%
Direct classification + Parameter Estimation 0.01%
Triple-staged, Θ = 0.2 1.34%
Triple-staged, Θ = 0.45 0.57%
Triple-staged, Θ = 0.7 3.09%

To compare the networks under adversarial conditions, we measure how many
iterations of adversarial perturbation it takes to change the classification and
how much the image was changed. Here we follow [23] who measure the amount
of perturbation in adversarial sample for original sample as distortion which is
defined as:

1

255

√∑
i (x̃i − xi)2

n
,

where x is the original image, x̃ is the distorted image and n is the number of
pixels.

We performed experiments with both false positive and false negative adver-
sarial images. To generate a false positive adversarial image, we start from a test
image containing one of our 3D objects, say a Monkey. Following the procedure
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Fig. 4: The effort required to convert the test images that contain one of the
3D models to an image where the network judges that another class of the 3D
models is visible. There were no cases with 0 steps. For readability we clipped
the number of steps in the graph to a maximum of 1500. The whiskers are placed
at the 2nd and 98th percentile.

explained in Section 3.2, we then construct an adversarial image that makes the
network believe that the image belongs to the other class, once for a Penguin
and once for an Aeroplane. We repeat this procedure for all test images. Fig-
ure 4 shows the results for the false positive adversarial images. The figure shows
that for the direct classification networks the required changes are limited: the
median of their distortion is still below 0.1 which indicates that the adversarial
image is still very similar to the original one. The examples in Fig. 5a show
this. In contrast, the triple-staged network requires significantly more effort to
change the classification. The higher the threshold, the more the query image
needs to look like the internally projected image. Figure 5b shows false posi-
tive adversarial samples for the Θ = 0.70 network. The triple-staged network
structure requires the adversary to generate images that really start to look like
the adversary class. As Table 1 shows, the error rate on normal samples is still
reasonable at this threshold.

When we generate false positives, we start with an image that contains one of
the classes and perturb it to an image that is classified as ‘None’. For the direct
classification networks this is the 4th class they can predict. In the case of the
triple-staged network, the output for every class has to be below the threshold
Θ. Figure 6 shows that the number of required iterations is significantly higher
for Θ = 0.20 compared to the other networks. Note that in contrast to the false
positives, the false negative adversarial samples are better resisted using a lower
threshold. By lowering the threshold, the triple-staged network is less likely to
switch to the ‘None’ class, requiring more work from the adversary.
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(a) Direct classification + parameter estimation
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(b) Triple-staged network with Θ = 0.7

Fig. 5: Generated adversarial images, ordered by distortion. The top row contains
the original image, the second row the adversarial variant. The bottom row
contains the original image with the Monkey 3D model alpha-blended, rendered
by Blender using the predicted parameters. Every column is annotated with the
distortion d and number of iterations n. All adversarial samples are classified as
the Monkey class. The adversarial images in (a) do not look like the Monkey
class at all while in (b) the shape of the monkey is clearly visible.
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Fig. 6: The effort required to convert the test images that contain one of the
3D models to an image where the network judges that none of the 3D mod-
els is visible. This was possible for all the samples in the test set. The in-
stances that were misclassified in the first place were filtered out. This is
0.00%, 0.01%, 0.17%, 0.77%, 4.12% of the data respectively from top to bottom.
The whiskers are placed at the 2nd and 98th percentile.
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5 Discussion

We have adapted the classical network structure for classifier tasks and shown
significant improvements in robustness against adversarial samples. In order not
to pollute the results we have not taken into account other types of solutions
against adversarial samples such as adversarial training. This does not however
mean these techniques would not be useful also in our setting. As future work
we therefore plan to incorporate adversarial training into our approach.

Future work could also apply our technique to include more parameters in-
cluding internal deformations, using joints etc. We have only tested three 3D
models with a limited parameter space. In [15, 21] it was already shown that it
is possible to estimate viewpoints of 3D models in real-world images. Dosovitskiy
et al. [5] have shown that a deconvolutional neural can generate images based
on many classes and viewpoints. This opens up possibilities to expand our work
to a real-world situation.

For the present work we opted to train the network in three separate stages.
This allowed us quite a bit of control over the network architecture which, in
turn, allowed us a shorter route to testing the working hypothesis. Nevertheless,
as future work, it would be interesting to develop end-to-end training methods
for which the architecture would be more emergent and less explicit. As an
obvious first step we could conceive of training the first two stages end-to-end,
as an autoencoder, instead of using manually parameterized 3D models.
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Abstract. We evaluate the capabilities of the recently introduced NTraj+
features for action recognition based on 2d human pose on a variety of
datasets. Inspired by the recent success of neural networks for computer
vision tasks like image classification, we also explore their performance
on the same action recognition tasks. Therefore we introduce two new
neural network architectures which both show competitive performance
in comparison to the state-of-the-art. We show that handcrafted features
are still useful in the context of action recognition but as the amount of
training data keeps on growing the era of neural networks might soon
reach the realm of pose based action recognition.

1 Introduction

Action recognition is the task of inferring an action label for a short video clip
where a human performs a single action, e.g. clap hands, sit down and shoot
bow. Due to the progress of 2d human pose estimation [1], the position of most
important body parts like head, hands and feet can be inferred by various tech-
niques. According to the Gestalt principle, the movement of these body parts are
enough for the human brain to recognize what action a human is performing. In-
spired by this principle we try to infer action labels for short video clips by using
only the 2d pose coordinates of the acting person as input to our algorithms.

In [6] the Joint-annotated Human Motion Data Base (Jhmdb) was proposed
to study the impact of human pose for action recognition on a challenging dataset
consisting of videos taken from the Internet. The authors also proposed a feature
descriptor, termed NTraj+, that concatenates many simple descriptors like rela-
tive joint positions, distances between joints, angles defined by triplets of joints
and their first order temporal derivatives. The features, however, have never been
compared with other descriptors. We evaluate NTraj+ on five action datasets
(sub-Jhmdb [6], Jhmdb [6], Hdm05 [9], Florence 3D [10], and PennAction [17])
and compare it with the state-of-the-art.

Since NTraj+ are hand-crafted features, we also investigate two neural net-
work architectures that learn pose features in an end-to-end fashion directly from
the 2d pose data. The first architecture is based on the AlexNet model [8] which
has been proposed for image classification. It comprises a convolution layer that
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is applied to the input pose data across seven consecutive time frames. The
output is max pooled and followed by three fully connected layers. The second
architecture uses a hierarchical body part model and is inspired by an approach
for action recognition from 3d pose data [4]. It applies a convolution and max
pooling to each of the five body parts separately, i.e. trunk, right arm, left arm,
right leg, left leg. Afterward the individual body part layers are successively
combined to form a full body layer topped by two fully connected layers.

2 Related Work

Until now current state-of-the-art action recognition baselines for RGB-videos
rely on low-level features such as dense trajectories, which is a feature vector en-
coding the movement of interest points tracked using optical flow and augmented
by appearance features such as HOG [14, 15]. CNN architectures used to extract
high quality appearance features and trained on optical flow further helped
to enhance action recognition performance [11, 3]. Due to stronger and CNN
based features, human pose estimation has also made significant advances [12].
Given stronger pose estimates, the paradigm of using low level features for action
recognition might soon draw to a close. As Jhuang et al. [6] have shown, high
quality pose estimates have the potential of outperforming low-level features
on the task of action recognition. The area of pose based action recognition is
partly decoupled from pose estimation since pose information can be retrieved
in multiple ways (e.g. kinect sensor, motion capturing). Remarkably dissimilar
approaches achieve state-of-the-art results on data from RGB-D sensors. Vemu-
lapalli et al. [13] introduce a pose feature representation as points in a Lie group
and achieve state-of-the-art results on datasets such as Florence 3D-Action. Du
et al. [4] designed a hierarchical recurrent neural network that performs inner
product operations on separate body parts which are subsequently fused to a
full body model. They use bidirectional recurrent neural networks and LSTM
units to combine the frames of each action sequence temporally. Zhang et al. [17]
introduce a volumetric, x-y-t, patch classifier to recognize and localize actions.

3 Methodology

We evaluate three different approaches for action recognition. The first approach
is the method proposed in [6]. It extracts NTraj+ features and uses a non-linear
SVM for classification. The approach is described in Section 3.1. In Section 3.2,
we introduce a neural network with fully connected layers and in Section 3.2 we
introduce a neural network that models the hierarchical structure of the human
body. The neural networks can be applied to pose data directly or to the NTraj+
features. For all neural network computations we used the publically available
caffe library [7].
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3.1 NTraj+, Bag-of-Words and SVM (BOW)

In the work [6], NTraj+ features have been introduced for action recognition. It
combines a variety of descriptors that are extracted from a sequence of 2d human
pose. In the original paper, the pose is scale normalized where the scale is given
by the annotation tool. In general, the scale is unknown and we therefore do not
normalize the pose by scale. The descriptors can be extracted from an arbitrary
skeleton. In the following, we describe the features for a skeleton with 15 joints.

1. The first part consists of a 30 dimensional vector containing the x and y
positions of the 15 joints relative to the root joint, i.e., the head.

2. The distance between each pair of joints (i, j), i.e., ‖(xi, yi)−(xj , yj)‖, yields(
15
2

)
= 105 descriptors.

3. The orientation of each pair of joints (i, j), i.e., arctan(
yi−yj

xi−xj
), yields(

15
2

)
= 105 descriptors.

4. For each triplet of joints (i, j, k), an angle is computed for each joint i,
j, and k by arccos(uji · uki), arccos(uij · ukj), and arccos(ujk · uik) with

uij =
(xi,yi)−(xj ,yj)
‖(xi,yi)−(xj ,yj)‖ . This results in 3×

(
15
3

)
= 1, 365 descriptors.

This gives a 1, 605 dimensional feature vector f . In addition first order temporal
derivatives are computed over a trajectory of length T , which is subsampled with
step size s:

(ft+s − ft, . . . , ft+ks − ft+(k−1)s) (1)

with k ∈ [1, . . . , bTs c]. This results in 3, 210 feature descriptors. In addition,

(arctan( dyt+s

dxt+s
), . . . , arctan( dyt+ks

dxt+ks
)) is added where dxt+ks = xt+ks − xt+(k−1)s.

This gives additional 15 descriptors summing up to 3, 225 descriptors.
For each descriptor, a codebook is generated by running k-means 10 times

on all training samples and choosing the codebook with maximum compactness.
These codebooks are used to extract a histogram for each descriptor type and
video. For classification, an SVM classifier in a multi-channel setup is used. To
this end, for each descriptor type f , a distance matrix Df is computed that con-

tains the χ2-distance between the histograms (hfi , h
f
j ) of all video pairs (vi, vj).

The kernel matrix for classification is then given by

K(vi, vj) = exp

− 1

L

∑
f

Df (hfi , h
f
j )

µf

 (2)

where µf is the mean of the distance matrix Df . For classification, an SVM is
trained in a one-vs-all setting.

3.2 Fully Connected Neural Network (FC)

We concatenate the pose of T = 7 consecutive frames with a step size of 3 be-
tween the frames. Figure 1 a) shows a sketch of the network architecture. The
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Fig. 1. Architecture of a) the “fully connected” (FC) and b) the hierarchical neural
network (HR). Specifications of both neural network architectures: Input is a sequence
of either pose coordinates or NTraj+ features computed from 7 consecutive frames of
the video sequence with a step size of 3 between the frames. “conv” is a convolution
filter applied to every of the 7 input frame separately. Max pooling with kernel size
7 is performed after each convolution. “fc” signifies a fully connected layer. “relu” is
a rectified linear unit. “drop” stands for dropout which is set to 50 % chance. “hu”
signifies the number of hidden units used in the respective layer.

convolution layer (conv) is applied to all 7 input frames separately. The follow-
ing max pooling forwards only the values of those frames that have maximum
values. The max pooling is followed by three fully connected layers (fc) with a
rectified unit (relu) as nonlinearity. The last fully connected layer is the classi-
fication layer. As loss layer we use hinge loss with L2 regularization. A dropout
layer in front of the classification layer serves for further regularization. All fully
connected layers are initialized using the Xavier heuristic [5] and the convolution
is initialized with random numbers drawn from a Gaussian distribution.

3.3 Hierarchical Neural Network (HR)

For the hierarchical architecture, we structure the joints by body parts as out-
lined in Figure 1 b). The convolution is applied to each body part separately
followed by a dropout layer. Subsequently the body parts are hierarchically com-
bined while applying a fully connected layer after every combination. In the case
of NTraj+ as input feature the features are computed for every body part in-
dividually reducing the dimensionality of NTraj+ features substantially. The
numbers of hidden units used in both neural network architectures can be found
in Figure 1 in the bottom row.
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curacy for Jhmdb.

sub-
Jhmdb

Jhmdb Hdm05 Florence
3D

Penn
Action

a) anno-
tated

anno-
tated

mocap kinect anno-
tated

b) 12 21 65 9 15

c) 316 928 2337 215 2037

d) 70 / 30 70 / 30 90 / 10 90 / 10 50 / 50

e) 3 3 10 10 1

Table 1. Specifications of the datasets. a) Pose
coordinate source. b) Number of action cate-
gories. c) Number of action sequences. d) Train-
ing / testing ratio. e) Number of splits.

4 Experiments

4.1 Datasets

We perform action recognition on five datasets, namely sub-Jhmdb [6], Jh-
mdb [6], Hdm05 [9], Florence 3D [10], and PennAction [17]. All datasets are
transformed into a uniform skeleton consisting of 13 joint locations + neck and
belly. The other thirteen joints are head, shoulders, elbows, wrists, hips, knees
and ankles. Although, Hdm05 and Florence3D provide 3d pose, we only use 2d
projections of the poses. Penn-Action provides 13 joints which we augment with
the locations of neck and belly. The latter are computed as center of mass of
shoulders or hips and shoulders, respectively.

Table 1 summarizes the specifications of each dataset. In the case of Hdm05,
we follow the protocol proposed in [4] and randomly subsample sequences from
the entire dataset. Thus videos of the same actor performing the same action
can occur in both the training and the testing set. This makes the results of
Hdm05 especially prone to overfitting.

4.2 Evaluation of NTraj+ Parameters

Using the SVM as described in Section 3.1, we perform an evaluation of the two
parameters trajectory length T and step size s. In general, the performance has
its peak when the trajectory is subdivided once and the differences are computed
from start middle and the end frame as can be seen from Figure 2. The best
configuration is obtained for T = 7 and s = 3, which is used for the rest of the
experiments. In general, the NTraj+ features are not sensitive to a particular
parameter choice.

4.3 Different Feature Combinations

For the neural networks, we evaluate different fusion schemes. For all frames in
a video sequence, we extract either a) the feature layer corresponding to the last
fully connected layer before the classification layer, denoted by feats, or b) the
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scores of the classification layer using an additional softmax layer, denoted by
scores. For version a) we train a linear SVM (one-vs-all) using Lib-SVM [2].

To aggregate all frames belonging to the same sequence, we evaluated three
different methods, namely the average, max and min computed for each of the K
outputs f of the neural network over all N frames belonging to the same video:

ak =
1

N

N∑
n=1

fn(k) (3)

Mk = max
n

fn(k) (4)

mk = min
n
fn(k) (5)

This is then concatenated to obtain one feature vector per video:

(a1, ..., aK) (6)

(M1, ...,MK) (7)

(M1, ...,MK ,m1, ...,mK , a1, ..., aK). (8)

In case of a), it is then used to train the linear SVM.
The same aggregation schemes are applied for b) for each class score

cn ∈ [1, 2, ..., C]. The action label ĉ for a sequence is then obtained by

ĉ = arg max a(c)
c=1...C

(9)

or ĉ = arg maxM(c)
c=1...C

. (10)

Table 2 and 3 show that generally using the CNN features combined with
max aggregation scheme performs best. Only in the case of pose input data the
min-max-average aggregation performs slightly better. But since pose generally
performs worse than NTraj+ features, we stick to the max aggregation scheme.
It is interesting to note that the neural networks perform better with the hand
crafted NTraj+ features than with the raw pose data.

4.4 Comparisons

Finally we compare the performance of all three methods on all datasets com-
paring pose vs. NTraj+ features as input (see Table 4). We see that in every
experiment the NTraj+ helps to achieve top performance compared to using
pose only. Depending on the dataset, SVM with NTraj+ or FC with NTraj+
performs best. Although most of the results perform slightly less than state-
of-the-art performance, we see that all three approaches are quite robust for a
variety of datasets and perform competitively when they are used with NTraj+
features. It needs to be noted that P-CNN [3] uses the annotation scale, which
is usually not available, and the methods [4] and [13] use 3D pose. Given that
we use only 2d pose, the results obtained by the NTraj+ features are impressive.
On the Penn-Action dataset, the features outperform the state-of-the-art.
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sub-Jhmdb Jhmdb Hdm05 Florence 3D Penn Action Total Acc

FC Max feats 76.7 69.8 95.3 89.8 93 84.9
scores 73.6 70.8 93.5 86.3 87.6 82.4

Average feats 73.6 70.4 95.1 86.4 90 83.1
scores 74.7 70.8 94.3 87.2 89.1 83.2

Min-Max-
Average

feats 74.3 70.7 95.8 86.3 91.9 83.8

HR Max feats 73.9 71.8 94.5 88.3 94.1 84.5
scores 71.3 71.9 84.4 87.4 89 80.8

Average feats 74.3 71.3 93.3 87 92.4 83.7
scores 72 72 86.5 88 90.3 81.8

Min-Max-
Average

feats 73.9 71.7 94.6 88.3 94.1 84.5

Table 2. Comparison of different feature combination schemes for NTraj+ computed
on individual body parts. The best performance is achieved when a 4000 dimensional
feature vector is retrieved from the previous last fully connected layer of a neural
network for every frame in a video sequence. The frames are then combined

sub-Jhmdb Jhmdb Hdm05 Florence 3D Penn Action Total Acc

FC Max feats 71.1 65.6 90.4 82.7 92.9 80.5
scores 68.6 66.1 80.8 81.5 88.3 77.1

Average feats 69.3 65.7 88.1 83.7 90.9 79.5
scores 69.4 65.4 83.4 82.3 89.2 77.9

Min-Max-
Average

feats 71.5 66.6 90 82.7 92.8 80.7

HR Max feats 71.9 66.2 85.3 82.9 92.8 79.8
scores 67.6 66.9 66.8 83.5 79.5 72.9

Average feats 70.7 65 82.9 83.9 90.5 78.6
scores 66.5 65.3 68.7 83 82.1 73.1

Min-Max-
Average

feats 70.7 65.5 85.2 83 92.8 79.4

Table 3. Comparison of different feature combination schemes for pose input data

sub-Jhmdb Jhmdb Hdm05 Florence 3D Penn Action Total Acc

BOW NTraj+ 75.6 ± 2.7 76.9 ± 4.1 95.4 ± 1.1 88.5 ± 6.3 98 86.9
FC NTraj+ 76.7 ± 6 69.8 ± 2.6 95.3 ± 0.9 89.8 ± 7.4 93 84.9
HR NTraj+ * 73.9 ± 1 71.8 ± 1.2 94.5 ± 1.3 88.3 ± 8.1 94.1 84.5
FC Pose 71.1 ± 3.4 65.6 ± 1.4 90.4 ± 2.3 82.7 ± 7.3 92.9 80.5
HR Pose 71.9 ± 4.5 66.2 ± 2.8 85.3 ± 2 82.9 ± 13.7 92.8 79.8

78.2 [3] 77.8 [3] 96.9 [4] 90.9 [13] 85.5 [16]

Table 4. Comparison of all three methods: bag-of-words (BOW), fully connected neu-
ral network (FC), and hierarchical neural network (HR). The frames for each video
sequence are aggregated using the max-feats scheme. (*): For HR, the NTraj+ features
are computed for each body part individually
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5 Conclusion

We demonstrated that NTraj+ is a robust pose feature descriptor that enhances
action recognition performance across a variety of datasets. Further we could
show that relatively shallow neural network architectures already achieve perfor-
mances close to the state-of-the-art suggesting the need for further investigation
into that domain.

The work was partially supported by the ERC grant ARCA (677650).
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Abstract. Machine learning (ML) algorithms are used for autonomous
driving systems, but they cannot always offer reliable results. Our ap-
proach predicts the credibility of such a system without knowing its
internal details. Based on the prediction, poor results can be rejected to
raise the overall system quality. We show that our approach outperforms
a rejection strategy based on classifier confidences for road detection.

ML is one prominent method for autonomous driving systems [2]. Typically
ML methods perform very well on general scenes, but in some rare scenes they
show inferior performance or even fail completely. A system relying on ML
methods must be able to differentiate situations where its output is safe and
scenes where failure is expected. In the latter case, the result should be rejected
and the user could be alerted to take back control. A common approach to tackle
this issue is to reject a classification if the classifier is unconfident on the result [1].
To design a proper confidence measure, detailed knowledge of the classifier itself
is required. Another approach is meta-learning [4], where an external algorithm
predicts the performance of the original classifier. In this way no knowledge of the
original classifier has to be at hand. We propose a new meta-learning approach
based on holistic scene information to reject error-prone scenes. We compare our
results to a rejection method based on classifier confidences and to a baseline
using ground truth data. We demonstrate our approach exemplary at a road
terrain detection system (RTDS, [3]) used for advanced driver assistance systems.

We propose to predict the RTDS performance and only use its results if they
are predicted to be reliable (Fig. 1). Otherwise a fallback strategy is triggered. We
use a boosting predictor1 based on global image descriptors typically used for scene
recognition tasks [5]. We chose centrist features containing statistical information
on edges, and a color histogram to compensate missing color information in
the centrist features. The RTDS output is a confidence map from which we
compute the output quality by comparing it to ground truth information, and
a confidence measure dependent on the number of pixels that do not match a
certainty threshold. Note that we use RTDS information during training only.

We use a base data set with 204 color images collected with a vehicle platform
in German cities and on rural roads, for which RTDS ground truth is available.
We extend this data set by modifying some images with global noise, e. g. γ-
correction (γ ∈ [0.125, 8]), Gaussian blur (σ ∈ {3, 6}) and salt noise (probability
p ∈ {0.1, 0.2}). RTDS fails only on few scenes of the base data, while the extended

1 Since different parameter settings only had minor effects no details are reported.
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Fig. 1. System overview.

data set is more challenging. Figure 2 shows the test results on the extended set,
using leave one out cross validation. The left plot shows the mean system quality
change when rejecting the worst sample one by one dependent on ground truth
quality, predicted quality, or RTDS confidence. Our approach performs better
than the confidence based rejection and we reach the performance of the baseline
for small rejection rates. Hence our approach is a reasonable choice to improve
the quality of the overall system. The right plot shows the prediction results and
an example rejection threshold (marked point at left plot): many predictions are
accepted or rejected correctly (green) but many poor RTDS outputs are accepted
and some good results are rejected (red).
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Fig. 2. Results on the extended data. Left: Rejection performance. We omit a rejection
rate of one (undefined quality). Right: Single predictions, sorted by true quality.

Our work shows the capacities of rejection based on meta-learning. It turned
out that finding discriminative features to predict the RTDS output quality is
a challenging task (Fig. 2, right) that needs further analysis. In the future we
will (i) incorporate other types of global features and (ii) apply our approach to
other application domains in ML and computer vision e. g. image segmentation.
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Abstract. In order to avoid collision with other traffic participants, automated 
vehicles need to understand the traffic scene. Object detection, as part of scene 
understanding, remains a challenging task mostly due to the highly variable ob-
ject appearance. In this work, we propose a combination of convolutional neural 
networks and context information to improve object detection. To accomplish 
that, context information and deep learning architectures, which are relevant for 
object detection, are chosen. Different approaches for integrating context in-
formation and convolutional neural networks are discussed. An ensemble sys-
tem is proposed, trained, and evaluated on real traffic data. 

Keywords: Object Detection, Convolutional Neural Networks, Context Infor-
mation, Bayesian Models 

1 Introduction 

Automated driving is one of the most important research topics in automotive area. In 
recent years, many projects like PROMETHEUS, the DARPA Grand/Urban chal-
lenge, and CityMobil as well as different research groups and institutions have ad-
dressed this topic with promising results. To plan a collision free trajectory, automat-
ed driving vehicles must be able to detect objects. Although many solutions are avail-
able in the literature, this remains a challenging task due to huge variation in object 
appearance and scene complexity. Object appearance can change according to occlu-
sion, noise, variation in pose and illumination [1], and background clutter. Convolu-
tional Neural Networks (CNN) show the best classification results, but still have some 
classification errors because they are mostly appearance-based classifiers. Context 
information can be used to improve object detection [1]. In this paper we propose an 
object detection system, which uses the advantages of CNN and context-based classi-
fiers. We discuss different approaches for combining both classifiers. The proposed 
system is trained and evaluated on real traffic data. 
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The next sections of this work are divided as follows: in section 2, we present the 
state of the art. The proposed system as well as training and evaluation results are 
discussed in section 3. In section 4, we conclude and give an outlook on future work. 

2 Related Work 

Object detection consists of localizing object instances (hypotheses generation) in an 
image and classifying those into semantic classes (hypotheses classification). Hypoth-
eses are generated using features like symmetry, aspect ratio, expected position, color, 
and motion. Hypotheses classification methods can be separated into shape- and fea-
ture-based approaches. In this work we focus on the second one. 
Feature-based approaches first transform hypotheses into features and classify them. 
Features can be generated manually or learned directly from the data using e.g. Deep 
Learning (DL). Manually generated features like Histogram of Oriented Gradients 
and Deformable Parts Model [2] are used with Shallow Learning (SL) classifiers like 
Support Vector Machine for vehicle and pedestrian classification. While these SL-
classifiers show promising results, they suffer from human errors made during the 
feature engineering task. DL approaches solve this problem by learning the specific 
features inherently from large training data set. Since 2012, many DL-classifiers like 
Faster R-CNN and Yolo outperform SL-classifiers for object detection, but suffer 
from wrong detections mostly due to the appearance variation drawback depicted 
above. 
In [1, 3] spatial (interposition, support, and position), semantic (co-occurrence), and 
scale (familiar size) context information between objects, scenes und situations were 
combined with SL-classifiers to improve object detection. It is difficult to explicitly 
model the contextual dependencies described above into CNN because CNN just 
reason about spatial dependencies between object parts. The simplest solution is to 
integrate context information as pre- or post-processing step. Chu et al. [4] used an 
ensemble system, which combined the Faster R-CNN, local and global context for 
object detection. Some efforts to integrate context information directly into the CNN 
were shown in [5] (time constraint) and [6] (global image-level and local super-pixel 
context). Liang et al. [7] argued that Recurrent CNN (RCNN) were more suitable for 
integrating contextual relations, but RCNN can just reason about spatial dependencies 
between objects and their parts. Contextual dependencies on object and scene levels 
were still missed and will be address in this work. 

 
Fig. 1. Overview of the system for integrating DL and context-based classifiers 
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3 “Our Approach” with Current Results 

In this work, we focus on the integration of DL and context-based classifiers using an 
ensemble system (see Fig. 1). We follow the idea proposed in [4], but use different 
context information and graphical model. As DL-classifier, we choose the pre-trained 
Fast R-CNN [8]. The semantic (݁ݏୡ), spatiotemporal (ݐݏୡ) and scale (ܿݏୡ) context 
proposed in [1] are used for generating context-based features. The context-based 
classifiers estimate the conditional class probability ሺܥ|ܺୡሻ of an object hypothesis 
given the context-based feature ܺୡ ∈ ሼ݁ݏୡ, ,ୡݐݏ  ୡሽ using the naïve Bayes classifierܿݏ

ୡሻܺ|ܥሺ  ൌ
ሺౙ|ሻሺሻ

 ሺౙ|ሻሺሻ
	


 , (1) 

where ሺܺୡ|ܥሻ is the likelihood function. ܥ ∈ ሼ݀݁. , .݀݁_݊݊ ሽ is the semantic class 
set and ሺܥሻ the prior class probability. The fusion classifier combines the Fast R-
CNN and the context-based classifiers scores ܵ_ and ܵ_ ൌ 	 ൫ܵ௦_, ܵ௦௧_, ܵ௦_൯ 
using a Bayesian network and the assumption that the scores are conditionally inde-
pendent given ܥ. The conditional class probability is  

,หܵ_ܥ൫  ܵ_൯ ൌ
൫ௌ್_ห൯൫ௌ_ೝห൯ሺሻ

 ൫ௌ್_ห൯൫ௌ_ೝห൯ሺሻ
	


 . (2) 

൫ ൯, andܥ൫ܵ_ห ܵ_หܥ൯ are the likelihood functions. ܵ௦_ , ܵ௦௧_ , and ܵ௦_  are 
the semantic, spatiotemporal and scale context-based classifiers scores.  
For evaluating the proposed system, we used the Caltech Pedestrian Data Set (CPDS) 
[9]. Only the aspect ratio ܽ ൌ ݓ ݄⁄  was used as context-based feature, since it be-
longed to the scale context proposed in [1] and the CPDS didn’t contain depth infor-
mation. ݄ and ݓ were the height and the width of a given bounding box. The likeli-
hood functions ሺܺୡ|ܥሻ ൫ ൯, andܥ൫ܵ_ห , ܵ_หܥ൯  were modeled as Gaussian 
distributions and the Maximum Likelihood Estimator (MLE) were used to estimate 
theirs parameters. The prior probability ሺܥሻ was the ratio of pedestrians respectively 
non-pedestrians present in the training dataset. Fig. 2 presents from left to right the 
ground truth as well as the Fast R-CNN, the aspect ratio-based classifier (A_R-
classifier), and the fusion classifier results with scores greater than 0.5. We observed 
that the Fast R-CNN detected the most of pedestrians. Just a few objects were missed 
probably because of the low resolution and occlusion. Although the A_R-classifier 
had many false positive, the fusion classifier improved the Fast R-CNN and A_R-
classifier detecting more pedestrians. The fusion classifier false positive could be 
explained by the fact that aspect ratio was not powerful enough to model the context. 

Fig. 2. Detection results on CPDS ([9]). See text for more information. 
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4 Conclusion and Future Work 

In this work, we addressed the problem of integrating context information and DL 
architectures into a system for object detection. A fusion system combining DL and 
context-based classifiers was proposed. We modeled the context-based classifiers 
using the naïve Bayes method. The DL and the context-based classifiers scores were 
fused using a Bayes model. For training and evaluating our system, we used the DL-
classifier called Fast R-CNN. The context-based features were generated using aspect 
ratio. The Likelihood functions parameters were learned with the MLE on the CPDS 
dataset. First results on real data revealed that the proposed system was able to im-
prove the detection in some cases, but also had some false positive. Integrating more 
context information may compensate this effect. 
In our future work, we will integrate more context information (e.g. explicitly reason-
ing about occlusion) and evaluate the system on large data set. The problem of inte-
grating context directly into the DL architecture will be addressed. Another key aspect 
will be to investigate the possibility of learning context information directly from the 
data without explicit modelling. 
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